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ABSTRACT 

 

Surface modification is a process that is applied to the surfaces of titanium substrates in 

order to improve the biocompatibility after implanting in the body.  Two methods were 

used in the present work:  Anodisation and gel oxidation.  Anodisation was 

performed at room temperature in strong mineral acids (sulphuric acid (H2SO4) and 

phosphoric acid (H3PO4)), an oxidising agent (hydrogen peroxide (H2O2)), mixed 

solutions of the preceding three, and a weak organic acid mixture (β-glycerophosphate 

+ calcium acetate).  The parameters used in anodisation were:  Concentrations of the 

electrolytes, applied voltage, current density, and anodisation time.  Gel oxidation was 

carried out by soaking titanium substrates in sodium hydroxide (NaOH) aqueous 

solutions at different concentrations (0.5 M, 1.0 M, 5.0 M, and 10.0 M) at 60°C for 24 h, 

followed by oxidation at 400°, 600°, and 800°C for 1 h. 

 

Conceptual models representing changes in the microstructure as a function of the 

experimental parameters were developed using the anodisation data.  The relevant 

parameters were:  Applied voltage, current density, acid concentration, and anodisation 

time: 

 

• The model for anodisation using the strong acid (H2SO4) illustrates the growth rate 

of the film, identification of the threshold for the establishment of a consistent 

microstructure, and prediction of the properties of the film. 

• For the oxidising agent (H2O2), two models were developed:  Current-control and 

voltage-control, the applicability of which depends on the scale of the current 

density (high or low, respectively).  These models are interpreted in terms of the 

coherency/incoherency of the corrosion gel, arcing, and porosity. 

• The model for the strongest acid (H3PO4) is similar to that of H2O2 in 

current-control mode, although this system showed the greatest intensity of arcing 

and consequent pore size. 

• Anodisation in mixed solutions uses Ohm’s law to explain four stages of film 

growth in current-control mode.  These stages describe the thickness of the gel, its 

recrystallisation, and the achievement of a consistent microstructure. 
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• Anodisation in weaker organic acids allows the most detailed examination of the 

anodisation process.  Both current density and voltage as a function time reveal the 

nature of the process in six stages:  (1) instrumental response, (2 and 3) gel 

thickening, (4) transformation of the amorphous gel to amorphous titania, (5) 

recrystallisation of the amorphous titania, and (6) subsurface pore generation upon 

establishment of a consistent microstructure. 

 

Gel oxidation was done at low and high NaOH concentrations followed by oxidation.  

Three models were developed to represent the gel oxidation process:  (1) Low 

concentration, (0.5 M and 1.0 M NaOH), (2) Medium concentration (5.0 M NaOH), and 

(3) high concentration (10.0 M NaOH).  For the low concentrations with increasing 

temperature, the model involves:  (1) amorphous sodium titanate forms over a layer of 

amorphous anatase and (2) a dense layer of rutile forms.  For the high concentrations 

with increasing temperature, the model involves:  (1) amorphous sodium titanate forms 

over a layer of amorphous anatase, (2) a dense layer of anatase forms and raises up the 

existing porous anatase layer, and (3) the dense and porous anatase layers transform to 

dense and porous rutile layers, respectively.  The main difference between the two is 

the retention of crystalline sodium titanate in the higher NaOH concentration. 

 

Anodised and gel oxidised samples subsequently were soaked in simulated body fluid in 

order to study the precipitation of hydroxyapatite in the absence and presence of long 

UV irradiation, which has not been investigated before.  With the anodised surfaces, 

the porous and rough titania coating facilitated both the precipitation of hydroxyapatite 

and the attachment of bone-like cells.  UV irradiation showed greatly enhanced 

hydroxyapatite precipitation, which is attributed to its photocatalytic properties.  With 

the gel oxidised surfaces, the greatest amount of hydroxyapatite precipitation occurred 

with the presence of both anatase and amorphous sodium titanate.  Rutile suppressed 

precipitation. 
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 in solution of 0.3 

M H3PO4 for 100, 150, 200, 250, 300, and 350 V. 
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Figure 4.37: Raman spectra of anodic films at 60 mA.cm
-2

 in solution of 

0.3 M H3PO4 for 100, 150, 200, 250, 300, and 350 V. 
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Figure 4.38: Graph of voltage vs. time and current density vs. time for 

titanium anodic oxidation in 0.3 M H3PO4 electrolyte at 5 

mA.cm
-2

 for 350 V. 
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Figure 4.39: Graph of voltage vs. time and current density vs. time for 

titanium anodic oxidation in 0.3 M H3PO4 electrolyte at 60 

mA.cm
-2

 for 350 V. 
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Figure 4.40: FESEM images of cell attachment on Ti surface at (a) low (c) 

high magnifications and on Ti (anodised) in 0.3 M H3PO4 (40 

mA.cm
-2

, 350V, 10 min) at (b) low (d) high magnifications. 
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Figure 5.1: Variation of the colour of the film surface for S at different 

voltages (90 to 180 V) and different anodisation times (1, 3, 5, 

10, 30 and 50 min) at 5 mA.cm
-2

. 
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Figure 5.2: Variation of the colour of the film surface for SH at different 

voltages (90 to 180 V) and different anodisation times (1, 3, 5, 

10, 30 and 50 min) at 5 mA.cm
-2

. 
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Figure 5.3: Variation of the colour of the film surface for HP at different 

voltages (90 to 180 V) and different anodisation times (1, 3, 5, 

10, 30 and 50 min) at 5 mA.cm
-2

. 
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Figure 5.4: Variation of the colour of the film surface for SP at different 

voltages (90 to 180 V) and different anodisation times (1, 3, 5, 

10, 30 and 50 min) at 5 mA.cm
-2

. 

 

 

5-5 

Figure 5.5: Variation of the colour of the film surface for SHP at different 

voltages (90 to 180 V) and different anodisation times (1, 3, 5, 

10, 30 and 50 min) at 5 mA.cm
-2

. 
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Figure 5.6: FESEM images for sample S, SH, HP, SP and SHP at 90 V 

and 180 V for 1 min anodisation. 
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Figure 5.7: FESEM images for sample S, SH, HP, SP and SHP at 90 V 

and 180 V for 50 min anodisation. 

 

5-8 

Figure 5.8: FESEM images for sample SHP at 90, 120, 150, and 180 V for 

1 and 50 min anodisation. 
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Figure 5.9: FESEM images for sample SHP at 90 V for 1, 3, 5, 10, 30, and 

50 min anodisation. 
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Figure 5.10: FESEM images for sample SHP at 180 V for 1, 3, 5, 10, 30, 

and 50 min anodisation. 
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Figure 5.11(a): AFM images of anodic titanium oxide film on Ti surface in 

solution SHP at 90 V for 1 min. 
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Figure 5.11(b): AFM images of anodic titanium oxide film on Ti surface in 

solution SHP at 90 V for 50 min. 
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Figure 5.12(a): AFM images of anodic titanium oxide film on Ti surface in 

solution SHP at 180 V for 1 min. 
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Figure 5.12(b): AFM images of anodic titanium oxide film on Ti surface in 

solution SHP at 180 V for 50 min. 
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Figure 5.13: Raman intensity of anatase main peak (144 cm
-1

) vs. 

anodisation time of anodic films formed at 90 and 180 V in 

solution S. 
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Figure 5.14: Raman intensity of anatase main peak (144 cm
-1

) vs. 

anodisation time of anodic films formed at 90 and 180 V in 

solution SH. 
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Figure 5.15: Raman intensity of anatase main peak (144 cm
-1

) vs. 

anodisation time of anodic films formed at 90 and 180 V in 

solution HP. 
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Figure 5.16: Raman intensity anatase main peak (144 cm
-1

) vs. anodisation 

time of anodic films formed at 90 and 180 V in solution SP. 
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Figure 5.17: Raman intensity of anatase main peak (144 cm
-1

) vs. 

anodisation time of anodic films formed at 90 and 180 V in 

solution SHP. 
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Figure 5.18: Raman intensity of anatase main peak (144 cm
-1

) vs. voltage 

of anodic films formed at 90, 120, 150 and 180 V in solution 

SHP. 
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Figure 5.19: Raman intensity of anatase main peak of anodic films formed 

at 90 and 180 V for 1 min in solution S, SH, HP, SP, and SHP. 
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Figure 5.20: Raman intensity of anatase main peak of anodic films formed 

at 90 and 180 V for 50 min in solution S, SH, HP, SP, and 

SHP. 
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Figure 5.21: Glancing angle XRD patterns of anodic films at 180 V in SHP 

solution for:  1, 3, 5, 10, 30, and 50 min. 

 

5-26 

Figure 5.22: Variation of anodic film thickness as a function of time at 

180V in solutions S, SH, HP, SP and SHP. 
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Figure 5.23: Variation of anodic film thickness as a function of time in 

solution SHP at 90 V, 120 V, 150 V, and 180 V. 
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Figure 5.24: Sequence of oxide formation.  (1) Metal reacts with 

electrolyte.  (2) Passive gel is formed on the metal surface.  (3) 

Metal oxide is formed on the gel after anodising. 
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Figure 5.25: Variation of current density as a function of anodisation time 

in SHP at 90, 120, 150, and 180 V. 
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Figure 5.26: Variation of applied voltages as a function of anodisation time 

in SHP at 90, 120, 150, and 180 V. 
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Figure 5.27: Electrical behaviour of the anodic oxidation in SHP 

electrolyte. 
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Figure 5.28: Current density behaviour of the anodic oxidation in SHP 

electrolyte. 
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Figure 5.29: Variation of current density as a function of anodisation times 

at 90V for S, SH, HP, SP, and SHP. 
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Figure 5.30: Variation of applied voltages as a function of anodisation 

times at 90 V for S, SH, HP, SP, and SHP. 
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Figure 5.31: Variation of current density as a function of anodisation times 

at 180 V for S, SH, HP, SP, and SHP. 
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Figure 5.32: Variation of applied voltages as a function of anodisation 

times at 180 V for S, SH, HP, SP, and SHP. 
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Figure 5.33: (a) FESEM image of the Ti/TiO2-x interface for sample SHP at 

180 V for 50 min and (b) EDS data for the region. 
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Figure 5.34: Cross section of the films S, SH, HP, SP, and SHP anodised at 

180 V for 50 min (white bar indicated oxide layer thickness; 

tilted 45° to normal). 
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Figure 5.35: FESEM images of SHP sample at different applied voltages 

(90,120, 150 and 180 V) for 50 min, before and after 7 days 

soaking in SBF (arrows indicate hydroxyapatite). 
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Figure 5.36: EDS of SHP sample at 90 V for 50 min after 7 days soaking in 

SBF. 

 

5-42 

Figure 5.37: EDS of SHP sample at 180 V for 50 min after 7 days soaking 

in SBF. 

 

5-43 

Figure 5.38: FESEM images (low- and high-magnification of insets) of 

samples anodised in SHP at 180 V for different anodisation 

times (1, 3, 5, 10, 30 and 50 min) after 7 days soaking in SBF. 
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Figure 5.39: EDS of SHP sample at 180 V for 1 min after 7 days soaking in 

SBF. 

 

5-45 

Figure 5.40: Cross-section of the sample anodised in SHP at 180 V for 50 

min, before and after 7 days soaking in SBF (tilted at 45°). 

 

5-46 

Figure 5.41: FESEM images of the samples anodised in different 

electrolytes (S, SH, HP, SP and SHP) at 180 V for 50 min 

after soaking in SBF for 3 days. 
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Figure 5.42: FESEM images of the samples anodised in different 

electrolytes (S, SH, HP, SP and SHP) at 180 V for 50 min 

after soaking in SBF under UV irradiation for 3 days. 
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Figure 5.43: EDS of SHP sample at 180 V (50 min) after 3 days soaking in 

SBF (under UV irradiation). 

 

5-49 

Figure 5.44: FESEM images of cell attachment on the anodised Ti in SHP                 

(5 mA.cm
-2

, 180 V, 50 min) at low (a,b) and high (c,d) 

magnification. 
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Figure 6.1: Colours of film surfaces (0.02 M β-GP + 0.2 M CA, 10 

mA.cm
-2

) as a function of the applied voltage and anodisation 

time. 
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Figure 6.2: Colours of film surfaces (0.02 M β-GP + 0.2 M CA, 20 

mA.cm
-2

) as a function of the applied voltage and anodisation 

time. 
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Figure 6.3: Colours of film surfaces (0.04 M β-GP + 0.4 M CA, 10 

mA.cm
-2

) as a function of the applied voltage and anodisation 

time. 
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Figure 6.4: Colours of film surfaces (0.04 M β-GP + 0.4 M CA, 20 

mA.cm
-2

) as a function of the applied voltage and anodisation 

time. 
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Figure 6.5: GAXRD patterns of the samples anodised in 0.02 M β-GP + 

0.2 M CA, current density 10 mA.cm
-2

 at 150 V for 1, 3, 5, 

and 10 min. 
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Figure 6.6: GAXRD patterns of the samples anodised in 0.02 M β-GP + 

0.2 M CA, current density 10 mA.cm
-2

 at 350 V for 1, 3, 5, 

and 10 min. 
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Figure 6.7: GAXRD patterns of the samples anodised in 0.02 M β-GP + 

0.2 M CA, current density 10 mA.cm
-2

 at 150, 200, 250, 300, 

and 350 V for 10 min. 
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Figure 6.8: GAXRD patterns of the samples anodised in 0.02 M β-GP + 

0.2 M CA, current density 20 mA.cm
-2

 at 150 V for 1, 3, 5, 

and 10 min. 
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Figure 6.9: GAXRD patterns of the samples anodised in 0.02 M β-GP + 

0.2 M CA, current density 20 mA.cm
-2

 at 350 V for 1, 3, 5, 

and 10 min. 
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Figure 6.10: GAXRD patterns of the samples anodised in 0.02 M β-GP + 

0.2 M CA, current density 20 mA.cm
-2

 at 150, 200, 250, 300, 

and 350 V for 10 min. 
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Figure 6.11: GAXRD patterns of the samples anodised in 0.04 M β-GP + 

0.4 M CA, current density 10 mA.cm
-2

 at 150 V for 1, 3, 5, 

and 10 min. 
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Figure 6.12: GAXRD patterns of the samples anodised in 0.04 M β-GP + 

0.4 M CA, current density 10 mA.cm
-2

 at 350 V for 1, 3, 5, 

and 10 min. 
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Figure 6.13: GAXRD patterns of the samples anodised in 0.04 M β-GP + 

0.4 M CA, current density 10 mA.cm
-2

 at 150, 200, 250, 300, 

and 350 V for 10 min. 
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Figure 6.14: GAXRD patterns of the samples anodised in 0.04 M β-GP + 

0.4 M CA, current density 20 mA.cm
-2

 at 150 V for 1, 3, 5, 

and 10 min. 
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Figure 6.15: GAXRD patterns of the samples anodised in 0.04 M β-GP + 

0.4 M CA, current density 20 mA.cm
-2

 at 350 V for 1, 3, 5, 

and 10 min. 
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Figure 6.16: GAXRD patterns of the samples anodised in 0.04 M β-GP + 

0.4 M CA, current density 20 mA.cm
-2

 at 150, 200, 250, 300, 

and 350 V for 10 min. 
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Figure 6.17: Schematic diagram illustrating the formation of crystalline 

oxide in an anodic film on titanium. 

 

6-24 

Figure 6.18: Graph of voltage vs. time and current density vs. time for 

titanium anodic oxidation in 0.02 M β-GP + 0.2 M CA 

electrolyte at 10 mA.cm
-2

 for 150 V. 
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Figure 6.19: Graph of voltage vs. time and current density vs. time for 

titanium anodic oxidation in 0.04 M β-GP + 0.4 M CA 

electrolyte at 10 mA.cm
-2

 for 150 V. 
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Figure 6.20: Conceptual model models incorporate applied voltage, current 

density, and anodisation time. 
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Figure 6.21: Model for current density as a function of time. 6-27 

Figure 6.22: Model for voltage as a function of time. 6-28 

Figure 6.23: Graph for voltage vs. time and current density vs. time for 

titanium anodic oxidation in 0.02 M β-GP + 0.2 M CA 

electrolyte at 10 mA.cm
-2

 for 350 V 
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Figure 6.24: Graph for voltage vs. time and current density vs. time for 

titanium anodic oxidation in 0.04 M β-GP + 0.4 M CA 

electrolyte at 10 mA.cm
-2

 for 350 V. 

 

 

6-34 

Figure 6.25: FESEM micrographs of anodised surfaces in 0.02 M β-GP + 

0.2 M CA (10 mA.cm
-2

) at 150 V and 350 V for 1, 3, 5 and 10 

min.  
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Figure 6.26: FESEM micrographs of anodised surfaces in 0.02 M β-GP + 

0.2 M CA(10 mA.cm
-2

) at 150 V, 200 V, 250 V, 300 V, and 

350 V for 10 min. 
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Figure 6.27: FESEM micrographs of anodised surfaces in 0.02 M β-GP + 

0.2 M CA (20 mA.cm
-2

) at 150 V and 350 V for1, 3, 5 and 10 

min. 
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Figure 6.28: FESEM micrographs of anodised surfaces in 0.02 M β-GP + 

0.2 M CA (20 mA.cm
-2

) at 150 V, 200 V, 250 V, 300 V, and 

350 V for 10 min. 
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Figure 6.29: FESEM micrographs of anodised surfaces in 0.04 M β-GP + 

0.4 M CA (10 mA.cm
-2

) at 150 V and 350 V for 1, 3, 5 and 10 

min 

 

 

6-42 

Figure 6.30: FESEM micrographs of anodised surfaces in 0.04 M β-GP + 

0.4 M CA (10 mA.cm
-2

) at 150 V, 200 V, 250 V, 300 V, and 

350 V for 10 min 

 

 

 

6-43 



 xxii 

Figure 6.31: FESEM micrographs of anodised surfaces in 0.04 M β-GP + 

0.4 M CA (20 mA.cm
-2

) at 150 V and 350 V for 1, 3, 5 and 10 

min. 
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Figure 6.32: FESEM micrographs of anodised surfaces in 0.04 M β-GP + 

0.4 M CA (20 mA.cm
-2

) at 150 V, 200 V, 250 V, 300 V, and 

350 V for 10 min 
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Figure 6.33: FIB micrographs of the cross sections for samples 0.02 M β-GP 

+ 0.2 M CA and 0.04 M β-GP + 0.4 M CA at 10 and  

20 mA.cm
-2

 for 10 min 
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Figure 6.34: FESEM images of the samples anodised in 0.02 M β-GP + 0.2 

M CA, current densities 10 and 20 mA.cm
-2

 at 150 and 350 V 

for 10 min after soaking in SBF for 7 days. 
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Figure 6.35: FESEM images of the samples anodised in 0.04 M β-GP + 0.4 

M CA, current densities 10 and 20 mA.cm
-2

 at 150 and 350 V 

for 10 min after soaking in SBF for 7 days. 

 

 

6-50 

Figure 6.36: EDS pattern of the samples anodised in 0.02 M β-GP + 0.2 M 

CA, current densities 10 mA.cm
-2

 at 150 V for 10 min after 

soaking in SBF for 7 days. 
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Figure 6.37: FESEM images of the samples anodised in 0.02 M β-GP + 0.2 

M CA, current densities 10 and 20 mA.cm
-2

 at 150 and 350 V 

for 10 min after soaking in SBF for 3 days under UV light. 
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Figure 6.38: FESEM images of the samples anodised in 0.04 M β-GP + 0.4 

M CA, current densities 10 and 20 mA.cm
-2

 at 150 and 350 V 

for 10 min after soaking in SBF for 3 days under UV light. 
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Figure 6.39: EDS pattern of the samples anodised in 0.02 M β-GP + 0.2 M 

CA, current densities 10 mA.cm
-2

 at 150 V for 10 min after 

soaking in SBF (under UV irradiation) for 3 days. 
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Figure 6.40: EDS pattern of the samples anodised in 0.04 M β-GP + 0.4 M 

CA, current densities 10 mA.cm
-2

 at 350 V for 10 min after 

soaking in SBF (under UV irradiation) for 3 days. 
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Figure 6.41: FESEM images showing cell attachment on the anodised Ti in 

in 0.04 M β-GP + 0.4 M CA (10 mA.cm
-2

, 350V, 10 min) at 

low (a,b) and high (c,d) magnifications. 
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Figure 7.1(a): Schematic of gelation and oxidation processes for low 

concentration (0.5 M NaOH and 1.0 M NaOH; a = amorphous; 

c = crystalline). 
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Figure 7.1(b): Schematic of gelation and oxidation processes for high 

concentration, 5.0 M NaOH; a = amorphous; c = crystalline).  
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Figure 7.1(c): Schematic of gelation and oxidation processes for high 

concentration, 10.0 M NaOH; a = amorphous; c = crystalline). 
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Figure 7.2: Colour of titanium surface after NaOH treatment at different 

concentrations and oxidation temperatures. 
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Figure 7.3: GAXRD patterns of the surfaces of Ti treated in 0.5 M NaOH 

after being subjected to oxidation at various temperatures 
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Figure 7.4: GAXRD patterns of the surfaces of Ti treated in 1.0 M NaOH 

after being subjected to oxidation at various temperatures. 
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Figure 7.5: GAXRD patterns of the surfaces of Ti treated in 5.0 M NaOH 

after being subjected to oxidation at various temperatures. 
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Figure 7.6: GAXRD patterns of the surfaces of Ti treated in 10.0 M NaOH 

after being subjected to oxidation at various temperatures. 

 

7-13 

Figure 7.7: FESEM images of the surface of Ti heated with NaOH (0.5 

and 1.0 M) and subjected to oxidations at various 

temperatures. (Low Magnification, 6000 X). 
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Figure 7.8: FESEM images of the surface of Ti treated with NaOH (5.0 

and 10.0 M) and subjected to oxidations at various 

temperatures. (Low Magnification, 6000 X). 
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Figure 7.9: FESEM images of the surface of Ti treated with NaOH (0.5 

and 1.0 M) and subjected to oxidations at various 

temperatures. (High magnification, 30000 X). 
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Figure 7.10: FESEM images of the surface of Ti treated with NaOH (5.0 

and 10.0 M) and subjected to oxidations at various 

temperatures. (High magnification, 30000 X). 
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Figure 7.11: Cross-sectional images of the Ti treated with NaOH (0.5 and 

1.0 M) followed by oxidations at various temperatures (white 

bar indicates oxide layer thickness; tilted 45° to normal). 
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Figure 7.12: Cross-sectional images of the Ti treated with NaOH (5.0 and 

10.0 M) followed by oxidations at various temperatures (white 

bar indicates oxide layer thickness; tilted 45° to normal). 
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Figure 7.13: Thickness of films treated in NaOH (0.5, 1.0, 5.0, and 10.0 M) 

at various oxidation temperature (400°, 600°, and 800°C). 

 

7-24 

Figure 7.14: FESEM images of the surface of the Ti surface treated with 

NaOH (5.0 M and 5.0 M, 400°C) after soaking in SBF for 1 

and 3 days. 
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Figure 7.15: FESEM images of the surface of the Ti treated with NaOH 

(5.0 M, 600°C and 5.0 M, 800°C) after soaking in SBF for 1 

and 3 days. 
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Figure 7.16: FESEM images of the surface of the Ti treated with NaOH 

(10.0 and 10.0 M, 400°C) after soaking in SBF for 1 and 3 

days. 
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Figure 7.17: FESEM images of the surface of the Ti treated with NaOH 

(10.0 M, 600°C and 10.0 M, 800°C) after soaking in SBF for 1 

and 3 days. 
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Figure 7.18: GAXRD patterns of the surfaces of the Ti treated with 5.0 M 

NaOH after being subjected to oxidation at various 

temperatures after soaking for 1 day in SBF. 
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Figure 7.19: GAXRD patterns of the surfaces of the Ti surface treated with 

10.0 M NaOH and then subjected to oxidation at various 

temperatures after soaking for 1 day in SBF. 
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Figure 7.20: FESEM images of the surfaces of Ti substrates treated with 5 

M NaOH and oxidised at 400°, 600°, and 800°C for 1 h, 

followed by soaking in SBF irradiation with UV light for 1 

day. 
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Figure 7.21: GAXRD patterns of the surfaces of the Ti treated with 5.0 M 

NaOH which was subjected to oxidation at various 

temperatures and soaked in SBF under UV irradiation (15 min 

on and off alternately) for 1 day. 
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Figure 7.22: FESEM images of cell attachment on Ti surface at low (a,b) 

and high (c,d) magnifications for (a) Ti and (b) Ti treated with 

5.0 M NaOH (60°C, 24 h) followed by oxidation at 400°C. 
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Figure 7.23: GAXRD patterns of the surfaces of the 0.5 M NaOH-treated 

Ti (stirrer) subject to oxidations at various temperatures. 

 

7-44 

Figure 7.24: GAXRD patterns of the surfaces of the 1.0 M NaOH-treated 

Ti (stirrer) subject to oxidations at various temperatures. 

 

7-45 

Figure 7.25: GAXRD patterns of the surfaces of the 5.0 M NaOH-treated 

Ti (stirrer) subject to oxidations at various temperatures. 
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Figure 7.26: GAXRD patterns of the surfaces of the 10.0 M NaOH-treated 

Ti (stirrer) subject to oxidations at various temperatures. 
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Figure 7.27: Boundary layer concept in corrosion [178]. 7-48 

Figure 7.28: Raman spectra of the surfaces of samples prepared using 0.5 

M NaOH at different temperatures. 
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Figure 7.29: Raman spectra of the surfaces of samples prepared using 1.0 

M NaOH at different temperatures. 

 

7-50 

Figure 7.30: Raman V of the surfaces of samples prepared using 5.0 M 

NaOH at different temperatures. 

 

7-50 

Figure 7.31: Raman spectra of the surfaces of samples prepared using 10.0 

M NaOH at different temperatures. 
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Figure 7.32: Thicknesses of all titanium substrates as a function of NaOH 

concentration and oxidation temperatures. 

 

7-52 

Figure 7.33: FESEM images of the surface of NaOH (0.5 and 1.0 M) 

treated Ti subjected to oxidations at various temperatures 

(Magnification, 6000 X). 
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Figure 7.34: FESEM images of the surface of NaOH (5.0 and 10.0 M) 

treated Ti subjected to oxidations at various temperatures. 

(Magnification, 6000 X). 
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CHAPTER 1 

 

INTRODUCTION 

 

Titanium and its alloys have been used widely in biomedical implants and dental 

applications for their excellent biocompatibility, superior mechanical properties, and 

corrosion resistance.  These materials are used for the repair and reconstruction of 

damaged parts of the body, including replacements for hips, knees, teeth, and fixators 

for fractured bones. 

 

In biomaterial applications, some general terms (Table 1.1) such as toxic, bioinert, 

bioactive, and bioresorbable are used to classify the material’s tissue response [1].  

Titanium is considered to be non-bioactive for implants in bones. 

 

Table 1.1:  Type of implant - tissue response [1]. 

Material Explanation Tissue Response Examples 

Toxic 
Material is toxic The surrounding 

tissue dies 

Copper 

Bioinert 

Material is non-toxic and 

biologically inactive 

A fibrous tissue of 

variable thickness 

forms 

Alumina, zirconia, 

titania, titanium 

and it alloys 

Bioactive 

Material is non-toxic and 

biologically active 

An interfacial bond 

forms, between the 

tissue and material 

Hydroxyapatite, 

bioactive glasses 

Bioresorbable 

Material is non-toxic and 

dissolves in surrounding 

enviroment  

The surrounding 

tissue replaces it. 

Tri-calcium 

phosphate 

 

For further improvement in biocompatibility, oxide surface modifications of titanium 

have been investigated.  This is particularly relevant as all metallic titanium implants 

have a thin passivating oxide layer, so, in the past, these would have been implanted 

without the knowledge that the cellular response to the implant included the oxide 

component.  Intentionally applied layers of titanium dioxide (TiO2) produced by 

surface modification of titanium have emerged as important adjuncts to biomaterials 

owing to of their excellent chemical and physical properties. 
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TiO2 is known to have three natural polymorphs:  rutile, anatase, and brookite [2].  

Rutile, as the stable form of TiO2 at ambient conditions, possesses unique 

semiconducting characteristics [3].  With regard to the chemical properties, anatase is 

an important phase since it is more reactive and thus more effective in forming apatite 

in simulated body fluid (SBF) [4].  It also is a more suitable form for photocatalytic 

activity than rutile [2].  Brookite normally is difficult to obtain during the ceramic 

processing [5]. 

 

Two methods, anodisation and gel oxidation, were used in the present work to form a 

titania layer on Ti substrates.  Anodisation and gel oxidation are simple techniques that 

are useful at low temperature for producing TiO2 layers on titanium substrates [6]. 

 

The TiO2 layer on titanium was tested in vitro using simulated body fluid (SBF) using 

the method of Kokubo [4] and osteoblast bone-like cells.  Previously, several 

researchers have conducted tests in vitro under normal conditions.  However, no work 

has been carried out in the dark and under long-wave ultraviolet (UV) light, although 

TiO2 is well known to react under ambient light.  UV radiation can affect the TiO2 

implant surface, which is located near the skin (e.g., dental implants and external 

bone-fracture fixator) and may change the properties of TiO2 and its functions in the 

body in the long term. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

2.1 Titanium Dioxide (TiO2) 

 

Titanium dioxide (TiO2) has been widely used in many industrial applications during 

the last few decades.  Most of the applications are based on the special surfaces 

properties and catalytic properties.  Due to these properties, TiO2 has become the 

subject of many investigations for applications in optical, electrical and micro electronic, 

photonic, chemical and biomedical fields. 

 

2.1.1  Uses 

 

2.1.1.1 General Applications 

 

TiO2 is commonly used as a thin film and powder form.  The general uses of TiO2 are 

summarised in Table 2.1. 

 

2.1.1.2 Photocatalysis 

 

Over the past several years, several applications of photocatalytic technology have been 

examined.  Some in use applications of photocatalysis are shown in Figure 2.1[7]. 
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Application Explanation / Applications References 

White pigments Used in paint, plastic, inks, paper, leather, 

textiles and cosmetic products 

[7-11]  

Metal oxide 

semiconductor field 

effect transistor 

(MOSFET) 

High dielectric constants (ε = 100) [9,11,12]  

Varistors Used in ceramic and electric devices [8]  

Gas sensors As humidity control 

To control the air/fuel mixture in car engines 

Utilized in determination of oxygen and CO at 

high temperatures (>600° C) 

[8,9,11,13]  

Biomaterials Bone implant coatings 

As bone substituent 

As reinforcing mechanical support 

[8,11]  

Photo-assisted 

degradation of organic 

molecules 

Purification of waste water 

Used in operating rooms in hospital 

Self-cleaning coating on car windshields 

[7,8] 

Anti cancer treatment Photochemical treatment [7] 

As thin film optical 

interference coating 

Antireflective coating 

Dielectric mirrors for lasers 

Metal mirrors with enhanced reflection 

Filters 

[7,8,9,11] 

As a protective coating  Corrosion resistant barriers [8,9,13] 

Photocatalysts (solar 

cells) 

Used in the production of hydrogen and electric 

energy 

As anti-reflection coatings 

[7,8,11,13] 

 

Sunscreen As UV absorber in sunscreen cream with high 

sun protection factors 

[7,9,11] 

Food Foodstuff, food colouring (E-171) [9,11] 

Pharmaceuticals As tablet coating, toothpastes [9,11]  

As catalysts Selective reduction of NOx to N2, Hydrogen 

production by gas shift production, CO 

oxidation by O2, H2S oxidation to S, Reduction 

of SO2 to S by CO, NO2 storage 

[9,11] 

Used in fluxes and 

ceramics 

Raw materials [10] 

Li-based batteries Anatase form is used as anode material [8,11] 

Ultra-thin capacitors  [9] 

Electrochromic 

devices 

Thin film coating [8,13] 

 

 

 

 

 

Table 2.1:  The applications of TiO2 in various fields. 
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Fujishima et al. [7] explained about the critical role of TiO2.  By using TiO2 in 

photocatalysis, the environment can be rendered clean and energy consumption can be 

decreased. Table 2.2 lists the various applications of TiO2 as a photocatalysis [7]. 

 

 

Property/Function Category Applications 

Self-cleaning 

Materials for 

residential and 

office buildings 

Exterior tiles, kitchen and bathroom 

components, interior furnishings, plastic 

surfaces, aluminium siding, building stone 

and curtains, paper window blinds 

Indoor and outdoor 

lamps and related 

systems 

Translucent paper for indoor lamp covers, 

coatings on fluorescent lamps and highway 

tunnel lamp cover glass 

Materials for roads 
Tunnel wall, soundproofed wall, traffic signs 

and reflectors 

Others 
Tent material, cloth for hospital garments 

and uniforms and spray coatings for cars 

Air cleaning 

Indoor air cleaners 

Room air cleaner, photocatalyst-equipped air 

conditioners and interior air cleaner for 

factories 

Outdoor air purifiers 

Concrete for highways, roadways and 

footpaths, tunnel walls, soundproof walls 

and building walls 

Water purification 

Drinking water 
River water, ground water, lakes and 

water-storage tanks 

Others 
Fish feeding tanks, drainage water and 

industrial wastewater 

Anti tumour activity Cancer therapy Endoscopic instruments 

Self-sterilising Hospital 

Tiles to cover the floor and walls of 

operating rooms, silicone rubber for medical 

catheters and hospital garments and uniforms 

Light  +  TiO2 

titanium dioxide 

photocatalytic action 

 

fog-proof 

(frost-proof) 

anti-bacterial 

anti-viral, 

fungicidal 

water treatment 

water purification 
anti-soiling 

self-cleaning 

anti-cancer 

(photochemical 

cancer treatment) 

deodorising  

air purification  

Figure 2.1:  TiO2 photocatalysis general applications [7]. 

Table 2.2:  The applications of photocatalysis [7]. 
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2.1.1.3 Biomedical Applications 

 

TiO2 is used in biomedical applications as fine particles, coatings and oxide films on the 

outer surface of biomaterials (Table 2.3).  The surface of the Ti-based alloys forms 

TiO2 layers in aqueous solutions in the human body and act as the interface for strong 

bonding with natural connective tissue [14].  The TiO2 film also provides corrosion 

resistance and contributes to improve biocompatibility of the implant [8]. 

Fujishima et al. [15] implanted cancer cells under the skin of mice to cause tumours to 

form, and when the size of the tumours grew to about 0.5 cm, suspension containing 

fine particles of titanium dioxide was injected into it. After 3 days, the skin was cut 

open to expose the tumour and it was irradiated with ultraviolet (UV) and thus treatment 

clearly inhibited the tumour growth.  However, this technique was not effective in 

stopping cancer which had grown beyond a certain size limit [15]. 

 

 

Form Application / Explanations References 

Films on 

Metallic 

Oral implants 

Endosteal implants 

Implant retained suprastructure 

Combined denture 

[8,16-18] 

Orthopaedic implants  

Hip joint implants 

Knee joint implants 

Bone-fracture fixation (screws and plates) 

External bone-fracture fixation 

[8,16,17] 

Films on 

Polymers 

Contact lenses [7] 

Catheters [7] 

Powders 

Cancer treatment 

HeLa (cancer cells) 

[7] 

Pathogenic organism photodegradation 
Escherichia coli  
U 937 -Ten and 30 min of illumination in the presence 

of TiO2 leads to 80% and complete killing of human U 

937 monocytic leukaemia cells 

[11] 

 

2.1.2  Crystal Structure and Phase Transformation 

 

Titanium forms four well-defined oxides; monoxide (TiO), sesquioxide (Ti2O3), dioxide 

or titanic acid (TiO2) called titania and pentoxide (Ti3O5) as shown in Figure 2.2.  

There are many differences in structural and chemical properties between its oxides 

Table 2.3:  Applications of TiO2 in biomedical fields. 
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(Tale 2.4).  From a practical standpoint, the dioxide (TiO2) is the most important oxide 

[19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TiO2 exists in nature in the form of minerals like anatase, brookite and rutile.  Rutile is 

commonly found in nature; however, anatase and brookite are extremely rare.  

Generally, TiO2 exist in an amorphous form at temperature below 350°C [9].  Above 

that temperature, anatase phase is formed and at temperatures greater than about 800°C, 

the most stable crystalline phase rutile, is formed [9,21]. 

 

According to Bokhimi [22], in most cases of TiO2 synthesis, anatase is the main phase 

and brookite occurs as a minority phase, depending on synthesis conditions.  The rutile 

phase is obtained by annealing anatase and brookite at temperature higher than 500°C 

[22].  The crystal structures of the three oxide forms can be discussed further in terms 

of orientation of the (TiO 6

2 ) octahedral [11]. 

 

 

 

Figure 2.2: Phase diagram of the Ti-O system taken from Samsonov [20].  The 

region Ti2O3 - TiO2 contains Ti2O3, Ti3O5, seven discrete phases of the 

homologous series TinO2n-1 (Magneli phases) and TiO2 [8]. 
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Property 
TiO2 

TiO Ti2O3 
brookite anatase rutile 

Colour dark brown white white bronze purple-violet 

Melting point, °C - - 1830-50 1737 2127 

Density (25°C), 

kg/m
3
 

4170 3900 4270 4888 4486 

Crystal structure  orthorhombic tetragonal tetragonal Cubic rhombohedr

al [24] 

 

2.1.2.1 Anatase 

Anatase which refers to the long vertical axis, was named by R.J. Hauy in 1801 from 

the Greek word „anatasis‟ meaning „extension‟ [11].  Anatase has a tetragonal 

crystalline structure (Figure 2.3a) [22] and is built up from octahedra that are connected 

at their edge (Figure 2.3b) [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) 

Figure 2.3:  Crystal structure of anatase [8,11,22]. 

 

102.308° 

92.604° 

Ti O 

Table 2.4: Properties of titanium oxides at various oxidation states [12,23]. 

(b) 
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2.1.2.2 Rutile 

 

Rutile was discovered by Werner in Spain in 1803.  Its name is derived from the Latin 

„rutilus‟ meaning red. Rutile is the most stable form of TiO2 [11].  Rutile has a crystal 

structure with tetrahedral symmetry (Figure 2.4a) [22].  Rutile is built up from 

octahedra that are connected predominantly at their edges (Figure 2.4b) [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 

Figure 2.4:  Crystal structure of rutile [11,22]. 

90° 

98.9°
3° 

O Ti 
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2.1.2.3 Brookite 

 

Brookite was discovered by A. Levy in 1825 at Snowen (Pays de Gales, England) and it 

was named in honour of the English mineralogist, H.J. Brooke [11].  Brookite has an 

orthorhombic crystalline structure.  The crystal structure can be described as distorted 

octahedra with a titanium atom the centre and oxygen atoms in the vertices (Figure 2.5a) 

[22].  Brookite is built up from the octahedra that are connected at their corner and 

edges (Figure 2.5b) [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5:  Crystal structure of brookite [11,22]. 

(a) (b) 

O1 O2 Ti 
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2.1.3  Thermodynamics and Phase Equilibrium 

 

The thermodynamic phase stability in the Ti-O system is calculated based on 

calorimetric data [11].  Based on minor differences in the Gibbs free energy (4-20 

kJ/mole) value between the three phases, the most stable phase is believed to be rutile at 

normal pressure and temperatures as compared to the other two phases.  Particle size is 

also known affect to the phase stability due to its association with surface energy and 

surface stress.  Thermodynamically, anatase is most stable at sizes less than 11 nm, 

brookite between 11 and 35 nm, and rutile at sizes greater than 35 nm.  The 

transformation of anatase into rutile at room temperature is very slow and practically 

does not occur.  At macroscopic scale, the transformations of bulk TiO2 occur at 

temperatures more than 600°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The phase equilibria and crystal structures of the Ti-O system range between pure Ti 

and TiO2 as shown in Figure 2.6.  High solubility of oxygen in titanium (αTi) at low 

temperature leads to formation of Ti2O, Ti3O and possibly Ti6O. Ti2O has the anti-CdI2 

structure with alternate oxygen layers vacant and additional vacancies randomly 

distributed in occupied layer [26-29].  Monoxides (γTiO at high temperature) 

Figure 2.6:  Ti-O phase diagram [25]. 
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structures are based on the NaCl structure. Four modifications of TiO have been 

identified, αTiO, βTiO, αTi1-xO, and βTi1-xO [25].  The special points of the Ti-O 

phase diagram are summarised in Table 2.5 and Table 2.6. 

 

 

Phase 
Composition, 

at % O 

Temperature 

(°C) 
Reaction type 

L + (αTi) ↔(βTi) 5 13 8 1720 ± 25 Peritectic 

L ↔ (αTi)  ~24  1885 ± 25 Congruent 

Melting 

(αTi) + Ti3O2 ↔ Ti2O 33.3 40 33.9 ~600 Peritectoid 

(αTi) + Ti2O3 ↔Ti3O ~17 ~25 ~24.5 ~500 Peritectoid 

L ↔ (αTi) + L ~37 ~31 ~53 ~1800 Monotectic (?) 

L + (αTi) ↔ γ TiO ~55 31.4 34.5 1770 Peritectic 

γTiO ↔ βTiO  -  ~1250 Unknown 

βTiO ↔ βTi1-xO  -   Unknown 

β Ti1-xO ↔ α Ti1-xO  -   Unknown 

(αTi) + βTiO ↔ αTiO 33.3 51 50 940 Peritectoid 

(αTi) + αTiO ↔ Ti3O2 32.4 50 40 920 Peritectoid 

α Ti1-xO ↔αTiO + βTi2O3 54.5 50 60 460 Eutectoid 

L ↔ γTiO + βTi2O3 ~57 54.5 59.8 1720 Eutectic 

L ↔ βTi2O3  60  1842 Congruent 

L + βTi2O3 ↔ βTi3O5 63 60.2 62.5 1770 Peritectic 

βTi2O3 ↔ αTi2O3  60  ~180 Unknown 

βTi3O5 ↔ αTi3O5  62.5  187 Unknown 

γTi4O7 ↔ βTi4O7  63.64  -123 Unknown 

β Ti4O7 ↔ α Ti4O7  63.64  -148 Unknown 

L ↔βTi3O5 + ? ~64 62.5 - ~1670 Eutectic 

βTi3O5 +βTi5O9 ↔ γTi4O7 62.5 64.29 63.64 ~1500 Peritectoid 

L ↔ TiO2  66.7  1870 Congruent 

L ↔ (βTi)  0  1670 Melting point 

(βTi) ↔ (αTi)  0  882 Allotropic 

transformation 

 

There are five polymorphs of TiO2 that are anatase, brookite, TiO2–II, TiO2–III and 

rutile.  Anatase and brookite are formed at low temperature and low pressure; TiO2–II 

and TiO2–III are formed from anatase or brookite under high pressure; and rutile is the 

stable phase at room temperature and pressure.  The polymorphic transformations 

anatase → rutile and brookite → rutile do not occur reversibly [30,31].  The magneli 

phases are a series of discrete phases with stoichiometry TinO2n-1 where n ≥ 2.  The 

magneli phases exist in between the monoxides (TiO) and dioxide (TiO2).  Roy and 

White have suggested that there exists discrete equilibrium phases for n ≤ 99 [32]. The 

Table 2.5:  The special points of the Ti-O phase diagram [25]. 
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phases TinO2n-1 (4 ≤ n ≤ 10) have crystal structures derived from the rutile structure by 

crystallographic shear [25]. 

 

 

Phase 
Composition, 

at % O 

Pearson 

symbol 

Space 

group 

Structure-bericht 

designation 
Prototype 

(βTi) 0 to 8 cI2 Im3m A2 W 

(αTi) 0 to 31.9 hP2 P63/mmc A3 Mg 

Ti3O ~20 to ~30 hp ~ 16  P¯31c - - 

Ti2O ~25 to 33.4 hP3 P¯3m1 - Anti-CdI2 

γTi 34.9 to 55.5 cF8 Fm3m B1 CINa 

Ti3O2 ~40 hP ~ 5 P6/mmm - - 

βTiO - (a) - - - 

αTiO ~50 mC16 A2/m or 

B*/* 

- - 

βTi1-xO ~55.5 oI12 I222 - - 

αTi1-xO ~55.5 tI18 I4/m - - 

βTi2O3 59.8 to 60.2 hR30 R¯3i D51 αAl2O3 

αTi2O3 59.8 to 60.2 hR30 R¯3c D51 αAl2O3 

βTi3O5 62.5 (b) - - Anosovite 

αTi3O5 62.5 mC32 C2/m - - 

α‟Ti3O5 (a) mC32 Cc - V3O5 

γTi4O7 63.6 aP44 P¯1 - - 

βTi4O7 63.6 aP44 P¯1 - - 

αTi4O7 63.6 aP44 P¯1 - - 

γTi5O9 64.3 aP28 P¯1 - - 

βTi6O11 54.7 aC68 A¯1 - - 

Ti7O13 65.0 aP40 P¯1 - - 

Ti8O15 65.2 aC92 A¯1 - - 

Ti9O17 65.4 aI52 P¯1 - - 

Rutile ~66.7 tP6 P42/mnm C4 Rutile 

Metastable phase 

Anatase - tI12 I41/amd C5 Anatase 

Brookite - oP24 Pbca C21 Brookite 

High pressure phase 

TiO2-II - oP12 Pbcn - αPbO2 

TiO2-III - ~hP48 (c) - - 

(a) Cubic, (b) Monoclinic, (c) Hexagonal 

 

2.1.4  Properties of TiO2 

 

The physical, optical, electrical and chemical properties of TiO2 depend greatly on the 

amorphous or crystalline phase of the material [9].  The bulk properties of TiO2 are 

shown in Table 2.7. 

Table 2.6:  Ti-O crystal structure data [25]. 
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Property 
TiO2 

brookite anatase rutile 

Space group PbcaD h

15

2  amdID h /41

19

4
 mnmPD h /42

14

4  

Lattice constant (nm)  

a 0.5346 0.3733 0.4584 

b 0.9166 - - 

c 0.5135 0.9370 0.2953 

c/a 0.944 2.51 0.644 

Standard heat capacity, C o

p , 

298.15 J/(mol °C) 

- 55.52 55.06 

Electron mobility, μ (cm
2
/Vs) - ~10 ~1 

Band gap (eV) - 3.2 3.0 

Refractive index  

ng 2.809 2.5688 2.9467 

np  2.677 2.6584 2.6506 

 

2.2.4.1 Physical Properties  

 

The physical properties of TiO2 depend on the amorphous or crystalline nature of the 

material.  Amorphous TiO2 has voids and relatively low density and does not have a 

crystallographic structure.  The amorphous TiO2 phase can be produced at low 

temperature 100°C – 150°C as a thin film deposit on substrates.  However, TiO2 thin 

films that are produced by chemical reaction form anatase at the lowest temperatures 

[9].  

 

TiO2 has three crystalline phases. In thin films, normally anatase and rutile are observed.  

Polycrystalline anatase film can be obtained from amorphous TiO2 film by annealing at 

higher temperatures [9].  The transition from amorphous to crystalline anatase film 

occurs at ~ 300 – 365°C and from anatase to rutile occurs at ~ 700 – 1100°C.  Both 

anatase and rutile have tetragonal crystallographic structure but rutile is more densely 

packed and thus denser than anatase.  Amores et al. [33] have explained in detail about 

the phase transformation from anatase to rutile in the high temperature sintering process 

as shown in Figure 2.7.  The proposed mechanism for the sintering and transformation 

of anatase into rutile comprises on: 

 

Table 2.7:  Bulk properties of the three main polymorphs TiO2 (anatase, brookite 

and rutile) [8]. 
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1. The smallest particles coalesce, forming bigger particles. 

2. The fractions of particles that are already large have been shown not to undergo 

sintering. 

3. Heat evolved from the exothermic sintering process causes the local nucleation 

of rutile. 

4. The conversion to rutile is also an exothermic process, leading to the 

transformation of the whole particle to rutile. 

 

 

 

 

 

 

 

 

 

 

 

 

Anatase and rutile have different densities due to different packing arrangment.  Table 

2.8 shows the density of the various phases and thin films mentioned by Richards [9].  

Density of TiO2 thin film can be calculated by using the equation derived from the 

linear relationship between density and refractive index (Figure 2.8) [34]. 

 

 

Structure Density (kg/m
3
) Notes References 

Amorphous 

2400 Porous film [35] 

3200 -3650 Typical value [36] 

3600 -3800 Films deposited with 

a high kinetic energy 

[34] 

Brookite 4170 Bulk [8] 

Anatase 
3900 

Bulk 
[8] 

3840 [9] 

Rutile 
4270 

Bulk 
[8] 

4260 [9] 

 4090-4100 Thin film [34,37] 

 

Figure 2.7: Proposed mechanism for the sintering and transformation of anatase 

into rutile. (adapted from [33]). 

Table 2.8:  Various density of TiO2 [9]. 
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The equation of line in Figure 2.7 is 

nf  = 0.42751ρ + 0.91933     (2.1) 

    
42751.0

91933.0-
=

fn
ρ        (2.2) 

where ρ and nf are the TiO2 film density (kg/m
3
) and refractive index respectively.  The 

porosity of the thin film can be determined using equation 2.3 [38]. 

    
1-

1-
 =Porosity 2

2

b

f

n

n
 ,      (2.3) 

where nb is the refractive index of the bulk single crystal material.  This value is an 

approximation due to the fact that firstly, both anatase and rutile crystals exhibit strong 

birefringence and secondly mixed anatase / rutile phases can exist [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.4.2 Chemical Properties 

 

TiO2 is relatively inert and has good corrosion resistance in a biological environment.  

TiO2 film on titanium and titanium based alloys is widely used in biomedical and dental 

applications [43].  It exhibits stability and corrosion resistance that protects the metal 

Figure 2.8: Experimental data from previous researchers indicating that a linear 

correlation between TiO2 film density and refractive index is observed 

over for a wide range of values. Ottermann and Bange [39], 

Fitzgibbons et al. [40], Bendavid et al. [34], Hass [41], and Ribarsky 

[42] were used. (Adapted from [34]). 
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from further oxidation in vitro.  When in contact with body fluids that have pH values 

close to neutral, the materials show corrosion rates that are extremely low and difficult 

to measure experimentally. 

 

In general, crystalline phases of TiO2, anatase and rutile are much more chemically 

resistant than amorphous TiO2 [9].  Richard also found that amorphous TiO2 films are 

highly soluble in hydrofluoric acid (HF), but dense and polycrystalline films are 

insoluble.  The chemical resistance of TiO2 to sulphuric acid (H2SO4) is very 

dependent on the film preparation technique [44], but TiO2 is insoluble in all other 

concentrate acids and bases [9].  Barksdale reported that TiO2 is slightly soluble in 

H2SO4, HF and a few strong alkalis, but it is almost completely chemically inert after 

annealing at 1000°C [19].  Strong basic solutions such as sodium hydroxide (NaOH) 

and ammonium hydroxide (NH4OH) are used in etching processes for TiO2 films [9]. 

 

2.2.4.3 Optical Properties 

 

The important optical properties of TiO2 are refractive index and extinction coefficient.  

Refractive index indicates the extent to which a light beam is reflected when passing 

through as compared to the vacuum substance.  The refractive index of a TiO2 thin 

film is less than that of anatase or rutile crystal.  Anatase and rutile are birefringent 

crystals and their refractive indices are calculated using mean refractive index nmean for 

a randomly oriented polycrystalline thin film (Equation 2.4). 

 

                  (2.4) 

 

 

where 2n┴  and n// are for oscillations perpendicular and parallel to the optical axis 

(axis of light can pass without undergoing double refraction), respectively [9].  The 

mean refractive indices for rutile and anatase (at λ = 600 nm) are 2.70 and 2.53 

respectively [41,42]. 

 

Richard [9] presented information about the refractive index, optical bandgap and 

optical absorption in his work.  The refractive indices for anatase single crystal from 

previous research and the rutile single crystal from Kim is shown in Figure 2.9.  The 

3

+2
=

⊥ nn
nmean
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optical bandgap value of TiO2 changes depending on its structure. The optical bandgap 

of amorphous TiO2 is around 3.5 eV, while for anatase and rutile, it is about 3.2 eV and 

3.05 eV, respectively.  The optical absorption will increase with successive 

transformations from amorphous TiO2 to anatase to rutile material.  From Figure 2.10, 

anatase is seen to have an absorption edge with a lower steepness, which is attributed to 

the presence of excitons (bound state of an electron and a hole), and more imperfections 

and disorder than in anatase crystal.  Figure 2.11 shows the exponential dependence of 

the absorption coefficient at 10 K for different polarisations when illuminated with UV 

light [9,45]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Published values for the refractive index of single crystal anatase, taken 

from Meyer and Pietsch [44]; Hass [41]; Fitzgibbons [40]; Kingery et al. 

[46]; Washburn [47] and Kim [48]. The dispersive curve for single crystal 

rutile from Kim is also given [48]. 
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The extinction coefficient k, play an attenuating role in the material.  It is related to 

absorption coefficient α through this equation (Equation 2.5), 

    
π

αλ
k

4
= ,        (2.5) 

where k and α are extinction coefficient and absorption coefficient, respectively [9].  

Richard [9] also mentioned that the extinction coefficient of a film can be increased by 

scattering of light by surface and volume in perfections, such as surface roughness, 

porous microstructure, and density fluctuations [9].  The term optical loss L is defined 

as 

     1 = R + T + L        (2.6) 

with 

     L = A + S        (2.7) 

 

where A is absorptance, S is the scattering component, R is reflectance and T is 

transmittance. 

 

 

Figure 2.10: Fundamental absorption edge of anatase and rutile single 

crystal, measured at a temperature of 10 K (adapted from 

[45]). 
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2.1.4.4 Photocatalytic Properties 

 

The photocatalytic phenomenon has been studied extensively for several years by many 

researchers.  Since TiO2 is a semiconductor with a band gap of about 3.0 eV, UV light 

(with wavelengths shorter than ~400 nm) can excite pairs of electrons and holes [49].  

The photogenerated electrons then react with molecular oxygen (O2) to produce 

superoxide radical anions (•O2-), and the photogenerated holes react with water to 

produce hydroxyl (•OH) radicals.  These two types of reactive radicals then work 

together to decompose organic compounds.  The longer the film is illuminated with 

UV light, the more organic material that is decomposed, such that even an oily stain on 

the surface would gradually disappear under UV light [7].  Overall, the photocatalysed 

reaction may be summarized as follows: 

                  (2.8) 

 

Depending on the sign of the change in Gibbs free energy (ΔG°) value of the reaction 

(2.8), the semiconductor-sensitised reaction may be an example of photocatalysis or 

photosynthesis, respectively [11].  For a semiconductor photocatalyst to be efficient, 

Figure 2.11: The exponential dependence of the absorption coefficient of single 

crystal anatase, measured at 10 K with light polarised in Ec and E║c 

directions (adapted from [45]). 

( ) ( )
adsads

RedOx 21 + semiconductor 

Hv>Eg 22 +OxRed
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the different interfacial electron processes involving e
-
 and h

+
 must compete effectively 

with the major deactivation processes involving e
- 
– h

+
 recombination, which may occur 

in the bulk or at the surface (Figure 2.12).  Ideally, a semiconductor photocatalyst 

should be chemically and biologically inert, photocatalytically stable, easy to produce 

and to use, efficiently activated by sunlight, able to efficiently catalyse reactions, cheap, 

and without risks for the environment or humans.  Titanium dioxide (with sizes 

ranging from clusters to colloids to powders and large single crystals) is close to being 

an ideal photocatalyst, displaying almost all the above properties.  The single 

exception is that it does not absorb visible light. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Both crystal structures anatase and rutile, are commonly used as photocatalysts, with 

anatase showing greater photocatalytic activity for most reactions.  It has been 

suggested that this increased photoreactivity is due to anatase having slightly higher 

Fermi level, lower capacity to adsorb oxygen and higher degree of hydroxylation (i.e., 

number of hydroxy groups on the surface) [50].  Reactions in which both crystalline 

phases have the same photoreactivity or rutile having a higher one [51] have also been 

reported.  Furthermore, there are also studies which claim that a mixture of anatase 

Figure 2.12: Major mechanism occurring on semiconductors: (a) electron–hole 

generation; (b) oxidation of donor (D); (c) reduction of acceptor (A); (d) 

and (e) electron–hole recombination at surface and in bulk, respectively 

[48]. 
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(70–75%) and rutile (30–25%) is more active than pure anatase alone.  The 

disagreement of the results may be due to the intervening effect of various coexisting 

factors, such as specific surface area, pore size distribution, crystal size, and preparation 

methods, or it may be related to the way the activity is expressed.  

 

The behavior of Degussa P25 commercial TiO2 photocatalyst, consisting of an 

amorphous state together with a mixture of anatase and rutile in an approximate 

proportion of 80/20, is observed to be more active than both the pure crystalline phases 

together [52].  The enhanced activity arises from the increased efficiency of the 

electron–hole separation due to the multiphase nature of the particles.  Another 

commercial TiO2 photocatalyst Sachtlebem Hombikat UV 100, consisting only of 

anatase, has a high photoreactivity due to fast interfacial electron-transfer rate.  Water 

splitting is a special case, because band bending is necessary in order to oxidize water 

and large rutile particles (with a small surface area) are efficient [53]. 

 

2.2 Colour Properties of Titanium and TiO2 

 

2.2.1  Colour System 

 

Colour is associated with visible light waves (wavelength distributions). Visible light is 

a very small part of electromagnetic energy; wavelengths within violet (400 nm) and red 

(700 nm) of the electromagnetic spectrum (Figure 2.13) [54,55].  The selective 

absorption of different amount of wavelengths within violet and red described as colour 

of objects.  Wavelengths not absorbed are reflected or transmitted by objects and thus 

visible to observers [54]. 

 

The colour measurement for the scientific purpose is based on numerical representations 

or quantification of three colour response mechanisms in the human eye [54].  There 

are several methods of measurement: 

 

1) RBG-based colour space 

2) HSV and HLS colour space 

3) CIE colour space 
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2.2.2  RGB-Based Colour Space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most commonly used colour space is the RGB colour system (Figure 2.14).  The 

RGB space is a three-dimensional colour cube with primary colour defined as (red, 

Figure 2.13: Visible light (wavelength, 400-700nm) as part of electromagnetic 

energy [55]. 

Figure 2.14:  RGB space colour cube (Red corner is hidden from view)[55]. 

Magenta 

White (All Colours) 

Yellow  

Green  

Black 
(No Colours) 

Blue  

Cyan 

B+  

G+  
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green and blue), secondaries (cyan, magenta and yellow) and white.  One corner of the 

cube is the origin for the RGB coordinate axes [56]. 

 

2.2.3  HSV and HLS Colourn Space 

 

A second colour space commonly used is the HSV and HLS colour space that are 

transformations of RGB. The name HSV stand for (hue-saturation-value is synonymous 

with HSB, hue-saturation-brightness), and HSL (hue-saturation-lightness) colour spaces.  

The two spaces can be described as being single and double cones respectively (Figure 

2.15) [57]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The components in HLS space are analogous, but not completely identical, to the 

components in HSV space.  The hue component in both colour spaces is an angular 

measurement (represent by a disc).  A hue value is indicated as in Table 2.9. 

 

 

 

 

 

Primary colour Secondary colour 

0° red 60° yellow 

120° green 180° cyan 

240° blue 300° magenta 

Figure 2.15:  HSV and HSL colour space [55]. 

Table 2.9:  Hue value and colours 

Saturation 

Value 

Lightness 

Hue Hue 

Saturation 

HSV space HSL space 

0° 0° 
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The saturation component in both colour spaces describes colour intensity.  A 

saturation value of 0 (in the middle of a disc) means that the colour is "colourless" 

(gray); a saturation value at the maximum (at the outer edge of a disc) means that the 

colour is at maximum "colourfulness" for that hue angle and brightness. 

 

The value component in HSV describes the brightness.  In both colour spaces, a value 

of 0 represents the absence of light, or black.  In HSV space, a maximum value means 

that the colour is at its brightest.  In HLS space, a maximum value for lightness means 

that the colour is white, regardless of the current values of the hue and saturation 

components [55].  Table 2.10 shows the difference between HSV and HSL system. 

 

 

 

 

According to Harold [54], scientific colour is measured based on numerical 

representations of the three colours that response to human eye.  The human eye has 

receptors (called cone cells) for short (S), middle (M), and long (L) wavelengths.  In 

1931, The Commission Internationale de L‟Éclairage (CIE) has defined a system to 

compute a triple of numerical components to be the mathematical coordinates of colour 

space and was called 1931 CIE XYZ colour space [59,54].  In the CIE XYZ colour 

space, the tristimulus values are called X, Y, and Z, which are roughly red, green and 

blue, respectively. 

 

It is convenient to work in a 2D colour space.  This is commonly done by projecting 

the 3D colour space onto the plane X+Y+Z=1, yielding a CIE chromaticity diagram 

(Figure 2.16). 

 

 

 

HSV HSL 

Saturation 

0 colourless 

Saturation 

0 colourless 

max 
colourfulness 100 

Pure primary 

colour 

Value 
0 black 

Lightness 
0 black 

max bright 100 white 

Table 2.10: The HSV (saturation and value) and HSL (saturation and lightness) 

[58] 
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The projection is defined as:  

 

ZYX
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2.2.4  Colour Measurement 

 

Colour measurement by visual is subjective and difficult to correlate the observation of 

different observer.  Scientific colour measurement is based on numerical 

representation due to difficulty to identify constantly, even for the same observer.  

Quantitative technique to measure colour are designed to be used as standard 

measurement. 

 

The opponent-colours (L,a,b-type) colour scale are used in this study to measure the 

colour of the samples.  The L,a,b-type scale original developed and refined by Richard 

S. Hunter between 1942 and1958 [54].  In 1976, the CIE adopted another L,a,b-type 

Figure 2.16:  CIE chromaticity diagram, (a) schematic and (b) Colour [55]. 

a b 
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