Hamdan, Rafidah (2010) Aerated blast furnace slag filters for enhanced nitrogen and phosphorus removal from small wastewater treatment plants. Doctoral thesis, University of Leeds.
|
Text
24p RAFIDAH HAMDAN.pdf Download (13MB) | Preview |
Abstract
Rock filters (RF) are a promising alternative technology for natural wastewater treatment for upgrading WSP effluent. However, the application of RF in the removal of eutrophic nutrients, nitrogen and phosphorus, is very limited. Accordingly, the overall objective of this study was to develop a lowcost RF system for the purpose of enhanced nutrient removal from WSP effluents, which would be able to produce effluents which comply with the requirements of the EU Urban Waste Water Treatment Directive (UWWTD) (911271lEEC) and suitable for small communities. Therefore, a combination system comprising a primary facultative pond and an aerated rock filter (ARF) system-either vertically or horizontally loaded-was investigated at the University of Leeds' experimental station at Esholt Wastewater Treatment Works, Bradford, UK. Blast furnace slag (BFS) and limestone were selected for use in the ARF system owing to their high potential for P removal and their low cost. This study involved three major qperiments: (1) a comparison of aerated vertical-flow and horizontal-flow limestone filters for nitrogen removal; (2) a comparison of aerated limestone + blast furnace slag (BFS) filter and aerated BFS filters for nitrogen and phosphorus removal; and (3) a comparison of vertical-flow and horizontal-flow BFS filters for nitrogen and phosphorus removal. The vertical upward-flow ARF system was found to be superior to the horizontal-flow ARF system in terms of nitrogen removal, mostly thiough bacterial nitrification processes in both the aerated limestone and BFS filter studies. The BFS filter medium (whieh is low-cost) showed a much higher potential in removing phosphortls from pond effluent than the limestone medium. As a result, the combination of a vertical upward-flow ARF system and an economical and effective P-removal filter medium, such as BFS, was found to be an ideal optionfor the total nutrient removal of both nitrogen and phosphorus from wastewater. In parallel with these experiments, studies on the aerated BFS filter effective life and major in-filter phosphorus removal pathways were carried out. From the standard batch experiments of Pmax adsorption capacity of BFS, as well as six-month data collection of daily average P-removal, it was found that the effective life of the aerated BFS filter was 6.5 years. Scanning electron microscopy and X-ray diffraction spectrometric analyses on the surface of BFS, particulates and sediment samples revealed that the apparent mechanisms of P-removal in the filter are adsorption on the amorphous oxide phase of the BFS surface and precipitation within the filter.
Item Type: | Thesis (Doctoral) |
---|---|
Subjects: | T Technology > TD Environmental technology. Sanitary engineering T Technology > TD Environmental technology. Sanitary engineering > TD511-780 Sewage collection and disposal systems. Sewerage |
Depositing User: | Mrs. Sabarina Che Mat |
Date Deposited: | 03 Feb 2022 01:58 |
Last Modified: | 03 Feb 2022 01:58 |
URI: | http://eprints.uthm.edu.my/id/eprint/3685 |
Actions (login required)
View Item |