
i

DAT 20903

PRINCIPLES OF DOT NET PROGRAMMING

Mazniha binti Berahim
Rafizah binti Mohd Hanifa

Shamsul bin Mohamad
Abdul Halim bin Omar

INFORMATION TECHNOLOGY DEPARTMENT

CENTER FOR DIPLOMA STUDIES

ii

Third Printing (Learning Module), 2017

© Mazniha Berahim, Rafizah Mohd Hanifa, Shamsul Mohamad, Abdul Halim Omar

All rights reserved. No part of this work may be reproduced in any form or by any means

without the written permission from Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja,

Batu Pahat, Johor, Malaysia.

Published and printed by:

UTHM Publisher

Universiti Tun Hussein Onn Malaysia

86400 Parit Raja, Batu Pahat,

Johor Darul Ta’zim.

Tel: 07 – 453 7454

Fax: 07 – 453 6145

E-mail: pt@uthm.edu.my

Website: www.uthm.edu.my/pt

mailto:pt@uthm.edu.my
http://www.uthm.edu.my/pt

iii

INTRODUCTION

In general, this module is a learning guide for the course DAT20903

Principles of Dot Net Programming offered at Information Technology

Department, Center for Diploma Studies, Universiti Tun Hussein Onn

Malaysia (UTHM).

GOAL

This module aims to introduce students to program development environment

and improve their programming skills in writing applications that can assist in

solving problems using .Net programming language.

LEARNING OUTCOME

At the end of this course, students can:

1. Solve the problem using C#, ASP.NET or VB.NET programming

language. (PLO4, C3, CTPS)

2. Generate a computer program using C#, ASP.Net or VB.Net

programming language to solve a given problem. (PLO2, P3, PS)

3. Contribute to the development of a team project. (PLO5, A2, TS)

iv

SYNOPSIS

This module is divided into 7 topics which covered an introduction to Visual

Studio.NET programming concepts through the use of high level languages

VB.NET or ASP.NET. The design of graphical user interfaces and

programming style with effective coding included for windows and web

application development. Accessing database using ADO.NET in application

development also introduced.

ASSESSMENT

The method of assessment for this course involves two components:

(a) Continuous Assessment (60%)

(i) Test (20%)
(ii) Project (20%)
(iii) Laboratory (20%)

(b) Final examination (40%)

REFERENCES

Reference lists are attached at the end of each topic.

v

CONTENT PAGE

INTRODUCTION iii

GOAL iii

LEARNING OUTCOME iii

SYNOPSIS iv

ASSESSMENT iv

TOPIC 1 INTRODUCTION TO THE VISUAL STUDIO .NET INTEGRATED

DEVELOPMENT ENVIRONMENT 1

1.1 Introduction 1

1.2 Basic Architecture of The Microsoft .NET Framework 2

1.2.1 Common Language Runtime 2

1.2.2 Class Library 3

1.2.3 Windows Forms and ASP.NET 4

1.3 Important Features of Visual Studio IDE 5

1.3.1 Quick Tour of the Visual Studio IDE 6

1.3.2 New Project Dialog 7

1.3.3 Menu Bar and Toolbar 11

1.3.4 Help Menu 12

1.4 Component of Visual Studio .NET IDE 13

1.4.1 Solution Explorer 15

1.4.2 Toolbox 16

1.4.3 Properties Window 17

1.4.4 Output Window and Error List Window 19

TOPIC 2 INTRODUCTION TO VISUAL BASIC .NET 21

2.1 Introduction 21

2.2 Event-driven and Object Oriented Programming Concept 22

2.3 Object and Class 23

2.3.1 Basic Setting of Objects 23

vi

2.3.2 Works with Object Control 24

2.4 Phases in Develop an Applications to Solve a Problem 25

2.4.1 Analysis 25

2.4.2 Plan or Design 25

2.4.2 Implement 26

2.5 Organize an Application Files 27

2.3 Project Debugging 28

2.6.1 Syntax Errors 28

2.6.2 Run Time Errors 29

2.6.3 Logic Errors 29

TOPIC 3 GRAPHICAL USER INTERFACE DESIGN 31

3.1 Introduction 31

3.2 Common Properties of Object Control 31

3.2.1 Objects Name 32

3.2.2 Object Appearance and Layout 33

3.2.3 Objects Behavior 34

3.3 Basic Objects 34

3.3.1 Label and Button 35

3.3.2 Text Boxes 42

3.3.3 Group Boxes 43

3.3.4 Check Boxes 43

3.3.5 Radio Buttons 44

3.4 Properties Setting of the Controls at Run Time 44

3.4.1 Clearing Text Boxes and Labels 44

3.4.2 Resetting the Focus 45

3.4.3 Setting Checked Property of Radio Buttons and Check Boxes 45

3.4.4 Changing the Color of Text 45

3.4.5 Changing Multiple Properties of a Control 46

3.5 User Interface Design with Convenience Features 47

3.5.1 General Principles in Designing the User Interface 47

vii

3.5.2 Keyboard Access Keys 48

3.5.3 Default and Cancel Properties of Buttons 49

3.5.4 Tab Order for Controls 50

3.5.6 ToolTips 51

3.4 Menus and Submenus 51

3.5.1 Menus 52

3.5.2 Submenus 56

3.6 Dialog Boxes 57

3.6.1 Method to Show Dialog Boxes 57

3.6.2 Add Dialog Boxes Control 58

3.6.3 Message Boxes 60

3.6.4 Input Boxes 63

TOPIC 4 PROGRAMMING FOR APPLICATION DEVELOPMENT 66

4.1 Introduction 66

4.2 Programming Style 67

4.2.1 Statements, Keywords and Comments 67

4.2.3 Scope: Public or Private 68

4.3 Variables and Constants 68

4.3.1 Data Types 69

4.3.2 Declaration of a Variable 70

4.3.3 Scope of Variable 70

4.3.4 Constants: Named and Intrinsic 72

4.4 Operators 73

4.4.1 Arithmetic Operators 75

4.4.2 Comparison Operator 75

4.4.3 Assignment Operator 76

4.4.4 String Concatenation Operator 77

4.4.5 Order of Operations 78

4.5 Procedures 79

4.5.1 Difference between Functions and Subs 79

viii

4.5.2 Create Own Sub Procedures 80

4.5.3 Using Parameters in Sub Procedure 81

4.5.4 Using ByVal and ByRef in Sub Procedure 82

4.5.5 Function Procedures 83

4.5.6 Event Handling Procedures 87

4.6 Control Structures 87

4.6.1 Conditions 88

4.6.2 Selection Control Structure 91

4.6.3 Repetition Control Structure 97

4.7 Array and Collections 103

4.7.1 Single-Dimension 104

4.7.2 Two-Dimension Array 106

4.7.3 Applications of Array in List Boxes and Combo Boxes 107

TOPIC 5 WEB APPLICATION DEVELOPMENT 117

5.1 Introduction 117

5.2 ASP.NET Web Forms 118

5.2.1 Features of ASP.NET Web Forms 119

5.2.2 Advantages of a Web Forms-Based Web Application 120

5.3 Creating a Web Application Project and a Page 121

TOPIC 6 ACCESSING DATABASE USING ADO.NET 125

6.1 Introduction 125

6.2 Database Terminologies 126

6.3 ADO.Net Object Model 126

6.3.1 Database Provider 129

6.3.2 Dataset 130

6.4 Connecting to a Database 130

6.5 View Data in DataGridView Control 133

6.5 Manipulate Database Records 137

ix

TOPIC 7 EFFECTIVE AND SECURE CODING 138

7.1 Input Validation 139

7.1.1 TryParse Method for Input Validation 139

7.2 Exceptions Handling 140

7.2.1 Exception Keywords 141

7.2.2 Types of Exceptions 143

1

TOPIC 1

INTRODUCTION TO THE VISUAL STUDIO .NET INTEGRATED

DEVELOPMENT ENVIRONMENT

Learning Outcome

At the end of this topic, student should be able to:

1. Describe a basic architecture of .NET Framework,

2. List important features of Visual Studio .NET’s IDE,

3. Get familiar with the types of commands contained in the IDE’s menus

and Toolbars,

4. Understand Visual Studio .NET’s help features, and

5. Understand the use of various kinds of windows in the Visual Studio

.NET IDE

Content

1.1 Introduction

Microsoft revolutionized the programming for Windows applications

and became a bigger player in the development of Web applications with the

introduction of the .NET Framework and Visual Studio (VS). Not only did

.NET bring true object orientation to the language; it also provided great

advances in the ease of developing projects for cross-platform compatibility.

The two major parts of .NET are the Microsoft .NET Framework and the

2

Visual Studio integrated development environment (IDE). The IDE is used to

develop programs and the Framework runs the program.

1.2 Basic Architecture of The Microsoft .NET Framework

The .NET Framework provides a platform for developing and running

Windows applications and Web application. It consists of three main layer or

parts namely common language runtime, class libraries, and user program

Interfaces (ASP.NET and windows forms) as Figure 1.1.

ASP.NET: Web Services and Web Forms Windows Forms

Framework Classes/ Libraries : ADO.NET

Common Language Runtime

Figure 1.1: The Architecture of .NET Framework

1.2.1 Common Language Runtime

The common language runtime (CLR) is an environment that

manages execution of code. It provides services for tasks such as integrating

components developed in different languages, handling errors across

languages, providing security, and managing the storage and destruction of

objects. Any code that is compiled to run in the CLR is called managed

code. The managed code automatically contains metadata, which means

data that describe data. A common language runtime portable execution

(PE) file contains the metadata along with the code. The metadata include

data types, members, references, and information needed to load classes

and to call methods from a class. The CLR also manages memory used by

.NET applications. Objects that are no longer being used are automatically

removed from memory by the garbage collector component of the CLR.

Code can be integrated with classes and methods of managed code written in

3

other programming languages. The CLR has standards for data types that

allow you to pass an instance of one of the classes to a method created in a

different language.

1.2.2 Class Library

All of the .NET classes and interfaces are stored in a library known as

the .NET Framework class library. The library is organized into sections or

groups known as namespaces. Some of the common namespaces should be

familiarize such as System and System.Drawing. Each namespace

contains classes, structures, enumerations, delegates, and/or interfaces that

can be used in a program. Table 1.1 below shows some of the namespaces

in the .NET Framework class library.

Table 1.1: Selected Namespaces from the .NET Class Library

Namespace Contents

System Base classes and fundamentals classes for data types,

events, and event handlers.

System.Collections Definitions of collections of objects such as lists, queues,

and dictionaries.

System.Data ADO.NET architecture used to access databases.

System.Drawing GDI+ graphics for drawing on the screen, printer, or any

other graphic device.

System.IO Types for reading and writing data streams and files.

System.Linq Supports queries for Language-Integrated Queries.

System.Security Base classes for permissions.

System.Threading Classes for multithreaded programming.

System.Web.Services Classes for building and using Web Services.

System.Windows.Forms Classes for creating graphical components for programs

that execute in the Window operating environment.

System.XML Support for XML processing. XML is a standard for

transferring data.

4

The classes in the library comply with published standards known as

the Common Language Specification (CLS). The CLS specifies how a

language that interacts with the CLR should behave. If you want a program to

interact with programs and components written in other languages, you

should make sure that it is CLS compliant. Note that all VB programs that you

write using the VS IDE will be CLS compliant automatically.

The program code that you write is referred to as source code. The

compiler translates your code into Microsoft Intermediate Language (MSIL)

or sometimes referred as just IL. MSIL is a platform-independent set of

instructions that is combined with the metadata to form a file called a

portable executable (PE) file, which has an .exe or .dll extension. When

your program runs, the MSIL is converted to the native code of the specific

machine only as it is needed, using a just-in-time (JIT) compiler, which is part

of the CLR (refer to Figure 1.2).

Figure 1.2: Steps in Compiling and Executing a Program Using

 .NET CLR

1.2.3 Windows Forms and ASP.NET

The Windows Forms environment simplifies the development of

Windows user interface applications. Windows Forms uses the .NET platform

offers full support for Web services and can connect easily to data stores by

using a .NET data model called ADO.NET. The primary goals of Windows

Forms are ease of use and reusability. The goal is to keep the process

minimal and easy to coordinate. All the information needed for the project is

contained in the code for the form.

Managed
source
code

CLS
compliant
language
compiler

PE

MSIL and
Metadata

JIT

Compiler

Native
code for
target

computer

5

Web Forms are the forms that are engine-supplied with ASP.NET.

Their purpose is to provide Web browser-based user interfaces. This

technology has been enhanced to provide the next generation of

development by adding features such as drag-and-drop development. Web

Forms consist of two parts: a template and a component. The template

contains the layout information for the user interface elements. The

component contains all the logic that is linked to the user interface. Web

Forms take advantage of controls to make all the coordination required

appear easy. Controls are reusable user interface elements that are used to

construct the form.

In development environment, the design of windows forms is similar to

Web Forms. Both environments have similar classes and some events in

common, and the classes that are different are at least consistent in function

and purpose. The benefits of the common language runtime and managed

code are available for developing Windows applications and Web

applications. Thus, developers can choose any one of the many languages.

ASP.NET makes Web development easier by providing the same debugging

support for Web Forms and Web Services as for Windows applications.

1.3 Important Features of Visual Studio IDE

An Integrated Development Environment (IDE) is software that

facilitates application development. Some of the key features included are:

i. Single IDE for all .NET applications. Therefore no switching required to

other IDEs for developing .NET applications

ii. Single .NET solution for an application which has been built on code

written in multiple languages. Built-in languages include C++, Visual

Basic, C# and F#.

6

iii. Single workspace consisting of a multiple-document interface in which

activities related to code development such as editing, compiling,

debugging, etc. is easily possible.

iv. Customizable environment to help the user to configure the IDE based

on the required settings

v. Browser that is built-in within the IDE helps to view content from

internet such as help, source-code, etc. in online mode.

vi. Code editor supporting IntelliSense and code refactoring. IntelliSense

is implementation of code completion, best known in Visual Studio. It

will speeds up the process of coding applications by reducing typos

and other common mistakes.

vii. Visual Studio supports different programming languages and allows

the code editor and debugger to support (to varying degrees) nearly

any programming language, provided a language-specific service

exists.

1.3.1 Quick Tour of the Visual Studio IDE

Visual Studio .NET is Microsoft’s Integrated Development Environment

(IDE) for creating, running and debugging programs (also called applications)

written in a variety of .NET programming languages. This IDE is a powerful

and sophisticated tool that is used to create applications with special features.

Two types of applications that will be creating in this course are Windows

Application and Web Based Windows Application. Web application uses a

Browser such as Internet.

In this topic, an overview of the Visual Studio .NET IDE will be given

and also demonstrate how to create simple program by dragging and

dropping predefined building blocks into place – a technique called “visual

programming”. Once the Visual Studio .NET is executed, the Start Page will

7

be displayed as shown in Figure 1.3. The Start Page might be slightly

different depending on the version of Visual Studio used. In this module,

Microsoft Visual Studio 2010 will be used.

When loading Visual Studio .NET for the first time, the list of Recent

Projects will be empty. Regardless of the environment settings you selected,

you will see the Start Page in the center of the screen. However, the contents

of the Start Page and the surrounding toolbars and tool windows can vary. At

this stage it is important to remember that your selection only determined the

default settings, and that over time you can configure Visual Studio to suit

your working styles.

Figure 1.3: Start Page in Microsoft Visual Studio 2010

1.3.2 New Project Dialog

To create a new Visual Basic program, start by clicking File → New →

Project as shown in Figure 1.4 below. Projects are groups of related files that

form a Visual Basic program. The Visual Studio .NET IDE provides project

8

types for a variety of programming languages such as Visual Basic, C# and

C++.

Figure 1.4: To Start Creating a New Project

This will open the New Project dialog as in Figure 1.5. A couple of

new features are worth to mention here. Based on numerous feedback

requests, this dialog is now resizable. More importantly, there is an

additional drop-down box in the top right-hand corner, which is used to select

the version on the .NET Framework that the application will target. The ability

to use a single tool to create applications that target different framework

versions means that developers can use fewer products and can take

advantage of all the new features, even if they are maintaining an older

product.

9

Figure 1.5: New Project Dialog

Select the Windows Forms Application from the Templates area

(this item exists under the root Visual Basic and Visual C# nodes, or under

the sub-node Windows) and set the Name to “GettingStarted”, before

selecting OK. This should create a new windows application project, which

includes a single startup form and is contained within a “GettingStarted”

solution, as shown in the Solution Explorer window of Figure 1.6. This

startup form has automatically opened in the visual designer, giving you a

graphical representation of what the form will look like when you run the

application. You will notice that there is now an additional command bar

visible and that the Properties tool window is in the right tool windows area.

10

Figure 1.6: Design View of Visual Studio .NET IDE

The gray rectangle (called a form) titled Form1 represents the

Windows application that the programmer is creating. Collectively, the form

and controls constitute the program’s Graphical User Interface (GUI), which is

the visual part of the program with which the user interacts. Users enter data

(inputs) into the program by typing at the keyboard, by clicking the mouse

buttons and in a variety of other ways. Programs display instructions and

other information (outputs) for users to read in the GUI.

The name of each open document is listed on a tab:

Form1.vb[Design] (upper left portion). To view a document, click its tab.

Tabs save space and facilitate easy access to multiple documents. The active

Page Tabs Menu Bar Solution
Explorer

Form
(Windows

Applications)

11

tab, or the tab of the document currently displayed in the IDE, is displayed in

bold text and is positioned in front of all the other tabs.

1.3.3 Menu Bar and Toolbar

Commands for managing the IDE and for developing, maintaining and

executing programs are contained in the menus, which are located on the

menu bar (see Figure 1.7).

Figure 1.7: Visual Studio .NET IDE Menu Bar

Menus contain groups of related commands (also called menu items)

that, when selected, cause the IDE to perform specific actions (e.g., open a

window, save a file, print a file and execute a program). For example, new

projects are created by selecting File → New → Project…. The menus

depicted in Figure 1.7 are summarized in Table 1.2.

Table 1.2: Summary of Visual Studio .NET IDE Menus

Menu Description

File Contains commands for opening projects, closing projects, printing project
data, etc.

Edit Contains commands such as cut, paste, find, undo, etc.
View Contains commands for displaying IDE windows and toolbars.

Project Contains commands for managing a project and its files.
Build Contains commands for compiling a program.

Debug Contains commands for debugging (i.e., identifying and correcting problems
in a program) and running a program.

Data Contains commands for interacting with databases (i.e., files that store data)
Format Contains commands for arranging and changing the appearance of a form’s

controls.
Tools Contains commands for accessing additional IDE tools and options that

enable customization of the IDE.
Windows Contains commands for arranging and displaying windows.

Help Contains commands for accessing the IDE’s help features.

Rather than having to navigate the menus for certain commonly used

commands, the programmer can access them from the toolbar (refer to

12

Figure 1.8), which contains pictures, called icons that graphically represent

commands. To execute a command via the toolbar, click its icon. Some icons

contain a down arrow that, when clicked, displays additional options.

Figure 1.8: Toolbar Demonstration

Positioning the mouse pointer over an icon highlights the icon and, after a few

seconds, displays a description called a tool tip (see Figure 1.9). Tool tips

help novice programmers become familiar with the IDE’s features.

Figure 1.9: Tool Tip Demonstration

1.3.4 Help Menu

Visual Studio .NET IDE provides extensive help features. The Help

menu contains a variety of commands, which are summarized in Table 1.3.

Down arrow indicates
more options

Toolbar icon (indicates a
command to open a file)

Tool tip displayed when the
mouse pointer has rested on
the icon for a few second

13

Table 1.3: Help Menu Commands

Command Description

Contents Displays a categorized table of contents in which help articles
are organized by topic.

Index Displays an alphabetized list of topics through which the
programmer can browse.

Search Allows programmers to find help articles based on search
keywords.

Dynamic help (see Figure 1.10) is an excellent way to get information about

the IDE and its features, as it provides a list of articles based on the current

content (i.e., the items around the location of the mouse cursor). To open the

Dynamic Help window (if it is not already open), select Help → Dynamic

Help. Then when you click a word or component (such as a form or a control)

in the IDE, links to relevant help articles appear in the Dynamic Help window.

The window lists relevant help topics, samples and “Getting Started”

information. There is also a toolbar that provides access to the Contents,

Index and Search help features.

Figure 1.10: Dynamic Help Menu

1.4 Component of Visual Studio .NET IDE

The IDE provides windows for accessing project files and customizing

controls. Several windows that are essential in the development of Visual

Basic applications will be introduced. These windows can be accessed via the

toolbar icons (refer to Figure 1.11) or by selecting the name of the desired

window in the View menu.

14

Figure 1.11: Toolbar Icons for Four Visual Studio .NET IDE Windows

Visual Studio .NET provides a space-saving feature called auto-hide,

which can be activated by clicking the pin icon in the upper right corner of a

window (see Figure 1.11).

Figure 1.11: Auto-hide of Toolbox

When auto-hide is enabled, a toolbar appears along one of the edges

of the IDE. This toolbar contains one or more icons, each of which identifies a

hidden window. Placing the mouse pointer over one of these icons displays

that window, but the window is hidden once the mouse pointer is moved

outside the window’s area. To “pin down” a window (i.e., to disable auto-hide

and keep the window open), click the pin icon. Notice that when a window is

“pinned down”, the pin icon has a vertical orientation, whereas when auto-

hide is enabled, the pin icon has a horizontal orientation (refer to Figure 1.12).

Solution
Explorer

Properties
Window

Toolbox
Error List

15

Figure 1.12: Demonstrating Auto-hide Feature

1.4.1 Solution Explorer

The Solution Explorer window (refer to Figure 1.13) provides access to

all the files in the solution. When the Visual Studio .NET IDE is first loaded,

the Solution Explorer is empty; there are no files to display. Once a solution is

open, the Solution Explorer displays that solution’s contents.

The solution’s startup project is the project that runs when the program

is executed and appears in bold text in the Solution Explorer. For single-

project solution, the startup project is the only project (GettingStarted). The

Visual Basic file, which corresponds to the form shown in Figure 1.6, is

named Form1.vb. Visual Basic files use the .vb filename extension, which is

short for “Visual Basic”.

Title bar

Horizontal orientation for
pin icon (auto-hide

enabled)

Close
button

Vertical orientation
for pin icon (auto-

hide disabled)

16

Figure 1.13: Solution Explorer with an Open Solution

1.4.2 Toolbox

The Toolbox (see Figure 1.13) contains controls used to customize

forms. Using visual programming, programmers can “drag and drop” controls

onto the form instead of writing code to build them. Just as people do not

need to know how to build an engine in order to drive a car, programmers do

not need to know how to build a control in order to use the control. The use of

preexisting controls enables developers to concentrate on the big picture,

rather than the minute and complex details of every control. The wide variety

of controls that are contained in the Toolbox is a powerful feature of the

Visual Studio .NET IDE.

The Toolbox contains groups of related controls (e.g., Common

Controls, Containers, Menus & Toolbars, Data and Components in Figure

1.14). When the name of a group is clicked, the list expands to display the

various controls contained in the group. Users can scroll through the

individual items by using the black scroll arrows to the right of the name of the

group. The first item in the group is not a control – it is the mouse pointer. The

mouse pointer is used to navigate the IDE and to manipulate a form and its

control.

Show all files

Minus box
collapses tree
when clicked

Startup project

17

Figure 1.14: Toolbox Window

1.4.3 Properties Window

The Properties window (refer to Figure 1.15) displays the properties

for a form or control. Properties specify information such as size, color and

position. Each form or control has its own set of properties; a property’s

description is displayed at the bottom of the Properties window whenever that

property is selected. If the Properties window is not visible, accessing View →

Properties Window, or pressing F4, displays the Properties window. The left

column of the Properties window lists the form’s properties; the right column

displays the current value of each property. Icons on the toolbar sort the

properties either alphabetically (by clicking the Alphabetic icon) or

Group names

Mouse pointer

Group names

18

categorically (by clicking the Categorized icon). Users can scroll through the

list of properties by dragging the scrollbar’s scrollbox up or down.

Figure 1.15: Properties Window

The Properties window is crucial to visual programming; it allows

programmers to modify control visually, without writing code. This capability

provides a number of benefits. First, programmers can see which properties

are available for modification and, in many cases, can learn the range of

acceptable values for a given property. Second, the programmer does not

have to remember or search the Visual Studio .NET documentation for the

possible settings of a particular property. Third, this window also displays a

brief description of the selected property, helping programmers understand

Categorized
icon

Alphabetical
icon

Component
selection

Description

Scroll box

Scroll bar

19

the property’s purpose. Fourth, a property can be set quickly using this

window. Usually, only a single click is required, and no code needs to be

written. All of these features are designed to help programmers avoid

repetitive tasks while ensuring that settings are correct and consistent

throughout the project. At the top of the Properties window is the component

selection drop-down list, which allows programmers to select the form or

control whose properties are displayed in the Properties window. When a

form or control in the list is clicked, the properties of that form or control

appear in the Properties window.

1.4.4 Output Window and Error List Window

The Output Window will invoke when select Build|Build Solution at

Menu Bar. The Output Window displays the results of the Compiler process.

The program is fully compiled when all compiler errors are solved.

Concurrently, the Error List window will show when there are build errors,

warnings, and messages produced while developer write code (refer Figure

1.16). To display the Error List, click View / Error List, or CTRL+\+E. Using

Error List Window, developer can perform the following tasks:

i. Find syntax errors noted by IntelliSense.

ii. Find deployment errors, certain Static Analysis errors, and

errors detected while applying Enterprise Template policies.

iii. Double-click any error message entry to open the file where the

problem occurs, and move to the error location.

Figure 1.16: Error List Window

20

Activities

1. Fill in the blanks in each of the following statements:

(a) The technique of ____________ allows programmers to create
GUIs without writing any code.

(b) _____________ are groups of related files that collectively form a
Visual Basic program.

(c) The ____________ feature hides a window when the mouse

pointer is moved outside the window’s area.

(d) A _________ appears when the mouse pointer hovers over an

icon.

(e) The ___________ window allows programmers to browse solution

files.

2. State whether each of the following is TRUE or FALSE, explain why.

(a) The title bar displays the IDE’s mode.

(b) The x button toggles auto hide.

(c) The toolbar icons represent various menu commands.

(d) A form’s sizing handles are always enabled.

(e) Controls can be modified only by writing code.

3. What is meant by the term .NET Framework?

References

1. N. Randolph and D. Gardner, 2009. Professional Visual Studio 2008,
Wiley Publishing.

2. D.I. Schneider, 2006. An Introduction to Programming Using Visual

Basic 2005. Prentice Hall.

3. J.C. Bradley and A.C. Millspaugh, 2010. Advanced Programming

Using Visual Basic 2008. Mc Graw Hill.

21

TOPIC 2

INTRODUCTION TO VISUAL BASIC .NET

Learning Outcome

At the end of this topic, student should be able to:

1. Explain the term event-driven and object-oriented programming,

2. Explain the concepts of classes, objects, properties, methods, and

events,

3. Describe the three phase for develop a VB.Net project, and

4. Identify syntax errors, run-time errors, and logic errors.

Content

2.1 Introduction

Microsoft Windows uses a graphical user interface, or GUI

(pronounced as “gooey”). The Windows GUI defines how the various

elements look and function. Visual programming is useful for building GUI-

intensive programs that require a large amount of user interaction. Some

programs are designed not to interact with users and therefore do not have

GUIs.

22

2.2 Event-driven and Object Oriented Programming Concept

Most traditional languages, such as BASIC, C, COBOL, FORTRAN

and Pascal, are considered procedural languages. That is, the program

specifies the exact sequence of all operations. Program logic determines

the next instruction to execute in response to conditions and user requests.

The newer programming languages, such as Visual Basic .NET, C#

and Java, use a different approach: object-oriented programming (OOP).

As a stepping stone between procedural programming and object-oriented

programming, the early versions of Visual Basic provided many (but not all)

elements of an object-oriented language. For that reason, Microsoft referred

to Visual Basic (version 6 and earlier) as an event-driven programming

language rather than an object-oriented language. But with the release of

Visual Studio .NET, which includes Visual Basic .NET, C#, and J#, Microsoft

has produced three programming languages that are truly object-oriented.

In the OOP model, programs are no longer procedural. They do not

follow a sequential logic. As the programmer, do not take control and

determine the sequence of execution. Instead, the user can press keys and

click various buttons and boxes in a window. Each user action can cause an

event to occur, which triggers a basic procedure that have to be written. For

example, the user clicks on a button labeled Calculate. The clicking causes

the button’s click event to occur, and the program automatically jumps to a

procedure you have written to do the calculation. This means that a

program’s interface is comprised of objects (controls, forms, and so forth); the

program is taught what actions to perform when events happen to those

objects. An event is usually initiated action by the user. By anticipating the

possible events that can occur to the various objects in program, programmer

will write the code to respond to those events appropriately.

23

2.3 Object and Class

In Visual Basic .Net, developer will work with objects, which have

properties, methods, and events. Each object is based on a class. A class is a

template or blueprint used to create a new object.

Classes contain the definition of all available properties, methods, and

events. When a new object created, it must be based on a class. For

example, a developer may decide to place three buttons on a form. Each

button is based on the Button class and is considered one object, called an

instance of the class. Each button (for instance) has its own set of properties,

methods, and events. One button may be labeled “OK”, one “Cancel”, and

one “Exit”. When the user clicks the OK button, that button’s Click event

occurs; if the user clicks on the Exit button, that button’s Click event occurs.

And of course, different program instructions for each of the button’s click

events have been written.

2.3.1 Basic Setting of Objects

Think of an object as a thing, or a noun. Examples of objects are

forms and controls. Forms are the windows and dialog boxes that place on

the screen; controls are the components place inside a form, such as text

boxes, buttons, and list boxes. The GUI aspects of VB.NET programming

involves the use of the various controls that are available in the toolbox. With

controls come three basics setting which are properties, methods, and

events.

2.3.1.1 Properties

Properties tell something about or control the appearance of an object

such as its name, color, size, or location. Think of properties as adjectives

that describe objects. Start set the properties by giving a unique name to the

object. Then, set another related properties. For example, refer to the Text

24

property of a form called salesForm as salesForm.Text (pronounced as

sales form dot text)

2.3.1.2 Methods

Actions associated with objects are called methods. Methods are the

verbs of object-oriented programming. It was procedures built into a control

that tell it how to do things. Typical methods are Close, Show, and Clear.

Each of the predefined objects has a set of methods that will be use. Refer to

methods as Object.Method (object dot method). For example, a Show method

can apply to different objects: billingForm.Show shows the form object

called billingForm; exitButton.Show shows the button object called

exitButton.

2.3.1.3 Events

Procedures that execute when a particular event occurs can be write

by a programming statements. An event occurs when the user takes an

action to an application, such as clicking a button, pressing a key, scrolling, or

closing a window. Events also can be triggered by actions of other objects,

such as repainting a form or a timer reaching a preset point. A programmer

can write procedures that execute when a particular event occurs.

2.3.2 Works with Object Control

 Visual Basic allows programmer to work with controls in two ways

either at design time (visible Graphical Aspect) or run time (invisible aspect).

Every design-time property for a given control by looking at the Properties

window in the IDE (some controls have properties that are available only at

run-time such as the SelectionStart and SelectionLength properties of the

Textbox).

25

Table 2.1: Ways Use with Controls

Ways Descriptions Example
Working at
design time

Controls are visible and work with them by
dragging and dropping them from the
Toolbox and setting their properties in the
properties window.

Setting at Properties
Window the Text of

btnOK as Exit

Working at
run time.

Controls are not visible while designing,
are created and assigned properties in
code and are visible only when the
application is executed.

btnOK.Text =

“Exit”

2.4 Phases in Develop an Applications to Solve a Problem

There are three phase involved in develop a VB .Net application:

Analysis, Design and Implement. Each phase follow a three-step process.

The three steps involve setting up the user interface, set the properties, and

then the programming code.

2.4.1 Analysis

Analyzed the problem required to be solved. The analysis involved

identify input or data to be entered or manipulate by application, identify

output or results desired and required process to obtain the output.

2.4.2 Plan or Design

 In this phase, the input, output and process listing in the analysis

phase will be designed in order to solve a problem. A programmer will design

the control flow of applications via Forms. In other words, the Form was the

start up object of the application. There are three step used in design phase:

i. Design the Graphical User Interface (GUI): Sketch of the screen

that user will see when running the project. On your sketch, show the

forms and all the object controls that plan to use as input, output and

26

process for the expected interactions between the user and

application.

ii. Plan the Properties: For each object, indicate the names that you

plan to give the form and each of the objects on the form. Then, write

down the properties that you plan to set or change during the design of

the form such as its appearances, layout and behaviors.

iii. Algorithm: Determine which events require action to be taken and

then make a step-by-step plan for those actions. Include the plan of

classes and procedures that will execute when the project runs.

A programmer need to create an algorithm using UML to illustrate the object

model, class diagram and work flow.

2.4.2 Implement

After completing the planning steps and have approval from the user,

begin the actual construction of the project. Use the same three-step process

that used during design phase as below:

i. Create the GUI: Create the forms and placing controls that designed in

the planning phase onto the Form.

ii. Set the Properties: Give each object a name and define such

attributes as planning phase such as the contents of a label, the size of

the text, and the words that appear on top of a button and in the form’s

title bar.

iii. Write the Programming Code: Use the syntax or programming

statements to carry out the actions needed by the applications. This

involves coding in the Methods and Event Procedures in order to

implement the algorithm.

27

After completing all the above steps, compile the program and resolve

all Compiler Syntax Errors occur. Then, execute the program and resolve all

Run Time Errors as well as Logical Errors.

2.5 Organize an Application Files

When creating a Visual Basic program a folder is automatically created

in computer which contains the files of the program. A Visual Basics

application is called a Solution. The Solution is composed of one or more

Project. The Table 2.2 below lists several important files and their file

extensions:

Table 2.2: Type of Important Visual Basic Project Files

File

Extension

Description Example

.sln Solution – File that holds information about
all the projects in the application

StudentSys.sln

.vb Object File – Contain definition and code

for Forms, Modules, Class Modules etc.

frmLogin.vb

.resx Resource File – This is a resource file for
the Forms in the project. It contains
information about all resources used by the
form.

frmLogin.resx

.vbproj Project File – This file describes the project
and lists the files included in the project.

StudentSys.vbproj

.xsd Dataset - A file for creating an XML schema
with DataSet classes

StudData.xsd

.mdf SQL Database StudDB.mdf

 .aspx Web Form - A form for creating Web
applications

Home.aspx

.master A Master Page for Web Applications.

28

2.3 Project Debugging

Programming errors come in three varieties: syntax errors, run-time

errors, and logic errors. There is a situation when a program doesn't have

errors, but that programs get “bugs” in them. Finding and fixing these bugs is

called debugging. Fixing syntax errors and run-time errors are easier. Visual

Basic .Net displays Editor Window with the offending line highlighted.

However, a programmer must identify and locate logic errors himself. After

locate the problem and fix it, recompile the program and run it again. Each

time compiling the program, have a clean compile, which means zero errors.

Programmer can use debugging tools such as breakpoints, watches and

immediate windows to fix the error.

2.6.1 Syntax Errors

When a program breaks VB’s rules for punctuation, format, or spelling,

it will generate a syntax error. The syntax errors that the editor cannot identify

are found and reported by the compiler as it attempts to convert the code into

intermediate machine language. A compiler-reported syntax error may be

referred to as a compile error. The editor can correct some syntax errors by

making assumptions, and not even report the error to you. For example, if the

programmer type the opening quote of “Hello World” but forget the closing

quote, the editor automatically adds the closing quote when move to the next

line. And if forget the opening and closing parentheses after a method name,

such as Close(), again, the editor will add them when move off the line. A

blue squiggly line appears under the part of the line that the editor cannot

interpret and a message appears in the Error list at the bottom of the screen

(refer to Figure 2.1). Notice also that the Error list shows the line number of

the statement that caused the error.

29

Figure 2.1: The Editor Identifies a Syntax Error with a Squiggle Blue Line

2.6.2 Run Time Errors

If a project halts during execution, it is called a run-time error or an

exception. Visual Basic displays a dialog box and highlights the statement

causing the problem. Statements that cannot execute correctly cause run-

time errors. The statements pass the syntax checking; however, the

statements fail during execution. It cause by improper arithmetic operations

such as calculating with nonnumeric data, dividing by zero, or finding the

square root of a negative number and attempting to access resources that are

not available. These problems are difficult to solve since they only show up

when the program runs.

2.6.3 Logic Errors

When a program contains logic errors, the project runs but produces

incorrect results or the project is not doing what is supposed to do. Perhaps

the results of a calculation are incorrect or the wrong text appears or the text

is okay but appears in the wrong location. Beginning programmers often

overlook their logic errors. If the project runs, it must be right. All too often,

that statement is not correct. These problems are even more difficult to solve

30

since need to re-think and go back to the planning phase and review the

algorithm. If involve a calculation, the programmer may need to use a

calculator to check the output. Check all aspects of the project output such as

computations, text, and spacing.

Activities

1. What are objects and properties? How are they related to each other?

2. What are the three steps for planning and creating Visual Basic

projects? Describe what happens in each step?

3. What is the purpose of the Name property of a control?

4. What is meant by the term debugging?

5. What is a syntax error, when does it occur, and what might cause it?

References

1. N. Randolph and D. Gardner, 2009. Professional Visual Studio 2008,

Wiley Publishing.

2. J.C. Bradley and A.C. Millspaugh, 2005. Programming in Visual

Basic .NET, McGraw Hill Technology Education.

3. D.I. Schneider, 2006. An Introduction to Programming Using Visual

Basic 2005. Prentice Hall.

4. File Types and File Extensions in Visual Basic and Visual C# retrieved

from https://msdn.microsoft.com/en-us/library/

31

TOPIC 3

GRAPHICAL USER INTERFACE DESIGN

Learning Outcome

At the end of this topic, student should be able to:

1. Set a suitable conventions for object and use correct naming for each

objects control,

2. Choose and use objects control effectively,

3. Use multiple statements for one control using programming code, and

4. Design a user interface with convenient features.

Content

3.1 Introduction

Controls are objects that can be inserted onto a form, simply by

dragging the objects to enable or enhance user interaction with the

application. Each control has unique properties, events, methods to use these

controls effectively using code. The GUI aspects of VB.NET programming

involve the use of the various controls that are available in the toolbox.

3.2 Common Properties of Object Control

Properties are a set of variables that describe the appearance,

behavior, and other aspects of an object. In order to make VB easier to learn,

Microsoft gave most of the controls and objects similar properties. For

examples, most controls have Name Property (Name used in the Code to

32

identify the Control), Text Property (Text displayed on the Control), Enabled

Property (Indicates if Control is enabled or can be used) and Visible Property

(Indicates if the Control can be seen). The descriptions of the each property

will appear at below properties window when the property is clicked.

3.2.1 Objects Name

Consistent names for objects can make a project easier to read and

understand, as well as easier to debug. Follow the VB rules for naming

objects, procedures, and variables. In addition, conscientious programmers

also follow certain naming conventions. A good programmer should have a

set of standards and always follow them.

3.2.1.1 Naming Rules

When you select a name for an object, Visual Basic requires the name

to begin with a letter or an underscore. The name can contain letters, digits,

and underscores. An object name cannot include a space or punctuation

mark and cannot be a reserved word, such as Exit or If, but can contain one.

For example, ExitCalculation and IfGood are legal.

3.2.1.2 Naming Conventions

When naming controls, use camel casing, which means that you

begin the name with a lowercase character and capitalize each additional

word in the name. Make up a meaningful name and append the full name of

the control’s class. Do not use abbreviations unless it is a commonly used

term that everyone will understand. All names must be meaningful and

indicate the purpose of the object. Examples: lblMessage, btnExit,

frmDataEntry, etc. Do not keep the default names assigned by Visual Basic,

such as Button1 and Label1. Also, do not name your objects with numbers.

The exception to this rule is for labels that never change during project

33

execution. These labels usually hold items such as titles, instructions, and

labels for other controls.

3.2.2 Object Appearance and Layout

Programmer can customize the form and all controls by changing

some of the physical appearance and layout properties of the object.

Common appearance properties for all objects such as background color,

background image, border color, border style and fore color. For example,

most controls can appear to be three-dimensional or flat. Labels, text boxes,

and picture boxes all have a BorderStyle property with choices of None,

FixedSingle, or Fixed3D. Text boxes default to Fixed3D; labels and picture

boxes default to None. Other appearance setting will differ for each objects.

For example, those objects use text will have appearance setting of text, text

align, and font.

Object layout also have its setting such as Width, Height, Anchor,

dock, location, size and etc. For example, to set Form’s Location on the

Screen. When a project runs, the form appears in the upper-left corner of the

screen by default. The form’s screen position can be set at the StartPosition

property of the form. Figure 3.1 shows the choices for the property setting. To

center you the form on the user’s screen, set the StartPosition property to

Center Screen.

Figure 3.1: Start Position Property of the Form

34

3.2.3 Objects Behavior

Each object has its own behavior. The changes of the Behaviors will

appear when the application is executed. Common behavior property used for

all object is Enabled property. Another common behavior property which differ

to other objects are context menu strip, tab index, tab stop and visible

property.

As conclusion, not all controls have the same properties, but some

properties are shared by many controls.

3.3 Basic Objects

In this topic, you will learn to use several control types: labels, buttons,

text boxes, group boxes, check boxes, and radio buttons. Figure 3.2 shows

the toolbox with the tools for these controls labeled. Each class of controls

has its own set of properties. To see a complete list of the properties for any

class of control, you can place a control on a form and examine the properties

list or you can click on a tool or a control and press F1 for context-sensitive

Help.

35

Figure 3.2: Toolbox Show Controls Covered in This Topic

3.3.1 Label and Button

Point to the Label tool in the toolbox and click. Then move the pointer

over the form. Notice that the pointer becomes a crosshair with a big A, and

the Label tool looks as if it has been pressed, indicating it is the active tool.

The label has eight small square handles, indicating that the control is

currently selected. Now, draw a button on the form (refer to Figure 3.3).

Create another button using this alternative method: Point to the Button tool in

the toolbox and double-click. A new button of the default size will appear on

top of the last-drawn control (refer to Figure 3.4).

TextBox

CheckBox

RadioButton

GroupBox

Button

Label

36

Figure 3.3: Label and Button on the Control Form

Figure 3.4: Creation of new button (Button2) appears on top of Button1

Select each control and move and resize the control as necessary.

Make the two buttons the same size and line them up (refer to Figure 3.5).

Point to one of the controls and click the right mouse button to display a

context menu. On the context menu, select Lock Controls (see Figure 3.5).

Locking prevents you from accidentally moving the controls. Please take note

that you can unlock the controls at any time if you wish to redesign the form.

Just click again on Lock Controls on the context menu to deselect.

37

Figure 3.5: Controls are Placed into the Desired Location, Lock Them In

Place By Selecting Lock Controls From The Context Menu

At this point you have designed the user interface and are ready to set

the properties. Click on the label you placed on the form; a shaded outline

appears around the control. Next click on the title bar of the Properties

window to make it the active window (refer to Figure 3.6).

Figure 3.6: Currently selected control is shown in the Properties window

Properties
window

Namespace
and class of

selected object

Settings box

38

Select the Name property. You may have to scroll up; Name is located

near the top of the list. Click on Name and notice that the Settings box shows

Label1, the default name of the label. Change Label1 to lblMessage (refer to

Figure 3.7).

Figure 3.7: Type lblMessage into the Settings Box for Name Property

Click on the Text property to select it. The Text property of a control

determines what will be displayed on the form. Because nothing should

display when the program begins, you must delete the value of the Text

property (see Figure 3.8).

Figure 3.8: Delete the Value for the Text; the Label on the Form Also

Appears Empty

Label is empty

Text deleted from
the Settings box

39

Now, click Button1 to select it and then look at the Properties window.

The Object box should show the name Button1 and class

System.Windows.Forms.Button. Change the Name property of the button

to btnMessage and the Text property to Message. Select Button2 and

change its Name property to btnExit and the Text property to Exit. Refer to

Figure 3.9.

Figure 3.9: The New Layout of Form

Now you are ready to write Visual Basic .NET command codes for

these buttons. Double click on the Message button. The Visual Studio editor

opens with the first and last lines of your sub procedure already in place, with

the insertion point indented inside the sub procedure (refer to Figure 3.10).

Figure 3.10: The Editor Window Showing the First and Last Lines of the

btnMessage_Click Sub Procedures

40

The program code will be written in Visual Basic in procedures. For

now, each of your procedures will be a sub procedure, which begins with the

words Private Sub and ends with End Sub.

The project requires two Visual Basic statements: the remark and the

assignment statement. Remark statements, sometimes called comments

are used for project documentation only. They are not executable and have

no effect when the project runs. The purpose of remarks is to make the

project more readable and understandable by the people who read it.

Remarks begin with an apostrophe (‘). Most of the time, remarks will be on a

separate line that starts with an apostrophe. You can also add an apostrophe

and a remark to the right end of a line of code.

Examples:

The assignment statement assigns a value to a property or variable.

Assignment statements operate from right to left; that is, the value appearing

on the right side of the equal sign is assigned to the property named on the

left of the equal sign. It is often helpful to read the equal sign as “is replaced

by”. For example, the assignment statement in the example would read

“lblMessage.Text is replaced by Welcome to DOT NET Class”.

Examples:

Now, you are ready to complete your project. Type remark statement

in your btnMessage_Click: ‘Display the Welcome to DOT NET

Class’ message. Notice that the editor automatically displays remarks in

green (unless you changed the color with the Environment option). Then, type

‘This project was written by Rafizah Mohd Hanifa

lblMessage.Text = “Welcome to DOT NET Class” ‘Assign message to Text

lblAddress.Text = “No. 3 Jalan Saujana Bestari 1”

intAge = 41;

41

the following assignment statement: lblMessage.Text = “Welcome to

DOT NET Class”.

Figure 3.11: Remark and Assignment Statement for the

btnMessage_Click Event Sub Procedures

Now, btnMessage_Click have been completed. Double click on the

Exit button to open the editor for the btnExit_Click event. Type this

remark: ‘Exit the project and type this Basic statement: Me.Close() (refer

to Figure 3.12).

Figure 3.12: Code for the btnExit_Click Event Procedure

You have finished writing the code and ready to run the project. Use one of

these three methods:

1. Open the Debug menu and choose Start.

Remark statement Assignment statement

42

2. Press the Start button on the toolbar.

3. Press F5, the shortcut key for the Start command.

If all went well, the Visual Studio title bar now indicates that you are in run

time. Click the Message button. Your “Welcome to DOT NET Class” message

appears in the label as shown in Figure 3.13.

Figure 3.13: Click on the Message Button and “Welcome to DOT NET

Class” appears in the Label

3.3.2 Text Boxes

Use a text box control when you want the user to type some input. The

user can move from one box to the next, make corrections, cut and paste if

desired, and click the Display button when finished. In your program code,

you can use the Text property of each text box.

Example: lblName.Text = txtName.Text

In the previous example, whatever the user enters into the text box is

assigned to the Text property of lblName. If you want to display some text in a

text box during program execution assign a literal to the Text property:

txtMessage.Text = “Samir, come here.”

43

You can set the TextAlign property of text boxes to change the

alignment of text within the box. The values for the TextAlign property are:

HorizontalAlignment.Left

HorizontalAlignment.Right

HorizontalAlignment.Center

The three-letter prefix for naming a text box is “txt”.

Examples: txtName,txtAddress

3.3.3 Group Boxes

Group boxes are used as containers for other controls. Usually, groups

of radio buttons or check boxes are placed in group boxes. Using group

boxes to group controls makes your forms easier to understand. Set a group

box’s Text property to the words you want to appear on the top edge of the

group box. The three-letter prefix for naming a group is “grp”.

Example: grpColor

3.3.4 Check Boxes

Check boxes allow the user to select (or deselect) an option. In any

group of check boxes, any number can be selected. The Checked property of

a check box is set to False if unchecked or True if checked. You can write

an event procedure for the CheckChanged event, which executes when the

user clicks in the box. Use the Text property of a check box for the text you

want to appear next to the box. The three-letter prefix for naming a check box

is “chk”.

Examples: chkRed,chkBlue

44

3.3.5 Radio Buttons

Use radio buttons when only one button of a group may be selected.

Any radio buttons that you place directly on the form (not in a group box)

function as a group. A group of radio buttons inside a group box function

together. The best method is to first create a group box and then create each

radio button inside the group box. The Checked property of a radio button is

set to True if selected or to False if unselected. You can write an event

procedure to execute when the user selects a radio button using the control’s

CheckChanged event. Set a radio button’s Text property to the text you want

to appear next to the button. The three-letter prefix for naming a radio button

is “rad”.

Examples: radHotel, radApartment

3.4 Properties Setting of the Controls at Run Time

An initial properties have been set for controls at design time. Some

setting of properties can be done in code, as your project executes. It is called

design at run time for example clear out the contents of text boxes and labels;

reset the focus; and change the color of text.

3.4.1 Clearing Text Boxes and Labels

In order to clear out the contents of a text box or label setting the

property to an empty string, use “” (no space between the two quotation

marks). This empty string is also called a null string or a zero-length string. It

also clear out a text box using the Clear method.

Examples:

txtName.Text = “” ‘Clear the contents

lblMessage.Text = “” ‘Clear the contents

txtDataEntry.Clear () ‘Clear the contents

45

3.4.2 Resetting the Focus

As program runs, if the insertion point want to appear in the text box

where the user is expected to type. The focus should therefore begin in the

first text box. But what about later? When clear the form’s text boxes, reset

the focus to the first text box. The Focus method handles this situation.

Remember, the convention is Object.Method. If the statement to set the

insertion point in the text box called txtName. Thus, the code will be as

follows:

txtName.Focus() ‘Make the insertion point appear here

3.4.3 Setting the Checked Property of Radio Buttons and Check Boxes

The purpose of radio buttons and check boxes is to allow the user to

make selections. However, often select or deselect a control is needed in

program code. The selection or deselection radio buttons and check boxes

can be done at design time (to set initial status) or at run time (to respond to

an event). To make a radio button appear selected initially, set its Checked

property to True in the Properties window. In code, assign True to its

Checked property.

Examples:

radRed.Checked = True ‘Make button selected

chkDisplay.Checked = True ‘Make box checked

chkVisualBasic.Checked = False ‘Make box unchecked

3.4.4 Changing the Color of Text

The color of text can be change by changing the ForeColor property of

a control. Actually, most controls have a ForeColor and a BackColor property.

The ForeColor property changes the color of the text; the BackColor property

controls the color around the text. Visual Basic provides an easy way to

46

specify a large number of colors. These color constants are in the Color class.

When type the keyword Color and a period in the editor, a full list of colors will

be appear. Some of the colors are listed below:

Color.AliceBlue

Color.AntiqueWhite

Color.Bisque

Color.BlanchedAlmond

Color.Blue

To change the control’s fore color at run time, a code statement can be write

as examples:

txtName.ForeColor = Color.Red

lblMessage.ForeColor = Color.Blue

3.4.5 Changing Multiple Properties of a Control

There are some situation is needed to change several properties of a

single control. In previous version of Visual Basic a programmer had to write

out the entire name (Object.Property) for each statement.

Examples:

txtTitle.Visible = True

txtTitle.ForeColor = Color.Blue

txtTitle.Focus()

The statements still can be specify, but Visual Basic provides a better way:

the With and End With statements.

Example:

With txtTitle

 .Visible = True

 .ForeColor = Color.Blue

 .Focus()

End With

The statements beginning with With and ending with End With are called a

With block. The statements inside the block are indented for readability.

Although indentation is not required by VB, it is required by good

47

programming practices and aids in readability. The real advantage of using

the With statement, rather than spelling out the object for each statement, is

that With is more efficient. Your Visual Basic projects will run a little faster if

you use With. On a large, complicated project, the savings can be significant.

3.5 User Interface Design with Convenience Features

One of the good programming goal is to create programs that easy to

use. The user interface should be clear and consistent. One school of thought

says that if users misuse a program, it’s the fault of the programmer, not the

users. Because most of users will already know how to operate Windows

programs, programmer should strive to make your programs look and behave

like other Windows programs. Some of the ways to accomplish this are to

make the controls operate in the standard way, define keyboard access keys,

set a default button, and make the Tab key work correctly. A programmer can

also define ToolTips, which are those small labels that pop up when the user

pause the mouse pointer over a control.

3.5.1 General Principles in Designing the User Interface

The design of the screen should be easy to understand and

comfortable for the user. The best way that we can accomplish these goals is

to follow industry standards for the color, size, and placement of controls.

Once users become accustomed to a screen design, they will expect (and

feel more familiar with) that the applications follow the same design criteria. A

programmer should design the applications to match other Windows

applications. Microsoft has done extensive program testing with users of

different ages, genders, nationalities, and disabilities.

One recommendation about interface design concerns color. A

programmer have probably noticed that Windows applications are

48

predominantly gray. A reason for this choice is that many people are color

blind. Also, gray is easiest for the majority of users. Although you may

personally prefer brighter colors, you will stick with gray, or the system palette

the user chooses, if you want your applications to look professional. Colors

can indicate to the user what is expected. Use a white background for text

boxes to indicate that the user should input information. Use a gray

background for labels, which the user cannot change. Labels that will display

a message or the result of a calculation should have a border around them;

labels that provide text on the screen should have no border (the default).

Group the controls on the form to aid the user. A good practice is to

create group boxes to hold related items, especially those controls that

require user input. This visual aid helps the user understand the information

that is being presented or requested. Use a Sans Serif font on your forms,

such as the default MS Sans Serif, and do not make them boldface. Limit

large font sizes to a few items, such as the company name.

3.5.2 Keyboard Access Keys

Windows is set up so that most functions can be done with either the

keyboard or a mouse. Make a project respond to the keyboard by defining

access keys, also called hot keys. For example, in Figure 3.14 select the

Message button with Alt + m and the Exit button with Alt + x.

49

Figure 3.14: The Underlined Character Defines an Access Key

Access keys can be set for buttons, radio buttons, and check boxes

when define their Text properties. Type an ampersand (&) in front of the

character you want for the access key; Visual Basic underlines the character.

Examples:

&Message for Message
E&xit for Exit

When defining the access keys, watch for several pitfalls. First, try to use the

Windows-standard keys whenever possible. For example, use the x of Exit

and the S of Save. Second, don’t use two controls with the same access key.

It confuses the user and doesn’t work correctly. Only the first control is

activated when the user presses the access key.

3.5.3 Default and Cancel Properties of Buttons

Once a person’s fingers are on the keyboard, most people prefer to

press the Enter key rather than to click the mouse. If one of the buttons on the

form is the default button, pressing Enter is the same as clicking the button.

Always identify the default button on a form by its darker outline.

50

3.5.4 Tab Order for Controls

In Windows programs, one control on the form always has the focus.

See the focus change of Tab from control to control. For controls such as

buttons, the focus appears as a light dotted line. For text boxes, the insertion

point (also called the cursor) appears inside the box. Some controls can

receive the focus; others cannot. For example, text boxes and buttons can

receive the focus, but labels and picture boxes cannot. Two properties

determine whether the focus stops on a control and the order in which the

focus moves. Controls that are capable of receiving focus have a TabStop

property, which can set to True or False. If you do not want the focus to

stop on a control when the user presses the Tab key, set the TabStop

property to False. The TabIndex property determines the order the focus

moves as the Tab key is pressed. As controls created on the form, Visual

Basic assigns the TabIndex property in sequence. Most of the time that order

is correct, but if want to Tab in some other sequence or if add controls later,

modify the TabIndex properties of your controls. When your program begins

running, the focus is on the control with the lowest TabIndex (usually 0).

Since you generally want the insertion point to appear in the first control on

the form, its TabIndex should be set to 0. The next control should be set to 1;

the next to 2; and so forth. By default, buttons and text boxes have their

TabStop property set to True, but radio buttons have their TabStop property

set to False. If the tab sequence are include radio buttons, set their TabStop

property to True. Be aware that the behavior of radio buttons in the tab

sequence is different from other controls: The Tab key takes you only to one

radio button in a group, even though all buttons in the group have their

TabStop and TabIndex properties set. If use the keyboard to select radio

buttons, tab to the group and then use Up and Down arrow keys to select the

correct button.

51

3.5.6 ToolTips

ToolTips are small labels that pop up when you pause your pointer

over a toolbar button or control. It can be easily add ToolTips to a project by

adding a ToolTips control to a form. After add the control to your form, each of

the form’s controls has a new property: ToolTip on ToolTip1, assuming that

you keep the default name, ToolTip1, for the control. To define ToolTips,

select the ToolTip control from the toolbox and click anywhere on the form.

The new control appears in a new pane that opens at the bottom of the Form

Designer. This pane, called the component tray, holds controls that do not

have a visual representation at run time. After add the ToolTip control,

examine the properties list for other controls on the form, such as buttons,

text boxes, labels, radio buttons, check boxes, and even the form itself. Each

has a new ToolTip on ToolTip1 property.

Figure 3.15: Use the ToolTipText in ToolTip1 Property to Define a Tooltip

3.4 Menus and Submenus

Menus very useful for make multiple form in an application more

organized and easy to navigate.

52

3.5.1 Menus

This type of menus are very common to Windows Applications. Visual

Basic itself has many of these drop down menus such as File, Edit, View,

Project, Format, etc. Use the toolbox to add a MenuStrip control in a form

(Figure 3.16).

Figure 3.16: Use MenuStrip Object to add Menu in a Form

Figure 3.17: Menustrip Control Added

This is the control itself. Click on this (it's highlighted above), the Properties

box on the right changes. There are many properties for the control. But there

are lots of properties for the MenuItem object. The MenuItem object is the one

at the top of the form - The one that says Type Here.

To start building menu list, click inside the area that says "Type Here".

Type the word File as first menu. Then, press the enter key on your keyboard

to add submenu list on File menu (refer Figure 3.18). To create items on your

53

File menu, click inside the Type Here box. Enter the word New, and press the

enter key on your keyboard again. Add an "Open", a "Save" and a “Quit” item

to submenu list in the same way. The submenu list will then look like at Figure

3.19.

Figure 3.18: Build Menu List

Figure 3.19: Menu Items from the First Menu

To see what the menu look like, Run the programme. Click the File

menu. Since haven't added any code to the menu yet, so nothing will happen

if an item on the menu is clicked. To make each menu items work, add

program code. Return to the design environment. Click File in Design Time to

see the drop down menu. Since "ExitToolStripMenuItem" is very difficult to

remember. Rename the menu items so that they are more descriptive as

following steps:

i. Get back to the form by pressing Shift + F7 on your keyboard

ii. Click the File menu to select it

iii. Select the Exit (or your Quit) item (Careful not to click in the

middle as this may open the code window. Click near the left

edge somewhere.)

54

iv. When the Exit item selected, look at the properties box (refer

Figure 3.20

v. Click inside the Name property

vi. Change it to mnuExit (or mnuQuit)

vii. Press your return key on your keyboard to confirm the change

Figure 3.20: Rename a Menu Item at Properties Window

Now double click at menu item or press F7 (or CTRL + ALT + 0) to

bring the code window up. Click the drop down arrow of the General box, and

the new name appear. Click on the new mnuExit item as Figure 3.21. Then,

code stub would open, ready for you to type your code.

55

Figure 3.21: New Name of Menu Item

To jump straight to the code, to look at the drop down box opposite. It will

probably say "Declarations". Click the arrow and see a new list as Figure

3.22.

Figure 3.22: Event for the Menu Item

The items in the Declarations box are called Events. The Event you

want is the Click event. So, select that one from the list. When select Click

from the list, it taken straight into the code for that event. Add some of our

own code, so that out Exit menu item actually does something. The word

"Me" refers to the form. When type the word Me, a list items appear. Double

click the word Close, then press return key.

56

Figure 3.23: A Code Segment for Exit Menu Item

To test out the new code, run your program. Click your File menu, and

then click the Exit item. The form should close down, and returned to the

design environment.

3.5.2 Submenus

A sub menu is one that branches of a menu item. They usually have

an arrow to indicate that there's an extra menu available. To create submenu,

follow steps below:

i. Return to the Form view (Shift + F7 is a shortcut)

ii. Click on the File menu

iii. Select the New item (Click once on the left edge).

iv. Click on the "Type Here" just to the right of New. Type New Project,

and then hit the return key on your keyboard.

v. Type in New File and then click away from the menu, somewhere on

the form. See Figure 3.24.

Figure 3.24: Add Submenus

57

Of course, none of the menu items work except the Exit menu. Write

related program code to make other menu item works as plan. Now, it found

that adding menus to an application is an easy matter with VB.NET.

3.6 Dialog Boxes

A dialog box (or dialogue box) is a type of window used to

enable communication or "dialog" between an application and its user. It may

communicate information to the user, prompt the user for a response, or both.

Sometimes dialog box is called a Modal form. Built-in dialog boxes have

available to create by drag the controls from toolbox and drop onto Windows

forms for various tasks like: opening files, saving files, printing a page, folder

browser and providing choices for colors, fonts, page set up etc. Other type of

dialog boxes which created by program code are message box and input box.

These built-in dialog boxes reduce the developer's time and work load. The

dialog boxes are used to display information and prompt for input or response

from the user.

3.6.1 Method to Show Dialog Boxes

To show dialog boxes, use the ShowDialog method. This method is

used to display all the dialog box controls at run time. To convey this

information from a dialog box back to the calling application, the object

provides the DialogResult property. It returns a value of the type of

DialogResult enumeration (Refer Table 3.1).

http://en.wikipedia.org/wiki/Window_(computing)
http://en.wiktionary.org/wiki/dialog

58

Table 3.1: Values of DialogResult Enumeration

Enumeration Description

Abort returns DialogResult.Abort value, when user clicks an Abort

button

Cancel returns DialogResult.Cancel, when user clicks a Cancel

button

Ignore returns DialogResult.Ignore, when user clicks an Ignore

button

No returns DialogResult.No, when user clicks a No button

None returns nothing and the dialog box continues running

OK returns DialogResult.OK, when user clicks an OK button

Retry returns DialogResult.Retry , when user clicks an Retry button

Yes returns DialogResult.Yes, when user clicks an Yes button

3.6.2 Add Dialog Boxes Control

To add a dialog box in an application, drag the control from toolbox

and drop onto a form as Figure 3.25.

Figure 3.25: Dialog Boxes Object in a Toolbox

59

In this section, an example is provided to show how to display dialog

boxes from menu item which created in 3.6. An Open File dialog box will be

added at File > Open menu in Figure 3.19. In most applications, when

the File menu is clicked, and select the Open item, a dialogue box is

displayed. From the dialogue box, a file can be selected, then click

the Open button. The file you is then opened up. We'll see how to do that

from the menu list. (Except, the file won't open yet - only the dialogue box will

display, and then name of the chosen file. Do the following steps:

1. Open up toolbox, and locate the control called "OpenFileDialog".

2. Double click the control to add one to your project. But notice that the

control doesn't get added to a form. It gets added to the area at the

bottom, next to menu control (see Figure 3.26)

Figure 3.26: OpenFileDialog Control was added onto a Form

3. The shaded area surrounding the control means that it is selected.

Look at the properties that can use with the control.

4. Click on the Name property and change the name to openFD. When

you change the name in the properties box, the name of the control at

the bottom will change (see Figure 3.27).

Figure 3.27: Property Setting for OpenFileDialog Control

60

5. Now write some code to manipulate the properties of our new

control. So, do the following:

i. Access the code for your File > Open menu item. (To do

this quickly, simply double click the Open item on your

menu bar. Or press F7 (CTRL + ALT + 0 in version 2012)

to access the Code View.)

ii. Click the name of menu item from the left drop down box

at the top of the code

iii. Then select the Click event from the drop down box to

the right

iv. The empty code will be created

v. In between two line of code, add a line of code for show a

dialog box as below:

Private Sub mnuOpen_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)Handles mnuOpen.Click

openFD.ShowDialog()

End Sub

3.6.3 Message Boxes

VB.NET provides several built-in dialog boxes. They provide the

common user interface style seen in most Windows applications. These

dialogs provide properties and methods by which they can be customised to

suit the needs of the particular application while still maintaining the standard

Windows look and feel. The most used dialog box is MessageBox. This

allows the application to display a message to the user and accept input

regarding a choice that the user has made. The constituent parts of a

MessageBox dialog are shown in Figure 3.28 to specify the message, an

optional icon, the title bar text, and button(s) for the message box (refer).

61

Figure 3.28: Example of Message Box Created

Show method of the MessageBox object is used to display a message box.

The MessageBox object is a predefined instance of the MessageBox class

that can be used any time you need to display a message. There is more than

one way to call the Show method as following:

MessageBox.Show(TextMessage)

MessageBox.Show(TextMessage, TitlebarText)

MessageBox.Show(TextMessage, TitlebarText, MessageBoxButtons)

MessageBox.Show(TextMessage, TitlebarText, MessageBoxButtons, MessageBoxIcon)

The TextMessage is the message you want to appear in the message box.

The TitlebarText appears on the title bar of the MessageBox window.

The MessageBoxButtons argument specifies the buttons to display and the

MessageBoxIcon determines the icon to display.

Each option for your message box is separated by a comma. When type a

comma in the code above, another pop-up menu will be appear. On this

menu, choose the necessary buttons for the message box as Figure 3.29

then double click this item, then type a comma.

Buttons

Icon

Text

Titlebar
Text

62

Figure 3.29: Message Box Buttons

Yet another pop-up menu will appear. On this menu, specify the symbol that

appears in the message box in list at Figure 3.30.

Figure 3.30: Message Box Icon

Table 3.2: List of member Name and its Icon for Design a Message Box

Member Name Icon or Symbol

Asterisk
Information

Information

Error

Error Hand

Stop

Warning
Exclamation

Exclamation

Question Question mark

None Not display any icon

63

Example:

A message to display when the user has entered invalid data or neglected to

enter a required data value. The above message box in Figure 3.28 was

created with the following method call:

MessageBox.Show(“Enter numeric data.”)

MessageBox.Show(“Try again.”, “Data Entry Error”)

MessageBox.Show(“This is a message.”, “This is a title bar”, MessageBoxButtons.OK)

3.6.4 Input Boxes

If an application need a password, name, or other info, input boxes is a

very easy way of getting it. Input Box is design at run time only. The syntax

for an InputBox is:

InputBox(prompt[,title][,default][,xpos][,ypos][,helpfile,context])

 The prompt is the message the input box. This tells the user what the

program wants them to input. (ex: "Please enter your password.").

 The title is the title of the input box, which is the part that appears in

the blue. (ex: "Password").

 Default is an option may want to use. It puts text in the text box part of

the InputBox as a default. (ex: "Anonymous" is a good default if you're

asking for the user's name).

 Xpos and ypos are the horizontal and vertical positions of the input

box. If you leave these out, the default puts the input box horizontally

centered and about one third of the way down the screen.

 Helpfile and context tell where in a help file the user can get help on

that Input Box.

64

Here is an example of program code in order to use Input Box in an

application:

Dim strUserPassword As String

strUserPassword = InputBox("Please enter your password", "Password")

If strUserPassword = "DAT20903" Then

....

Figure 3.31: Input Box

Activities

1. You can display program output in a text box or a label. When should

you use a text box? When is a label appropriate?

2. If you want two groups of radio buttons on a form, how can you make

the groups operate independently?

3. What is the purpose of keyboard access keys? How can you define

them in your project?

4. What is a ToolTip? How can you make a ToolTip appear?

5. Assume you are testing your project and don’t like the initial position of

the insertion point. Explain how to make the insertion point appear in a

differet text box when the program begins.

6. What Basic statements will clear the current contents of a text box and

a label?

7. How are the With and End With statements used? Give an example.

8. What is concatenation and when would it be useful?

65

References

1. N. Randolph and D. Gardner, 2009. Professional Visual Studio 2008,

Wiley Publishing.

2. J.C. Bradley and A.C. Millspaugh, 2005. Programming in Visual

Basic .NET, McGraw Hill Technology Education.

3. D.I. Schneider, 2006. An Introduction to Programming Using Visual

Basic 2005. Prentice Hall.

4. VB .Net Programming Tutorial retrieved from

https://www.tutorialspoint.com/vb.net/

66

TOPIC 4

PROGRAMMING FOR APPLICATION DEVELOPMENT

Learning Outcome

At the end of this topic, student should be able to:

1. Distinguish between variables, constants, and controls for different

scope.

2. Apply common programming technique using correct data, operators,

scope and control structures in application development

3. Create and use procedures in application

4. Display Dialog boxes in application.

5. Apply array in collection of data.

Content

4.1 Introduction

When created a professional user interface, developer have to write

code to make the program do something useful. A Code Editor will be used

and to be familiar with correct programming technique have to apply. Data,

variables, operators, scope, procedures and control structures are all

important concepts that need to understand to start writing useful and power

full programs.

67

4.2 Programming Style

Every programming language have its own programming structure and

coding conventions.

4.2.1 Statements, Keywords and Comments

Statements are VB.Net instructions that contain keywords operator,

variables, constants and expressions. While, keywords are language-specific

words that have special meaning in VB.Net. By default, keywords are

displayed in the color blue. Any text following a single quotation mark is

handled as a comment (unless the single quotation mark is placed inside

double quotation marks). By default, words that make up comments are

displayed in green in the Code Editor. Comments are used to describe code

to make it clear to the reader what the code is supposed to do. The compiler

will ignore any comments in the code at run time.

4.2.2 Continuing Long Program Lines

Basic interprets the code on one line as one statement. You can type

very long lines in the Editor window; the window scrolls sideways to allow you

to keep typing. However, this method is inconvenient; it isn’t easy to see the

ends of the long lines. When a Basic statement becomes too long for one

line, use a line-continuation character. You can type a space and an

underscore, press Enter, and continue the statement on the next line. It is OK

to indent the continued lines. The only restriction is that the line-continuation

character must appear between elements; you cannot place a continuation in

the middle of a literal or split the name of an object or property.

Examples:

lblGreeting.Text = “Greetings ” &txtName.Text & “: ” & _

 “You have been selected to win a free prize. “ & _

68

 “Just send us RM50 for postage and handling.”

4.2.3 Scope: Public or Private

Scope determines whether an object, method, or variable can be

accessed by other objects, methods, or variables. The scope of a variable,

sometimes referred to as accessibility of a variable, refers to where the

variable can be read from and/or written to, and the variable's lifetime, or how

long it stays in memory. The scope of a procedure or method refers to where

a procedure can be called from or under what context you are allowed to call

a method. There are five level of scope that can be used: Public, Private,

Protected, Friend and Protected Friend. However, public and private levels of

scope (access) have commonly discussed. Public scope is accessible to any

object or process that can reference the current class or process. While, the

private scope is accessible only to the current class.

4.3 Variables and Constants

Basically, all data used in application development have been worked

with the Text property of Text Boxes and Labels. Now, without properties,

variables can be used to store data. A variable is a memory locations that

hold the data can be changed during project execution. While, when

locations that hold data that cannot change during execution are called

constants. For example, the customer’s name will vary as the information for

each individual is processed. However, the name of the company and the

sales tax rate will remain the same (at least for that day). When a variable or

a named constant declared, VB.Net reserves an area of memory and

assigns it a name, called an identifier. The declaration statements establish

69

project’s variables and constants, give its names, and specify the type of data

that is going to be hold.

4.3.1 Data Types

The data type of a variable or constant indicates what type of

information will be stored in the allocated memory space: perhaps a name, a

dollar amount, a date, or a total. Table 4.1 shows the VB.Net data types. The

most common types of variables and constants you will use are String,

Integer, and Decimal. When deciding which data type to use, follow this

guideline: If the data will be used in a calculation, then it must be numeric

(usually Integer or Decimal); if it is not used in a calculation, it will be

String. Use Decimal as the data type for any decimal fractions in business

applications; Single and Double data types are generally used in scientific

applications.

Table 4.1: Visual Basic Data Types

Data Type Use for Storage Size

Boolean True or False values 2

Byte 0 to 255, binary data 1

Char Single Unicode character 2

Date 1/1/0001 through 12/31/999 8

Decimal Decimal fractions, such as dollars and cents 16

Single Single-precision floating point numbers with six
digits of accuracy

4

Double Double-precision floating point numbers with 14
digits of accuracy

8

Short Small integer in the range -32,768 to 32,767 2

Integer Whole numbers in the range -2,147,483,648 to
+2,147,483,647

4

Long Larger whole numbers 8

String Alphanumeric data: letters, digits, and other
characters

varies

Object Any type of data 4

70

4.3.2 Declaration of a Variable

Although there are several ways to declare a variable, the most

commonly used statement is the Dim statement. If you omit the optional data

type, the variable’s type defaults to object. It is best to always declare the

type, even when you intend to use objects.

Syntax:

Dim Variablename as DataType

Examples:

Dim strStudentName As String

Dim intMatricNo As Integer

Another style in write the declaration statement is multiple declarations in line

statement.

Examples:

Dim a,b As Double ‘variables with same data type

Dim a As Double, b As Integer ‘different variables with

different data type

Dim c As Double=2, b As Integer=5 ‘declaration and

initialization statement

4.3.3 Scope of Variable

Variables can be declared at four different locations in your programs.

Notice that good programming practices dictate that constants should be

declared at the module/ class level. This technique places all constant

declarations at the top of the code and makes them easy to find in case need

to make changes. Namespace-level variables and constants can sometimes

be useful when a project has multiple forms and/or modules, but good

programming practices exclude the use of namespace-level variables. The

71

following table provides the general rules for scope. Figure 4.1 illustrates the

locations for coding local variables and module-level variables.

Table 4. 2: General Scoping Rules

Location Description Keyword

Block A variable declared within a block construct such
as an If statement, that variable's scope is only

until the end of the block. The lifetime is until the
procedure ends.

Dim

Procedure
(local)

A variable declared within a procedure, but
outside of any If statement, the scope is until
the End Sub or End Function. The lifetime of the

variable is until the procedures ends.

Dim

(Refer Figure 4.2)

Module/
Class

A variable declared outside of any procedure, but
it must be within a Class…End
Class or Module…End Module statement. The
scope is any procedure within this module. The
lifetime for a variable defined within a class is until
the object is cleaned up by the garbage collector.
The lifetime for a variable defined within a module
is until the program ends.

Dim, Public,

or Private

Project A Public variable can declared within
a Module…End Module statement, and that

variable's scope will be any procedure or method
within the project. The lifetime of the variable will
be until the program ends.

(Declaration section)

Dim ModuleLevelVariables

Const NamedConstants

Private Sub calculateButton_Click

Dim LocalVariables

…

End Sub

Private Sub summaryButton_Click

Dim LocalVariables

…

End Sub

72

Figure 4.1: Declaration of Module Level or Local Variables

Figure 4.2: Example of Local and Module-Level Declarations

4.3.4 Constants: Named and Intrinsic

Constants provide a way to use words to describe a value that doesn’t

changed either named constants or intrinsic constants.

4.3.4.1 Named Constants

Named constants is declared using the keyword Const. Give the

constant a name, a data type, and a value. Once a value is declared as a

constant, its value cannot be changed during the execution of the project. The

data type that declared and the data type of the value must match. For

example, if an integer constant is declared, give it an integer value. The code

is easier to read; for example, seeing the identifier decMAX_PAY is more

meaningful.

Examples:

‘Module-level declarations

Const DISCOUNT_RATE As Decimal = 0.15D

Private Sub calculateButton_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs)Handles calculateButton.Click)

‘Calculate the price and discount

Dim quantity As Integer

Dim price, extendedPrice, discount, discountedPrice As Decimal

‘Convert input values to numeric variables

quatity = Integer.Parse(quantityTextBox.Text)

price = Decimal.Parse(priceTextBox.Text)

‘Calculate values

extendedPrice = quantity + price

discount = Decimal.Round((extendedPrice * DISCOUNT_RATE), 2)

discountedPrice = extendedPrice - discount

End Sub

73

Const strCOMPANY As String = “Syahmie Sdn Bhd”

Const decSALES_RATE As Decimal = .08D

Follow certain rules when assign values as constants:

i. Cannot include a comma, dollar sign, any other special character, or a

sign at the right side.

ii. A text (string) value must be enclosed in quotation marks; String

literals (also called string constants) may contain letters, digits, and

special characters, such as $#@%&*.

iii. A numeric constants may contain only the digits (0-9), a decimal point,

and a sign (+ or -) at the left side.

iv. Declare the data type of numeric constants by appending a type-

declaration character. If you do not append a type-declaration

character to a numeric constant, any whole number is assumed to be

Integer and any fractional value is assumed to be Double. The type-

declaration characters are Decimal as D, Double as R, Integer as I,

Long as L, Short as S and Single as F.

4.3.4.2 Intrinsic Constants

Intrinsic constants are system-defined constants. Many sets of

intrinsic constants are declared in system class libraries and are available

for use in VB programs. For example: to use intrinsic constants, specify the

class name or group name as well as the constant name. For example,

Color.Red is the constant “Red” in the class “Color”.

4.4 Operators

In programming, calculations can performed with variables, with

constants, and with the properties of certain objects. The properties you will

use, such as the Text property of a text box or a label, are usually strings of

74

text characters. These characters strings, such as “Rafizah” or “12345”,

should not be used directly in calculations unless you first convert them to the

correct data type. Use functions to convert the property of a control to its

numeric form before use the value in a calculation. The function that you use

depends on the data type of the variable to which you are assigning the

value. For example, to convert text to an integer, use the CInt function; to

convert to a decimal value, use CDec.

Examples:

‘Convert input values to numeric variables

intMarks = CInt(txtMarks.Text)

decPrice = CDec(txtPrice.Text)

Converting from one data type to another is sometimes called casting. In

the preceding example, txtMarks.Text is cast into an Integer data type

and txtPrice.Text is cast into a Decimal data type. Table 4.3 shows a

list of conversion examples:

Table 4.3: Conversion Examples

Contents of String Argument CInt (Argument) CDec (Argument)

123.45 123 123.45

$100 100 100.0

1,000.00 1000 1000.0

A123 (error) (error)

-5 -5 -5.0

5- -5 -5.0

(5) -5 -5.0

1(5) (error) (error)

0.01 0 0.01

1.5 2 1.5

(blank) (error) (error)

75

When a conversion function encounters a value that it cannot parse to a

number, such as a blank or a nonnumeric character, an error occurs.

4.4.1 Arithmetic Operators

The arithmetic operations can perform in VB.Net include addition (+),

subtraction (-), multiplication (*), division (/), integer division (\), modulus

(Mod), and exponentiation (^). The first four operations are self-explanatory,

but may not be familiar with \, Mod or ^.

4.4.1.1 Integer Division

Use integer division to divide one integer by another giving an integer

result, truncating (dropping) any remainder. For example, if

intTotalMinutes = 150, then, intHours = intTotalMinutes\60

returns 2 for intHours.

4.4.1.2 Mod

The Mod operator returns the remainder of a division operation. For

example, if intTotalMinutes = 150, then, intMinutes =

intTotalMinutes Mod 60 returns 30 for intMinutes.

4.4.1.3 Exponentiation

 The exponentiation operator raises a number to the power specified.

The following are examples of exponentiation.

decSquared = decNumber ^ 2 ‘Square the number--Raise to the 2nd power

decCubed = decNumber ^ 3 ‘Cube the number--Raise to the 3rd power

4.4.2 Comparison Operator

76

A comparison operator compares operands and returns a logical value

based on whether the comparison is true or not. These values yield true or

false values. Table 4.4 shows the list of comparison operators and its uses.

Table 4.4: List of Comparison Operators and its Uses

Operator Use Value

< Less than True if operand1 is less than operand2

<= Less than or equal
to

True if operand1 is less than or equal to
operand2

> Greater than True if operand1 is greater than
operand2

>= Greater than or
equal to

True if operand1 is greater than or equal
to operand2

= Equal to True if operand1 equals operand2

<> Not equal to True if operand1 is not equal to
operand2

Is True if two object references refer to the
same object

Like Performs string pattern matching

4.4.3 Assignment Operator

Calculations will perform using assignment statements. Recall that

whatever appears on the right side of an “=” (assignment operator) is

assigned to the item on the left. The left side may be the property of a control

or a variable. It cannot be a constant. Table 4.5 shows the list of assignment

operators and its uses.

Table 4.5: List of Assignment Operators

Operator Description

= Assignment

^= Exponentiation followed by assignment

77

*= Multiplication followed by assignment

/= Division followed by assignment

\= Integer division followed by assignment

+= Addition followed by assignment

-= Subtraction followed by assignment

&= Concatenation followed by assignment

Examples:

decAverage = decSum/intCount

lblAmountDue.Text = CStr(decPrice – (decPrice * decDiscountRate))

txtCommission.Text = CStr(decSalesTotal * decCommissionRate)

In the preceding examples, the results of the calculations were assigned to a

variable, the Text property of a label, and the Text property of a text box. In

most cases you will assign calculation results to variables or to the Text

properties of labels. Text boxes are usually used for input from the user rather

than for program output. In addition to the equal sign (=) as an assignment

operator, VB .NET has several operators that can perform a calculation and

assign the result as one operation. The new assignment operators are +=, -=,

*=, /=, \=, and &=. Each of these assignment operators is a shortcut for the

standard method; you can use the standard (longer) form or the newer

shortcut. The shortcuts allow you to type a variable name only once instead of

requiring you to type it on both sides of the equal sign. For example, to add

decSales to decTotalSales, the long version is

decTotalSales = decTotalSales + decSales ‘Accumulate a total

Instead you can use the shortcut assignment operator:

decTotalSales += decSales ‘Accumulate a total

4.4.4 String Concatenation Operator

Concatenation operators (‘&’ and ‘+’) are used to join multiple strings

into a single string. For example, "Hi "& " there " yields the string "Hi there"

78

4.4.5 Order of Operations

The order in which operations are performed determines the result.

Consider the expression 3 + 4 * 2. What is the result? If the addition is

done first, the result is 14. However, if the multiplication is done first, the

result is 11. The hierarchy of operations or order of precedence, in arithmetic

expressions from highest to lowest are stated below:

1. Any operation inside parentheses

2. Exponentiation

3. Multiplication and division

4. Integer division

5. Modulus

6. Addition and subtraction

In the previous example, the multiplication is performed before the addition,

yielding a result of 11. To change the order of evaluation, use parentheses.

The expression (3 + 4) * 2 will yield 14 as the result. One set of

parentheses may be used inside another set. In that case, the parentheses

are said to be nested. The following is an example of nested parentheses:

((intScore1 + intScore2 + intScore3) / 3) * 1.2

Extra parentheses can always be used for clarity.

The expressions:

2 * decCost * decRate and (2 * decCost) * decRate

are equivalent, but the second is easier to understand. Multiple operations at

the same level (such as multiplication and division) are performed from left to

right. The example 8 / 4 * 2 yields 4 as its result, not 1. Although the

precedence of operations in Basic is the same as in algebra, take note of one

important difference: There are no implied operations in Basic. Table 4.6

show expressions would be valid in mathematics, but they are not valid in VB.

Table 4.6: Mathematical Versus VB Expression

79

Mathematical Notation Equivalent VB Expression

2A 2 * A

3(X + Y) 3 * (X + Y)

(X + Y)(X – Y) (X + Y) * (X – Y)

 4.5 Procedures

So far, the code mostly been lumped together under one button. The

problem with this approach is the code can get quite long and complex,

making it difficult to read, and difficult to put right if something goes wrong.

Another approach is to separate some of this code into its own routine. This is

where functions and subs come in.

A procedure is a group of statements that together perform a task

when called. After the procedure is executed, the control returns to the

statement calling the procedure. VB.Net has 4 types of procedures:

i. Sub- procedure or Subs: perform specific task

ii. Function procedure (User Created Function and Built-in

Function): return a value to the code that called them

iii. Event-handling procedure or “event handler”: invoked in

response to event having occurred to an object. Event can be

triggered by the user or by the program. For example:

btnExit_Click denotes the Click event handler for the button

control named btnExit

iv. Property procedure: used when assigning values to the

properties of user-created objects, and when retrieving the

values of those properties.

4.5.1 Difference between Functions and Subs

The difference between a Function and a Sub: Functions return a

value, and Subs do not. A function is used to get some sort of answer back,

80

and use the answer elsewhere. Assign the answer to the function to a

variable. For example, Substring() is a Function. Assign the answer to

the Substring(). A Sub is some code or job that you want VB to get on

with and execute. An example is closing a form down and unloading it with

Me.Close(). A programmer don't need to return a value, here. It just want

VB to close the form down.

4.5.2 Create Own Sub Procedures

Own sub procedures is created by defining the task under keyword

Subs followed by Subs Name and close with End Sub. Subs is use simply

use by referring to the Sub by name or using the "Call" word to makes the

code easier to read, and tells own Subroutine on this line is executing. For

example, the below code is definition of own Subs (Figure 4.3) and calling the

subs when needed (Figure 4.4). The sub procedure’s name used is

ErrorCheck(). Then statement Call ErrorCheck() written under

event-handling procedure of a new button where the Message box popping

up, when nothing is entered into the Textbox. The point about this is that own

code segment have created. This segment of code can use whenever

needed, just by referring to it by name or used keyword call.

Figure 4.3 Definition of a Sub Procedure Named ErrorCheck()

Private Sub ErrorCheck()

Dim TextData As String

TextData= Trim (txtInput.Text)

If TextData= “ “ Then

 MsgBox(“Please Enter your First Name”)

End If

End Sub

Private Sub btnCheck_Click (ByVal sender As System….)

 Call ErrorCheck()

End Sub

81

Figure 4.4 Calling Sub Procedure ErrorCheck()from Event Procedure

4.5.3 Using Parameters in Sub Procedure

A parameter is a value that we want to pass from one code section to

another. Parameters are set up in between the parentheses. Figure 4.5 below

show an example created Sub to add together the two numbers from the

Textboxes. The sub procedure used two parameters (first and second).

Using this code, the values gathered from button code will hand them over to

AddNumbers Sub. Variables in the AddNumbers Sub does not have to be

the same names as the calling line. But the values in the variables get passed

in the order set them up. The value in the variable first will get passed to

the first variable in AddNumbers Sub; the value in the variable second will

get passed to the next variable which set up in our AddNumbers Sub (refer

Figure 4.6).

Figure 4.5 Definition of a Sub Procedure Named AddNUmbers()with

Parameters

Figure 4.6 Calling Sub Procedure btnAnswer()with Parameters from

Event Procedure

Private Sub AddNumbers(first As Integer, second As

Integer)

Dim answer As Integer

answer = first + second

MsgBox("The total is " & answer)

End Sub

Private Sub btnAnswer_Click (ByVal sender As System…)

Dim first As Integer

Dim second As Integer

first = Val(txtFirstNumber.Text)

second = Val(txtSecondNumber.Text

Call AddNumbers(firstno, secondno)

End Sub

82

 4.5.4 Using ByVal and ByRef in Sub Procedure

The word ByVal is short for "By Value". It is means that a copy of a

variable are passing to Subroutine. Changes can be made to the copy and

the original will not be altered. ByVal is hidden in Version 2012/13 of VB NET

Express. It's hidden because ByVal is the default when the variables are

passing over to a function or Sub.

Let's see a coding example at Figure 4.7 and Figure 4.8. After these

code executed, Number1 didn't get incremented because that only a copy of

the original variable got passed over. When the variable incremented, only

the copy got 1 added to it. The original stayed the same which equal 10.

Figure 4.7 Definition of a Sub Procedure Named IncrementValue()with

Parameters

Figure 4.8 Calling a Sub Procedure IncrementValue()with Parameters

from Event Procedure

ByRef is the alternative. This is short for By Reference. This means

that a copy of the original variable are not handing over but pointing to the

original variable. If the ByVal keyword code in Figure 4.6 and 4.7 changes to

ByRef, Message Box will displayed 11. The code referencing the original

variable. So when it add 1 to it, the original will change. The variable has now

been incremented! As conclusion, the default is ByVal - which means a copy

of the original variable. If you need to refer to the original variable, use ByRef.

Private Sub IncrementValue(ByVal Number1 As Integer)

Number1 = Number1 + 1

End Sub

Private Sub btnIncrease_Click (ByVal sender As System…)

Dim Number1 As Integer

 Number1=10

Call IncrementValue(Number1)

MsgBox(Number1)

End Sub

83

4.5.5 Function Procedures

The Function statement is used to declare the name, parameter and

the body of a function.

Syntax for the Function statement is:

[Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

Where,

 Modifiers: specify the access level of the function; possible values are:

Public, Private, Protected, Friend, Protected Friend and information

regarding overloading, overriding, sharing, and shadowing.

 FunctionName: indicates the name of the function

 ParameterList: specifies the list of the parameters

 ReturnType: specifies the data type of the variable the function returns

In VB.Net, a function can return a value to the calling code in two ways:

 By using the return statement

 By assigning the value to the function name

4.5.5.1 Create Own Function in VB .NET

A function is more or less the same thing as a Sub - a segment of

code is created, and that can be used whenever you want it. The difference is

that a Function returns a value, while a Sub doesn't.

A Function is different. It is a value, will be equal to something, and

have to assign a value to it. Create a Function in the same way you did a

Sub, but have different syntax. First, changed the word "Sub" to "Function";

second we've added "As" something, in this example "As Boolean". The

84

name we called our Function is ErrorCheck, and ErrorCheck is now just like

a variable. And just like a variable, we use one of the Types. Any of the

variable types can be used such as "As Integer", "As Long", "As

Double", "As String" or etc.

Figure 4.9 Definition of a Function Procedure Named ErrorCheck()

Figure 4.10 Calling a Function Procedure ErrorCheck()from Event

Procedure

Remember that ErrorCheck is now like a variable. In this case it was

a Boolean variable. So if there's nothing in the Textbox, we have

set ErrorCheck to True.This time, because we've set up a Function, assign

the value of ErrorCheck to the variable called “IsError".Once that code

is executed we can then use the variable IsError and test its value. If it's

Private Sub btnCheck_Click (ByVal sender As System…)

Dim IsError As Boolean

Dim first As Integer

Dim second As Integer

Dim result As Integer

first = Val(txtNumber1.Text)

second = Val(txtNumber2.Text)

result = AddTwoNumbers(first, second)

If result = 0 Then

MsgBox("Please try again ")

Else

MsgBox("The answer is " & result)

End If
End Sub

Private Function ErrorCheck () As Boolean

Dim TextBoxData As String

TextBoxData = Trim(txtFunction.Text)

If TextBoxData = "" Then

MsgBox("Blank Text Box detected")

ErrorCheck=True

Else

ErrorCheck=False

End If

End Function

85

true, then we know that the user did not enter anything into the Textbox; if it's

False, then we know that they did. The benefit of using a Function to check

for our errors is that we can halt the programme if IsError = True.

To sum up, then. A function will return a value. Put this value into the

name of the Function. Then assign the value of the Function to a variable.

Lastly, test the variable to see what's in it.

4.5.5.2 Use Parameters with Functions

Use the Parameters in function is exactly the same way as did for a

Sub. From an example showed in Figure, the name of this Function

is AddTwoNumbers, and set it up to return an Integer value. The two

parameters we're passing in are also Integers. The code inside the Function

simply adds up whatever is inside the variables first and second. The

result is passed to another variable, answer. Then pass whatever is

inside answer to the name of our Function. So, AddTwoNumbers will be

equal to whatever is in the variable answer.

Instead of saying AddTwoNumbers = answer the Return keyword can be

used like this:

Return answer

The result is the same: the value inside the variable answer is now the value

of the function.

Private Function AddTwoNumbers(ByVal first As Integer,

ByVal second As Integer) As Integer

Dim answer As Integer

answer = first + second

 ‘return a value by assigning the value to the function name

AddTwoNumbers = answer

End Function

86

Figure 4.11 Definition of a Function Procedure Named

AddNUmbers()with Parameters

Figure 4.12 Calling Function Procedure btnAnswer()with Parameters

from Event Procedure

Run this programme code and test it out. Type a number in the first

text box, and one in the other. Then click the "Get Function Answer" button.

Try typing two zeros into the textboxes and see what happens. Setting up and

using functions can be quite tricky at first, but it's well worth your while

persevering: they can vastly improve your coding skills.

4.5.5.3 Built-in Function in VB .NET

There are many built-in function provided in VB.Net. Common built-in

function used in application development are Math Functions, String

Functions and TimeDate Function shown in Table 4.7.

Table 4.7 List of Common Built-In Function

Type of
Function

Function Name Descriptions Calling Syntax

Math Math.Abs() to return the absolute
value of a number

Math.Abs(Number)

Math.Max() to return the largest of two
decimal numbers.

Math.Max(val1,

val2)

Private Sub btnAnswer_Click (ByVal sender As System.Object, _

ByVal e As System.EventArgs)Handles Button1.Click

Dim first As Integer

Dim second As Integer

Dim result As Integer

first = Val(txtNumber1.Text)

second = Val(txtNumber2.Text)

result = AddTwoNumbers(first, second)

If result = 0 Then

MsgBox("Please try again ")

Else

MsgBox("The answer is " & result)

End If

End Sub

87

Math.Round()

number to be rounded to
the number of Decimal
Places.

Math.Round(Number,

Decimal Places)

String Lcase() returns a string after
converting to lowercase.

LCase(Char)or

LCase(Str)

LTrim() retruns a copy of a string
without leading spaces.

LTrim(Str)

StrComp() to compare two strings to
return values '-1', '1', '0'
based on the value.

StrComp(Str1,

Str2)

Val() return the numbers
contained in a string as a
numeric value of
appropriate type.

Val(Expression)

DateTime IsDate() checks if the given
expression is a valid date
and returns a boolean true
or false.

IsDate(Expession)

Month() returns the month of the
year as an integer value in
the range of 1-12.

Month(Date)

4.5.6 Event Handling Procedures

Many programmers refer to sub procedures as subprograms or

subroutines. But subroutine is not acceptable because VB actually has a

different statement for a subroutine, which is not the same as a sub

procedure. VB automatically names your event procedures. The name

consists of the object name, an underscore (_), and the name of the event.

For example, the Click event for your button called btnMessage will be

btnMessage. For the sample project you are writing, you will have a

btnMessage_Click procedure and a btnExit_Click procedure.

4.6 Control Structures

88

Basically there are two types on control structures: selection and

repetition structures. Both structure involved with conditions statement.

4.6.1 Conditions

 The test in an If statement is based on a condition. To form

conditions, six relational or comparison operators (as Table 4.3) are used

to compare values. The result of the comparison is either True or False.

The conditions to be tested can be formed with numeric variables and

constants, string variables and constants, object properties, and arithmetic

expressions. However, it is important to note that comparisons must be made

on like types; that is, strings can be compared only to other strings, and

numeric values can be compared only to other numeric values, whether a

variable, constant, property, or arithmetic expression.

4.6.1.1 Comparing Numeric Variables and Constants

When numeric values are involved in a test, an algebraic comparison

is made; that is, the sign of the number is taken into account. Therefore,

negative 20 is less than 10, and negative 2 is less than negative 1. Even

though an equal sign (=) means replacement in an assignment statement, in

a relation test and equal sign is used to test for equality. Example show at

Table 4.8.

Table 4.8: An Example a Condition and Its Description

Condition Description

If Decimal.Parse(txtPrice.Text) =

decMaximum Then
“Is the current numeric value
stored in txtPrice.Text equal

to the value stored in
decMaximum?”

4.6.1.2 Comparing Strings

89

String variables can be compared to other string variables, string

properties, or string literals enclosed in quotation marks. The comparison

begins with the left-most character and proceeds one character at a time from

left to right. As soon as a character in one string is not equal to the

corresponding character in the second string, the comparison is terminated,

and the string with the lower-ranking character is judged less than the other.

The code, called the ANSI (American National Standards Institute) code (refer

to Table 4.9), has an established order (called the collating sequence) for all

letters, numbers, and special characters.

Table 4.9: ANSI Collating Sequence

Code Character Code Character Code Character

32 Space

(blank)
64 @ 96 ‘

33 ! 65 A 97 a

34 “ 66 B 98 b

35 # 67 C 99 c

36 $ 68 D 100 d

37 % 69 E 101 e

38 & 70 F 102 f

39 , 71 G 103 g

40 (72 H 104 h

41) 73 I 105 i

42 * 74 J 106 j

43 + 75 K 107 k

44 , 76 L 108 l

45 - 77 M 109 m

46 . 78 N 110 n

47 / 79 O 111 o

48 0 80 P 112 p

49 1 81 Q 113 q

50 2 82 R 114 r

51 3 83 S 115 s

52 4 84 T 116 t

53 5 85 U 117 u

54 6 86 V 118 v

55 7 87 W 119 w

56 8 88 X 120 x

57 9 89 Y 121 y

58 : 90 Z 122 z

59 ; 91 [123 {

90

60 < 92 \ 124 |

61 = 93] 125 }

62 > 94 ^ 126 ~

63 ? 95 _ 127 Del

Example 1:

The condition txtPerson1.Text < txtPerson2.Text evaluates False.

The A in JOAN is lower ranking than the H in JOHN.

Example 2:

The condition txtWord1.Text < txtWord2.Text evaluates True. When

one string is shorter than the other, it compares as if the shorter string is

padded with blanks to the right of the string, and the blank space is compared

to a character in the longer string.

Example 3:

The condition lblCar1.Text < lblCar2.Text evaluates True. When the

number 3 is compared to the letter P, the 3 is lower, since all numbers are

lower ranking than all letters.

4.6.1.3 Comparing Uppercase and Lowercase Characters

When comparing strings, the case of the characters is important. An

uppercase Y is not equal to a lowercase y. Because the user may type a

name or word in uppercase, lowercase, or as a combination of cases, we

must check all possibilities. The best way is to use ToUpper and ToLower

methods of the String.class, which return the uppercase or lowercase

equivalent of a string, respectively. Refer Table 4.10.

txtPerson1.Text

JOHN

txtPerson2.Text

JOAN

txtWord1.Text

HOPE

txtWord2.Text

HOPELESS

lblCar1.Text

300ZX

lblCar2.Text

Porche

91

Table 4.10: Examples Use of ToUpper and ToLower Methods

txtOne.Text Value txtOne.Text.ToUpper txtOne.Text.ToLower

Basic BASIC basic

DOT NET DOT NET dot net

Rafizah Mohd Hanifa RAFIZAH MOHD

HANIFA

rafizah mohd hanifa

assalammualaikum ASSALAMMUALAIKUM assalammualaikum

4.6.1.4 Compound Conditions

Compound conditions can be used to test more than one condition.

Create compound conditions by joining conditions with logical operators. The

logical operators are Or, And, and Not. Refer Table 4.11.

Table 4.11: Examples Use of Logical Operator as Compound Conditions

Logical
Operator

Meaning Example Explanation

Or If one condition
or both
conditions are
True, the entire
condition is
True.

Integer.Parse (lblNumber.Text) = 1 Or _

Integer.Parse (lblNumber.Text) = 2

Evaluates True
when
lblNumber.Text is
either “1” or “2”

And Both conditions
must be True
for the entire
condition to be
True.

Integer.Parse (lblNumber.Text) > 0 And _

Integer.Parse (lblNumber.Text) < 10

Evaluates True
when
lblNumber.Text is
“1”,“2”,”3”,”4”,”5”,”6
”,”7”,”8”, or ”9”,

Not Reverses the
condition so
that a True
condition will
evaluate False
and vice versa.

Not Integer.Parse (lblNumber.Text) = 0

Evaluates True
when
lblNumber.Text is
any value other
than “0”

4.6.2 Selection Control Structure

A powerful capability of the computer is its ability to make decisions

and to take alternate courses of actions based on the outcome.

92

4.6.2.1 If Statements

A decision made by the computer is formed as a question: Is a given

condition true or false? If it is true, do one thing; if it is false, do something

else.

Example 1 (Refer Figure 4.13):

If the sun is shining Then (condition)
 go to the beach (action to take if condition is true)
Else
 go to DOT NET class (action to take if condition is false)
End If

Figure 4.13: The logic of an If…Then…Else statement in flowchart form

Example 2 (Refer 4.14):

If you do not succeed Then (condition)
 Try again (action)
End If

Sun is shining?

Go to DOT NET Class Go to Beach

False True

No success?

Try again

False True

93

Figure 4.14: The logic of an If statement without an Else action in

flowchart form

Notice in the second example that no action is specified if the condition is not

true (false). In an If statement, when the condition is true, only the Then

clause is executed. When the condition is false, only the Else clause, if

present, is executed. A block If…Then…Else must always conclude with End

If. The word Then must appear on the same line as the If with nothing

following Then (except a remark). End If and Else (if used) must appear

alone on a line. The statements under the Then and Else clauses are

indented for readability and clarity.

Example 3:

decUnits = Decimal.Parse(txtUnits.Text)

If decUnits < 32D Then

 radFreshman.Checked = True

Else

 radFreshman.Checked = False

End If

When the number of units in decUnits is less than 32, select the radio

button for Freshman; otherwise, make sure the button is unselected.

Remember that when a radio button is selected, the Checked property has a

Boolean value of True.

4.6.2.2 Nested If Statements

In many programs another If statement is one of the statements to be

executed when a condition tests True or False. If statements that contain

additional If statements are to be nested If statements. The following

example shows a nested If statement in which the second If occurs in the

Then portion of the first If.

94

Example of Code Segment for Nested If (Refer Figure 4.15):

If intTemp > 32 Then

 If intTemp > 80 Then

 lblComment.Text = “Hot”

 Else

 lblComment.Text = “Moderate”

 End If

Else

 lblComment.Text = “Freezing”

End If

To nest If statements in the Else portion, you may also use ElseIf…Then

which is simpler.

Example:

If intTemp <= 32 Then

 lblComment.Text = “Freezing”

Else

If intTemp > 80 Then

 lblComment.Text = “Hot”

Else

 lblComment.Text = “Moderate”

 End If

End If

intTemp > 32?

lblComment.Text =
“Freezing”

lblComment.Text =

“Hot”

False True

intTemp > 80?
True False

lblComment.Text =

“Moderate”

95

Figure 4.15: Flowcharting a nested If statement

Nest Ifs can be done in both the Then and Else. In fact, it may

continue to nest Ifs within Ifs as long as each If has an End If.

However, projects become very difficult to follow (and may not perform as

intended) when Ifs become too deeply nested.

An example use Nested if for radio button control (Figure 4.16):

If radMale.Checked = True Then

 If Integer.Parse(txtAge.Text) < 21 Then

 mintMinorMaleCount += 1

 Else

 mintMaleCount += 1

 End If

Else

 If Integer.Parse(txtAge.Text) < 21 Then

 mintMinorFemaleCount += 1

 Else

 mintFemaleCount += 1

 End If

End If

radMale.Checked?

Add 1 to
mintMinorMaleCount

Add 1 to

mintFemaleCount

True False

txtAge.Text < 21?

True False

Add 1 to

mintMinorFemaleCount

txtAge.Text < 21?

True False

Add 1 to
mintMaleCount

96

Figure 4.16: A Flowchart of a Nested If Statement with Ifs nested on

both sides of the original If

4.6.2.3 Select Case Structure

To test a single variable for multiple values, the Case structure

provides a flexible and powerful solution. Any decisions that you can code

with a Case structure also can be coded with nested If statements, but

usually the Case structure is simpler and clearer. The expression in a Case

structure is usually a variable or property that you wish to test. The constant

list is the value that you want to match; it may be a numeric or string constant

or variable, a range of values, a relational condition, or a combination of

these. Refer examples in Table 4.12.

Table 4.12: Examples Use of Case Statement

Case statement with string Case statement with numbers

Dim creamcake As String

Dim DietState As String

creamcake = txtChoose.Text

Select Case creamcake

Case "Eaten"

 DietState = "Diet Ruined"

Case "Not Eaten"

 DietState = "Diet Not Ruined"

Case Else

 DietState = "Didn't check"End

End Select

MsgBox DietState

Dim agerange As Integer

agerange = txtage.Text

Select Case agerange

Case 16 To 21

MsgBox “Still Young”

Case 50 To 64

MsgBox “Start Lying”

End Select

Checking text in the variable Checking a variable to see if the
number that was in the variable fell
within a certain age-range

4.6.2.4 Use Selection Structure for Check Box to a VB .NET form

97

Checkbox is one of control which provide user options to select. There

are three options of properties for CheckState Property: Unchecked,

Checked and Indeterminate (Figure 4.17a and Figure 4.17b).

Figure 4.17a Interface Design of Figure 4.17b Property Setting For
Checkbox Checkbox

If a checkbox has been selected, the value for the CheckState property will be

1; if it hasn't been selected, the value is zero. Only going to test for 0 or 1,

Checked or Unchecked. The testing can be done with a simple If Statement

(Refer Table 4.13).

Table 4.13: Example of If Statement for a CheckBox Control

Style 1 Style 2
If CheckBox1.CheckState =

CheckState.Checked Then

MsgBox("Checked")

Else

MsgBox("Not Checked")

End If

If CheckBox1. CheckState = 1 Then

MsgBox "Checked"

ElseIf Checkbox1. CheckState = 0

Then

MsgBox "Unchecked"

End If

4.6.3 Repetition Control Structure

98

Repetition Control Structure or a loop is something that goes round

and round and round. In fact, they go round and round until you tell them to

stop. It can programme without using loops. But it's an awful lot easier with

them. Consider this: to add up the numbers 1 to 4: 1 + 2 + 3 + 4. It may do

like this:

Dim answer As Integer

answer = 1 + 2 + 3 + 4

MsgBox answer

It looks fairly simple. And not much code, either. But what if trying to add up a

thousand numbers? It is really going to type them all out like that? It's an

awful lot of typing. A loop would make life a lot simpler.mThe computer is

capable of repeating a group of instructions many times without calling the

procedure for each new set of data. The process of repeating a series of

instructions is called looping. The group of repeated instructions is called

a loop. Iteration is a single looping execution of the statement(s) in the loop.

4.6.3.1 For- Next Loops

To repeat the statements for specific number of times, the For/Next

loop is ideal. This loop uses the For and Next statements and a counter

variable, called the loop index. The loop index is tested to determine the

number of times the statements inside the loop will executed. A counter-

controlled loop generally has three elements: initialize the counter, increment

the counter, and test the counter to determine when the loop will terminate

(refer to Figure 4.18).

Syntax:

For LoopIndex = InitialValue to TestValue [Step Increment]

 ‘

 ‘ Statements in loop

 ‘

Next [LoopIndex]

99

LoopIndex must be a numeric variable; InitialValue and TestValue

may be constants, variables, numeric property values, or numeric

expressions. The optional word Step may be included, along with the value

to be added to the loop index for each iteration of the loop. When the Step is

omitted, the increment is assumed to be 1.

Figure 4.18: A flowchart of the logic of a For/Next loop

Examples:

i. For intIndex = 2 To 100 Step 2

ii. For intCount = intStart to intend Step intIncrement

iii. For intCountDown = 10 To 0 Step -1

iv. Dim answer As Integer

Dim startNumber As Integer

answer = 0

For startNumber = 1 To 4

answer = answer + startNumber

Next startNumber

 MsgBox answer

Initialize Index
Variable

Ending Limit
Reached?

True

Statements in
Loop

Increment Loop
Index

False

100

As Conclusion, A For loop needs a start position and an end position, and all

on the same line and also needs a way to get the next number in the loop.

4.6.3.2 Do Loops

A Do/Loop terminates based on a condition that you specify.

Execution of a Do/Loop continues while a condition is True or until a

condition is True. You can choose to place the condition at the top or the

bottom of the loop. Use a Do/Loop when the exact number of iterations is

unknown. The first form of the Do/Loop tests for completion at the top of the

loop. With this type of loop, also called a pretest, the statements inside the

loop may never be executed if the terminating condition is True the first time it

is tested.

Example:

intTotal = 0

Do Until intTotal = 0

 ‘Statements in loop

Loop

Because intTotal is 0 the first time the condition is tested, the condition is

True and the statements inside the loop will not execute. Control will pass to

the statement following the Loop statement.

The second form of the Do/Loop tests for completion at the bottom of the

loop, which means that the statements inside the loop will always be

executed at least once. This form of loop is sometimes called a posttest.

Changing the example to a posttest, you can see the difference.

Example:

intTotal = 0

Do

 ‘Statements in loop

101

Loop Until intTotal = 0

In this case, the statements inside the loop will be executed at least once.

Assuming the value for intTotal does not change inside the loop, the condition

(intTotal = 0) will be True the first time it is tested and control will pass to

the first statement following the Loop statement. Figure 4.19 shows

flowcharts of pretest and Figure 4.20 shows flowcharts of posttest loops using

both While and Until.

Figure 4.19: Flowcharts of pretest for Do While and Do Until

Figure 4.20: Flowcharts of posttest for Do While and Do Until

Loop

Condition

Statements in Loop False

True

Pretest

Do While

Loop

Complete

Loop

Condition

Statements in Loop True

False

Pretest
Do Until

Loop

Complete

Loop

Condition

Statements in Loop

False

True

Posttest

Loop While

Loop

Condition

Statements in Loop

False

True

Posttest

Loop Until

102

Boolean data type, which holds only the values True or False. Boolean

variables useful when setting and testing conditions for a loop. This can be

done by setting a Boolean variable to True when a specific circumstance

occurs and then write a loop condition until the variable is True. An example

of using a Boolean variable is when you want to search through a list for a

specific value. The item may be found or not found, and you want to quit

looking when a match is found. Using a Boolean variable is usually a three-

step process. First, you must dimension a variable and set its initial value (or

use the default VB setting of False). Then, when a particular situation occurs,

you set the variable to True. A loop condition can then check for True.

Example:

Figure 4.21: Example use Loop for Searching Specific Value from a List

In the example, each element of the list is compared to

newItemTextBox.Text (Proton) for a match. The loop will terminate when

a match is found or when all elements have been tested. If the matches

failed, the dialog message will pop up as shown in the diagram below.

103

Figure 4.22: Example VB code to implement Do Loop

4.7 Array and Collections

So far, variables have been used quite a lot. Numbers or text have
been put into variables. But, it was only done this one at a time: one number
or one string of text have been put into a variable. This code have been done:

Dim MyNumber As Integer

MyNumber = 4

Or this

Dim MyText As String

MyText = "A String is really just text"

Or even this:

Dim MyNumber As Integer = 4

An array is a variable that can hold more than one piece of information

at a time. The MyNumber variable above held one number 4. While, an array

variable called MyNumbers could hold more than one number at a time.

initialization

104

Dim MyNumbers(4) As Integer

MyNumbers(0) = 0

MyNumbers(1) = 1

MyNumbers(2) = 2

MyNumbers(3) = 3

When set up an array with the Dim word, put the name of your array variable,

and tell VB how many items stored in the array. Then, assign data to each

position in the array. So, that's what an array is - a variable that can hold

more than one piece of data at a time

4.7.1 Single-Dimension

One-dimensional (1-D) arrays are by far the most useful, however

there are some uses for multi-dimensional arrays. A 1-D array holds one

column of data. Visually, it looks like this (four rows with one value in each

column) for MyNumbers(4)as above example.

4.7.1.2 Assigning Values to an Array

There are a number of way you can put data into each position of an

array. Values can be assign straight from a Textbox into the position of your

array. Like this:

105

MyNumbers(0) = Val(Textbox1.Text)

MyNumbers(1) = Val(Textbox2.Text)

etc

With that code, whatever you typed into the Textboxes on your Form would

be stored into the positions of your array. The same would be true of a String

Array:

MyNumbers(0) = Textbox1.Text

MyNumbers(1) = Textbox2.Text

etc

But do a programmer have to keep typing out a value for each and every

position of our array. What if had an array with a hundred items in

it, MyText(99)? Would have to type out text for all one hundred positions of

the array?

Well, obviously not. VB code can be used to assign values to array. Here is

an example where we don't type out values for all positions of an array. It's

the times table. This time we'll use an array. And write a line of code to assign

values to each position of the array and use looping statement.

Dim numbers(10) As Integer

Dim times As Integer

Dim StoreAnswer As Integer

Dim i As Integer

ListBox1.Items.Clear()

times = Val(TextBox1.Text)

For i = 1 To 10

StoreAnswer = i * times

numbers(i) = StoreAnswer

ListBox1.Items.Add(times & " times " & i & "

= " & numbers(i))

Next i

106

4.7.2 Two-Dimension Array

Another type of array is a Two-Dimensional (2-D) array. This holds

data in a grid pattern, rather like a spreadsheet. They look like this (4 rows,

and 4 columns):

To set up a 2-D array in Visual Basic .NET you just add a second number

between the round brackets:

Dim grid(3, 3) As Integer

This means fill row 0, column 0 with a value of 1. You could type out all your

positions and values like this: (The left number between the round brackets is

always the row number; the right number is always the columns.)

grid(0, 0) = 1

grid(1, 0) = 2

grid(2, 0) = 3

grid(3, 0) = 4

grid(0, 1) = 5

grid(1, 1) = 6

grid(2, 1) = 7

grid(3, 1) = 8

grid(0, 2) = 9

grid(1, 2) = 10

grid(2, 2) = 11

grid(2, 2) = 12

107

grid(0, 3) = 13

grid(1, 3) = 14

grid(2, 3) = 15

grid(3, 3) = 16

Typically, though, 2-D arrays are filled using a double for loop. The following

code just places the numbers 1 to 16 in the same positions as in the example

above:

Dim grid(3, 3) As Integer

Dim row As Integer

Dim col As Integer

Dim counter As Integer = 1

For row = 0 To 3

For col = 0 To 3

grid(row, col) = counter

counter = counter + 1

Next

Next

4.7.3 Applications of Array in List Boxes and Combo Boxes

List boxes and combo boxes allow a list of items from which the user

can make a selection. Figure 4.23 shows the toolbox tools for creating the

controls.

Figure 4.23: ListBox and ComboBox Tools to Create list boxes and

combo boxes in forms

ListBox controls and ComboBox controls have most of the same properties

and operate in a similar fashion. One exception is that a ComboBox

control has a DropDownStyle property, which determines whether or not the

list box also has a text box for user entry and whether or not the list will drop

down.

108

Both list boxes and combo boxes have a great feature. If the box is too small

to display all the items in the list at one time, VB automatically adds a scroll

bar. When you add a list control to a form, choose the style according to the

space you have available and how you want the box to operate. At design

time, the behavior of list boxes and combo boxes differs. For list boxes, VB

displays the Name property in the control; for combo boxes, the Text property

displays.

4.7.3.1 Items Collection

The list of items that displays in a list box or combo box is a collection.

VB collections are objects that have properties and methods to allow

programmer to add items, remove items, refer to individual elements, count

the items, and clear the collection. The items in a collection can refer by an

index, which is zero based. For example, if a collection holds 10 items, the

indexes to refer to the items range from 0 to 9. To refer to the first item in the

Items collection, use Items(0).

Several methods can be used to fill the Items collection of a list box

and combo box. If the list contents known at design time and the list never

changes, Items collection can be define in the Properties window. If the items

must added to the list during program execution, use the Items.Add or

Items.Insert method in an event procedure.

The Items property, which is a collection, holds the list of items for a list

box or combo box. To define the Items collection at design time, select control

and scroll the Properties window to the Items property (refer to Figure 4.24).

109

Figure 4.24: Select the Items Property of a List Box to Enter the List

Items

Click on the ellipses button to open the String Collection Editor (refer to

Figure 4.25) and type your list items, ending each line with the Enter key.

Click OK when finished.

Figure 4.25: Type each list item and press Enter to go to the next line

To add an item to a list at run time, use the Items.Add method. A variable, a

constant, the contents of the text box can be choosen to add at the top of a

combo box, or the Text property of another control. The new item generally

Click here to open the String

Collection Editor

110

goes at the end of the list. However, you can alter the placement by setting

the control’s Sorted property to True. Then the new item will be placed

alphabetically in the list.

Examples:

lstUniversity.Items.Add(“UTHM”)

lstUniversity.Items.Add(“USM”)

lstUniversity.Items.Add(txtUniversity.Text)

cboMajor.Items.Add(cboMajor.Text)

When the user types a new value in the text box portion of a combo box, that

item is not automatically added to the list. If you want to add the newly

entered text to the list, use the Items.Add method.

The location can be choosen for a new item added to the list. In the

Item.Insert method, you specify the index position for the new item. The

index position is zero based. To insert a new item in the first position, use

index position = 0. If you choose the index position of an item using the Insert

method, do not set the list control’s Sorted property to True. A sorted list is

always sorted into alphabetic order, regardless of any other order.

Examples:

lstUniversity.Items.Insert(0, “UUM”)

lstUniversity.Items.Insert(1, “UTM”)

Another code segment as example which use an array to add items in a list of

number and display in a List Box after executed.

Dim MyNumbers(4) As Integer

MyNumbers(0) = 10

MyNumbers(1) = 20

MyNumbers(2) = 30

MyNumbers(3) = 40

MyNumbers(4) = 50

111

For i = 0 To 4

listNumbers.Items.Add(MyNumbers(i))

Next i

After executed above code. A list box will list a collection of numbers in the

form where it designed and should look something like Figure 4.26:

Figure 4.26: A List Box List an Array of Numbers

4.7.3.2 SelectedIndex Property

When a project is running and the user selects (highlights) an item

from the list, the index number of that item is stored in the SelectedIndex

property of the list box. Recall that the index of the first item in the list is 0. If

no list item is selected, the SelectedIndex property is set to negative 1 (-1).

The SelectedIndex property can be used to select an item in the list or

deselect all items in code.

Examples:

‘Select the fourth item in list
lstCoffeeType.SelectedIndex = 3

‘Deselect all items in list

lstCoffeeType.SelectedIndex = -1

112

4.7.3.3 Items.Count Property

The Count property of the Items collection can be used to determine the

number of items in the list. This can be done by using Items.Count

property.

Example:

By clicking the Count Fruits button, the Message Dialog showing the value

will be displayed (Refer 4.27).

Figure 4.27: Message Dialog Appear Total Items in a List

4.7.3.4 Removing Item from a List

Individual items can remove from a list, by specifying either the index

of the item or the text of the item. Use the Items.RemoveAt method to

remove an item by index and the Items.Remove method to remove by

specifying the text.

113

Examples:

lstStudent.Items.RemoveAt(0)

lstStudent.Items.Remove(“Syazana”)

4.7.3.5 Clearing a List

In addition to removing individual items at run time, you can also clear

all items from a list. Use the Items.Clear method to empty a combo box or

list box.

Example:

lstFruit.Items.Clear()

Table 4.14 summarizes the purpose of each of the following methods or

properties for a ListBox or ComboBox control.

Table 4.14: Purpose of Methods

Methods Explanation

Items.Count Stores the number of element in a list box or combo

box.

Items.Add Adds an element to a list at run time.

Items.Insert Adds an element to a list and inserts the element in

the chosen position (index).

Items.Clear Clear all elements from a list box or combo box.

Items.RemoveAt Removes an element from the list by referring to its

index.

Items.Remove Removes an element from a list by looking for a given

string.

114

Activities

1. Indicate whether each of the following identifiers conforms to the rules

of Basic and to the naming conventions. If the identifier is invalid, give

the reason.

(a) Omitted (d) strSub

(b) Int#Sold (e) Text

(c) Int Number Sold (f) decMaximumCheck

2. Write a declaration for the following situations. In your declaration, make

up an appropriate variable identifier.

(a) You need variables for payroll processing to store the following:

 Number of hours, which can hold a decimal point.

 String employee’s name.

 Department number (not used in calculations).

(b) You need variable for inventory control to store the following:

 Integer quantity.

 Description of the item.

 Part number.

 Cost.

 Selling price.

3. Write the declarations (Dim or Const statements) for each of the

following situations and indicate where each statement will appear.

(a) The total of the payroll that will be needed in a Calculate event

procedure and in a Summary event procedure.

(b) The sales tax rate that cannot be changed during execution of the

program but will be used by multiple procedures.

115

(c) The number of participants that are being counted in the Calculate

event procedure, but not displayed until the Summary event

procedure.

4. What will be the result of the following calculations using the order of

precedence? Assume that intX = 2, intY = 4, intZ = 3.

(a) intX + intY ^ 2

(b) 8 / intY / intX

(c) intX * (intX + 1)

(d) intY ^ intX + intZ * 2

(e) ((intY ^ intX) + intZ) * 2

5. Put two textboxes on your form. The first box asks users to enter a start

position for a For Loop; the second textbox asks user to enter an end

position for the For loop. When a button is clicked, the programme will

add up the numbers between the start position and the end position.

Display the answer in a message box. You can use this For Loop code

For i = startNumber To endNumber

 answer = answer + i

Next i

Get the startNumber and endNumber from the textboxes.

6. When should you use Try/Catch blocks? Why?

116

References

1. N. Randolph and D. Gardner, 2009. Professional Visual Studio 2008,

Wiley Publishing.

2. J.C. Bradley and A.C. Millspaugh, 2005. Programming in Visual

Basic .NET, McGraw Hill Technology Education.

3. D.I. Schneider, 2006. An Introduction to Programming Using Visual

Basic 2005. Prentice Hall.

4. VB.Net Programming Tutorial available at

https://www.tutorialspoint.com/vb.net/

5. Variable and Method Scope in Microsoft .NET. retrieved from

https://msdn.microsoft.com/en-us/library/ms973875.aspx

https://www.tutorialspoint.com/vb.net/

117

TOPIC 5

WEB APPLICATION DEVELOPMENT

Learning Outcome

At the end of this topic, student should be able to:

1. Describe ASP.NET Web Forms with its features, and

2. Design a web page and develop a web application

Content

5.1 Introduction

A dynamic web application consists of either or both of the following

two types of programs:

i. Server-side scripting - these are programs executed on a web

server, written using server-side scripting languages like ASP

(Active Server Pages) or JSP (Java Server Pages).

ii. Client-side scripting - these are programs executed on the

browser, written using scripting languages like JavaScript,

VBScript, etc.

ASP.Net is the .Net version of ASP, introduced by Microsoft, for creating

dynamic web pages by using server-side scripts. ASP.Net applications are

compiled codes written using the extensible and reusable components or

objects present in .Net framework. These codes can use the entire hierarchy

of classes in .Net framework. The ASP.Net application codes could be written

in either of the following languages: Visual Basic .Net, C#, Jscript or J#.

118

In this chapter, we will give a very brief introduction to writing ASP.Net

applications using VB.NET.

5.2 ASP.NET Web Forms

ASP.NET Web Forms is a part of the ASP.NET web application

framework and is included with Visual Studio. ASP.Net provides Web

Forms programming models enables to create the user interface and the

application logic that would be applied to various components of the user

interface The Visual Studio Integrated Development Environment (IDE) is

almost same as you have already used for creating the Windows

Applications. It let drag and drop server controls to lay out a Web Forms

page. The properties, methods, and events can easily set for controls on the

page or for the page itself. These properties, methods, and events are used

to define the web page's behavior, look and feel, and so on. To write server

code to handle the logic for the page, VB. Net language cab be used.

Web Forms are pages that your users request using their browser.

These pages can be written using a combination of HTML, client-script,

server controls, and server code. When users request a page, it is compiled

and executed on the server by the framework, and then the framework

generates the HTML markup that the browser can render. An ASP.NET Web

Forms page presents information to the user in any browser or client device.

Web forms consists of user interface and application logic. User

interface consists of static HTML or XML elements and ASP.Net server

controls. When you create a web application, HTML or XML elements and

server controls are stored in a file with .aspx extension. This file is also called

the page file. While, the application logic consists of code applied to the user

interface elements in the page. You write this code in any of .Net language

like, VB.Net, or C#.

119

5.2.1 Features of ASP.NET Web Forms

Basics features of ASP.Net Web Forms as below:

i. Server Controls - ASP.NET Web server controls are objects on

ASP.NET Web pages that run when the page is requested and that

render markup to the browser. Many Web server controls are similar to

familiar HTML elements, such as buttons and text boxes. Other

controls encompass complex behavior, such as a calendar controls,

and controls that you can use to connect to data sources and display

data.

ii. Master Pages - ASP.NET master pages allow you to create a

consistent layout for the pages in your application. A single master

page defines the look and feel and standard behavior that you want for

all of the pages (or a group of pages) in your application. You can then

create individual content pages that contain the content you want to

display. When users request the content pages, they merge with the

master page to produce output that combines the layout of the master

page with the content from the content page.

iii. Working with Data - ASP.NET provides many options for storing,

retrieving, and displaying data. In an ASP.NET Web Forms application,

you use data-bound controls to automate the presentation or input of

data in web page UI elements such as tables and text boxes and drop-

down lists.

iv. Membership - ASP.NET Identity stores your users’ credentials in a

database created by the application. When your users log in, the

application validates their credentials by reading the database. Your

project's Account folder contains the files that implement the various

parts of membership: registering, logging in, changing a password, and

authorizing access. Additionally, ASP.NET Web Forms supports OAuth

and OpenID. These authentication enhancements allow users to log

into your site using existing credentials, from such accounts as

120

Facebook, Twitter, Windows Live, and Google. By default, the template

creates a membership database using a default database name on an

instance of SQL Server Express LocalDB, the development database

server that comes with Visual Studio Express 2013 for Web.

v. Client Script and Client Frameworks - You can enhance the server-

based features of ASP.NET by including client-script functionality in

ASP.NET Web Form pages. You can use client script to provide a

richer, more responsive user interface to users. You can also use client

script to make asynchronous calls to the Web server while a page is

running in the browser.

vi. State Management - ASP.NET Web Forms includes several options

that help you preserve data on both a per-page basis and an

application-wide basis.

vii. Debugging and Error Handling - ASP.NET includes features to help

you diagnose problems that might arise in your Web Forms

application. Debugging and error handling are well supported within

ASP.NET Web Forms so that your applications compile and run

effectively.

viii. Deployment and Hosting - Visual Studio, ASP.NET, Azure, and IIS

provide tools that help you with the process of deploying and hosting

your Web Forms application.

5.2.2 Advantages of a Web Forms-Based Web Application

The Web Forms-based framework offers the following advantages:

i. Support event model on the Hypertext Transfer Protocol (HTTP) which

is provides hundreds of events that compatible in a lot of server control

ii. It has a mechanism to control pages (Page Controller Pattern) which is

provide the functionality to single pages.

121

iii. It make easier to manage state information based on server based

form or view state

iv. Not requires many programmer and designer to develop web project

because it has the advantage of rapid application development

5.3 Creating a Web Application Project and a Page

 An ASP.NET application, you must have a Web browser: Microsoft

Internet Explorer or another browser, such as Chrome and a Web server:

That is, a computer that is running IIS. This can be the computer you are

developing on or any remote computer that you can connect to. A means to

connect to the Web server.

To create a web application project, open Visual Studio. On the File

Menu, select New Project. AT the New Project Dialog as Figure 5.1, Select

ASP.NET Web Application.

Figure 5.1: New Project Dialog Box to Create Web Application

122

Visual Studio creates a new project that includes prebuilt functionality

based on the Web Forms template. It not only provides you with

a Default.aspx page, an About.aspx page, but also includes membership

functionality that registers users and saves their credentials so that they can

log in to your website. When a new page is created, by default Visual Studio

displays the page in Design view (Figure 5.2). Unlike a Windows form, a web

page can have text added directly to it when it is in the Web Page Designer.

In Design mode, developer can add any controls like design in windows

application such as, label, text box and button to appear at the web page.

Program code also can be written for the controls (Figure 5.3) as windows

application.

Figure 5.2: Design View of Web Page

123

Figure 5.3: VB Code for Web Application

The HTML in Source view (Figure 5.4), where you can see the page's

HTML elements. The illustration shows what you would see in Source view if

you created a new Web page named Default.aspx.

Figure 5.4: Source View of Web Page

124

To run the page, in Solution Explorer, right-click Default.aspx and

select Set as Start Page. Then, press CTRL+F5 to run the page. The page is

displayed in the browser (Figure 5.5). Although the page you created has a

file-name extension of .aspx, it currently runs like any HTML page. To display

a page in the browser you can also right-click the page in Solution

Explorer and select View in Browser. Close the browser to stop the Web

application.

Figure 5.5: Page Is Displayed In the Browser

Activities

1. What is Web Form?

2. List Advantages of using Web forms?

References

1. Erik Reitan, 2014. Creating a Basic ASP.NET 4.5 Web Forms Page in

Visual Studio 2013. Retrieved from https://www.asp.net/web-

forms/overview/getting-started/creating-a-basic-web-forms-page

125

TOPIC 6

ACCESSING DATABASE USING ADO.NET

Learning Outcome

At the end of this topic, student can:

1. Describe database terminologies

2. Describe ADO.NET Object Model

3. Perform connection between VB application to Database

4. Manipulate Database records using insert, delete, edit and search

operations.

Content

6.1 Introduction

Applications communicate with a database, firstly, to retrieve the data

stored there and present it in a user-friendly way, and secondly, to update the

database by inserting, modifying and deleting data.

The technology used to interact with a database or data source is

called ADO.NET. The Microsoft ActiveX Data Objects.Net (ADO. NET) is a

model, a part of the .Net framework that is used by the .Net applications for

retrieving, accessing and updating data.

In ADO.NET the databases are connected first, then a copy of the

database is stored in the memory immediately the connection to the database

is disconnected. Database is connected only if any changes made to the copy

of the database need to be updated to the database itself.

126

ADO.net classes are contained in the 'System.Date' namespace.

Following are some of the important classes used in ADO.NET which are

Connection, Command, DataAdapter, DataReader and DataSet.

6.2 Database Terminologies

A relational database is a collection of one or more tables of

information that relate to each other in some way. Basic database

terminologies describe in Table 6.1.

Table 6.1: Basic Database Terminologies

Terminology Definition

Database A special repository - consists of one or more physical files -
used to store and retrieve data

Table An object consists of rows and columns. Its looks like a
spreadsheet

Row/ record A record(details of a single entity

Column/field An attribute or character of entity

Key Column
(Field)

Uniquely identifies a row in a table eliminates the occurrence
of duplicate rows.

Primary key Column as key to ensure that each row in the table is unique

Composite
key

Two or more columns to be joined together to make up the
primary key for a table.

Foreign key Used to relate two tables.

6.3 ADO.Net Object Model

The ADO.NET is about a software component provided by Microsoft in

order to make easier for developers to make an access the data services

from database. It was constructed based on class library by Microsoft .NET

127

Framework. Figure 6.1 has illustrated .NET Framework which is included the

component of ADO.NET and it serve to the components in .NET Framework.

Figure 6.1: ADO.NET Architecture

The objective of ADO.NET is to bring a connection between objects in

ASP.NET the back end database. ADO.NET offers an object-oriented view

into the database, encapsulating many of the database properties and

relationships within ADO.NET objects. Furthermore, and in many ways most

important, the ADO.NET objects encapsulate and hide the details of database

access; your objects can interact with ADO.NET objects without knowing or

worrying about the details of how the data is moved to and from the database.

ADO.Net object model is nothing but the structured process flow

through various components. The object model can be pictorially described

as Figure 6.2. The data residing in a data store or database is retrieved

through the data provider. Various components of the data provider retrieve

data for the application and update data. An application accesses data either

through a dataset or a data reader. Table 6.1 show descriptions for each

object model.

128

Figure 6.2: ADO.NET Object Model

Table 6.1: ADO.NET Object Model

ADO.NET Objects
Model

Description Created
at

DataAdapter (brains
behind the DataSet)

(For example:
SQLDataAdapter and
OleDbDataAdapter)

This is integral to the working of ADO.NET
since data is transferred to and from a
database through a data adapter. It retrieves
data from a database into a dataset and
updates the database. When changes are
made to the dataset, the changes in the
database are actually done by the data
adapter. It is used to translate your requests
into the language the database uses.

Design
time or at
run time

Command object
(For example:

SQLCommand and
OleDbCommand)

It is a SQL statement or a stored procedure
used to retrieve, insert, delete or modify data
in a data source.

Design
time or at
run time

129

DataReader It uses a Command object to retrieve data

one row at a time. It is very efficient because
there is only one buffered row at a time in
memory. But, cannot be used to update
data in a database because it is read-only.

Run time.

DataSet It is a memory-resident representation of the
data that is passed to it by the DataAdapter.

It can represent a complete set of data,
including tables, constraints, and
relationships between the tables.

Design
time
(typed
DataSet)

or at run
time
(untyped
DataSet)

The Connection
Object

(SQLConnection, or
OleDb-

Connection)

Allows you to connect to a database by
setting a connection string that specifies the
name of the server (Data Source) and the
database (Initial Catalog).

Design
time or at
run time

DataAdapter Object
(SQLDataAdapter, or
OleDbDataAdapter,)

Used to pass data to and from the
database.It has the ability to retrieve, update,
insert, and delete data in the database
through the use of Command objects.

- Fill method of the DataAdapter is used to

populate the dataset with the selected data.
- Update method of the DataAdapter is used to

permanently update the database with the
changes made in the dataset

Design
time or at
run time

6.3.1 Database Provider

A data provider is used for connecting to a database, executing

commands and retrieving data, storing it in a dataset, reading the retrieved

data and updating the database. There are basic types of data providers

included in ADO.NET:

i. SQL Server - provides access to Microsoft SQL Server or others.

ii. for OLE DB - provides access to data sources exposed by using OLE

DB.

130

6.3.2 Dataset

DataSet is an in-memory representation of data. It is a

disconnected, cached set of records that are retrieved from a database.

When a connection is established with the database, the data adapter creates

a dataset and stores data in it. After the data is retrieved and stored in a

dataset, the connection with the database is closed. This is called the

'disconnected architecture'. The dataset works as a virtual database

containing tables, rows, and columns.

6.4 Connecting to a Database

VB.Net allows you many ways to connect to a database or a data

source. The .Net Framework provides two types of Connection classes:

i. SqlConnection - designed for connecting to Microsoft SQL Server.

ii. OleDbConnection - designed for connecting to a wide range of

databases, like Microsoft Access and Oracle.

To create VB application connect with database can be set using connection

object.

6.4.1 Use Connection Object

ADO.NET offers a number of connection objects such

as OleDbConnection, SqlConnection and more. OleDbConnection is used

to access OLEDB data such as Microsoft Access while SqlConnection is

used to access data provided by Microsoft SQL server. To initialize a new

Connection object and to establish a connection to the data source using

the ConnectionString property consist:

i. Declaring of a variable which hold the Connection Object

131

ii. Calling Data Provider (technology used to do the connecting)

iii. Specifying Data Source (database file and location of database)

For example if the OLE DB objects of data provider use “Jet”. Then, the name

of the Access file we want to connect to is called AddressBook.mdb. (Note

that "Data Source" is two words, and not one.) and its the database is on the

C drive, in the root folder.

Dim con As New OleDb.OleDbConnection

con.ConnectionString = _

"PROVIDER=Microsoft.Jet.OLEDB.4.0;"dbProvider &_

"Data Source = C:/AddressBook.mdb"

Another example if using a SQL Server database. If the SQL server name is

PC123 as well as the path to database file is C:\Program Files\Microsoft

SQL Server\ MSSQL\Data\Test.mdf and the program code as below:

Dim MyConnection As New SqlConnection

MyConnection.ConnectionString = "Data Source=PC123;_

AttachDbFilename=C:\Program Files\Microsoft SQLServer_

MSSQL\Data\Test.mdf;” &_User Instance=True;Integrated

Security= SSPI”

To use ADO.NET classes and to access Microsoft Acccess databases, write
System.Data.OleDb namespace for using OleDb Connection, OleDb Data

Adapter, OleDb Command and OleDb Parameter.

While, to access SQL Server databases, write System.Data.SqlClient

namespace for using Sql Connection, SQL Data Adapter, SqlCommand and
SqlParameter.

After set the connection and when you are returned to your form, you

should notice your new Data Source has been added as Figure 6.3.

132

Figure 6.3: New Data Source

The Data Sources area of the Solution Explorer (or Data Sources tab on the

left) now displays information about your database. Click the plus symbol

(arrow symbol in version 2012/13) next to tblContacts. All the Fields in the

Address Book database are now showing as Figure 6.4.

Figure 6.4: All the Fields in the Address Book database

133

6.5 View Data in DataGridView Control

To view data in DataGridView Control, add a DataGridView on the

form. Then, click on the Choose Data Source combo box and click on the Add

Project Data Source link as Figure 6.5.

Figure 6.5: Create Data Grid View onto a Form

Select Database (or Dataset) and click Next. You’ll then see a screen with a

Dataset item. Select this and click Next. Then, a Choose Your Data

Connection screen will appear. Save the connection string.

134

Figure 6.6: Choose Database in order to Create a Connection

Figure 6.7: Set Name of Connection String

135

Choose the database object, Customers table in our example, and click the

Finish button.

Figure 6.8: Choose Database Object

Select the Preview Data link to see the data in the Results grid:

136

Figure 6.9: Preview Data link to see the Data in the Results Grid

When the application is run using Start button available at the Microsoft

Visual Studio tool bar, it will show the window as Figure 6.10.

Figure 6.10: Data from Database Appear in the Form

137

6.5 Manipulate Database Records

SQL (Structured Query Language) is used to retrieve and update data

in a database table. Although SQL provides a number of powerful statements

for accessing and manipulating data, we will be using the four basic

statements, which are SELECT, UPDATE, INSERT, and DELETE. When

setting up the DataAdapter, you created a SELECT statement. From this

statement, the Data Adapter Configuration Wizard was able to create the

other statements.

As conclusion, programmer layer – build commands (SELECT,

INSERT, DELETE, and UPDATE) for execution against the database. Logical

layer – uses a DataAdapter to send commands from your software (across

the data adapter) to the database getting back tables to be processed.

Physical layer – manages the actual (physical) execution of the commands on

the database.

Activities

1. Identify basic database terminology in the table below:

2. What are the advantages of storing information in a relational

database?

3. What is the purpose of defining a primary key for a table?

i.

ii.

138

4. Describe a one-to-many relationship between two tables.

5. How do the connected and disconnected data access models differ?

6. List the ADO.NET Data Provider objects.

7. How is binding used in Visual Basic .NET applications?

8. What objects are used to move through the rows of the DataTable

object and keep the data in the bound controls synchronized?

References

1. Erik Reitan, 2014. Creating a Basic ASP.NET 4.5 Web Forms Page

in Visual Studio 2013. Available at https://www.asp.net/web-

forms/overview/getting-started/creating-a-basic-web-forms-page

TOPIC 7

EFFECTIVE AND SECURE CODING

Learning Outcome

At the end of this topic, student can:

1. List types of input validation

2. Apply input validation in windows application

3. Apply web page validation for web application

4. Describe concept and purpose if exception handling

5. List types of exception and apply it in application development

Content

139

7.1 Input Validation

Validation is an easy way of requiring input in a specific text box

without much hassle. Advantages for input validation will:

i. Prevent user from submitting blank values.

ii. Prevent user from circumventing your validation by pasting text

7.1.1 TryParse Method for Input Validation

TryParse Method used to set the textbox to only allow or accept

specific data type (e.g: numbers) to be entered. TryParse parse a string into

a value for a specific type {T} but not does that but returns a Boolean

(True/False) value to indicate that parsing produce a valid value. Note that it

doesn't return the value as the function return type, but passes it back via the

referenced variable supplied as the argument for the result parameter.

The basic pattern for .TryParse is a following, where {T} is replaced by the

type as template code at Figure 7.1.

Dim Value As {T} = Nothing

If {T}.TryParse(Text , Value) Then

 ' Is a valid parse and thus a valid value.

Else

 ' Not Valid

End If

Figure 7.1: Template code for .TryParse Method

A lot of the type that parses a string input into a value provides a .TryParse

method such as: Integer, Double, Int32, Date, DateTime.

Example:

First validate if the input is actually an integer with Integer.TryParse:

Dim intValue As Integer

If Not Integer.TryParse(TxtBox.Text, intValue)_

 OrElse intValue < 1 OrElse intValue > 10 Then

140

 MessageBox.Show("Please Enter a Number from 1 to 10")

Else

 MessageBox.Show("Thank You, your rating was " & TxtBox.Text)

End If

Figure 7.2: An Example for Input Validate with Integer.TryParse

Method

7.1.2 Use the TextBox.TextChanged Event

Use the TextBox.TextChanged event to catch it whether they type or

paste the numbers in.

Example:

Allow the use of 1 decimal point in the number but, if only want whole

numbers then you can change it a little to get that result (See Figure 7.3).

Public Class frmTestInput

 Dim tt As New ToolTip With {.IsBalloon = True}

 Private Sub txtNumber_TextChanged(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles txtNumber.TextChanged

 Dim dp As Integer = 0

 For Each ch As Char In TextBox1.Text

 If ch = "." Then dp += 1

 If (Not Char.IsDigit(ch) And Not ch = ".")Or dp > 1 Then

 TextBox1.Clear()

 tt.Show("Please Enter Valid Numbers Only",_

 TextBox1, New Point(0, -40), 4000)

 End If

 Next

 End Sub

End Class

Figure 7.3: An Example Input Validation using TextBox.TextChanged

Method

7.2 Exceptions Handling

Runtime errors are a lot harder than Design Time errors to track

down. As their name suggests, these errors occur when the programme is

141

running. Runtime errors are the ones that crash your programme. VB.NET

has a inbuilt class that deals with errors. The Class is called Exception.

When an exception error is found, an Exception object is created.

When you allow users to input numbers and use those numbers in

calculations, lots of things can go wrong. The conversion functions, CInt and

CDec, fail if the user enters nonnumeric data or leaves the text box blank. Or

your user may enter a number that results in an attempt to divide by zero.

Each of those situations causes an exception to occur, or as programmers

like to say, throws an exception. You can easily catch program exceptions

by using VB .NET’s new structured exception handling. You catch the

exceptions before they can cause a run-time error and handle the situation, if

possible, within the program. Catching exceptions as they happen is

generally referred to as error trapping, and coding to take care of the

problems is called error handling. The error handling in Visual Studio .NET

is standardized for all of the languages using the Common Language

Runtime, which greatly improves on the old error trapping in previous

versions of VB. As conclusion, the purpose of exception handling is to

isolate specific code statements or blocks of code and catch any exception

that is thrown as a result of an error.

7.2.1 Exception Keywords

VB.Net exception handling is built upon 4 keywords:

Try, Catch, Finally and Throw (Refer Table 7.1).

Table 7.1: Keywords Used For Handling Exception

Keywords Description

Try

A Try block identifies a block of code for which particular exceptions will

be activated. It's followed by one or more Catch blocks.

Catch A program catches an exception with an exception handler at the place

142

in a program where you want to handle the problem. The Catch

keyword indicates the catching of an exception.

Finally The Finally block is used to execute a given set of statements, whether

an exception is thrown or not thrown. For example, if you open a file, it

must be closed whether an exception is raised or not.

Throw A program throws an exception when a problem shows up. This is done

using a Throw keyword.

 To apply exception handling, assuming a block will raise an exception,

a method catches an exception using a combination of the Try and Catch

keywords. Then, a Try/Catch block is placed around the code that might

generate an exception.

Syntax:

To trap or catch exceptions, enclose any statement(s) that might cause

an error in a Try/Catch block. If an exception occurs while the statements in

the Try block are executing, then program control transfers to the Catch

block; if a Finally statement is included, the code in that section executes

last, whether or not an exception occurred.

Example:

Try

143

 intQuantity = CInt(txtQuantity.Text)

 lblQuantity.Text = CStr(intQuantity)

Catch

 lblMessage.Text = “Error in input data.”

End Try

The Catch as it appears in the preceding example will catch any exception.

You can also specify the type of exception that you want to catch, and even

write several Catch statements, each to catch a different type of exception.

For example, you might want to display one message for bad input data and a

different message for a calculation problem. To specify a particular type of

exception to catch, you can use one of the predefined exception classes,

which are all based on, or derived from, the SystemException class.

To catch bad input data that cannot be converted to numeric, write this Catch

statement:

Catch MyErr As InvalidCastException

 lblMessage.Text = “Error in input data.”

7.2.2 Types of Exceptions

In the .Net Framework, exceptions are represented by classes. Table

7.2 shows some of the common exception classes. Each exception is an

instance of the Exception class. The properties of this class allow you to

determine the code location of the error, the type of error, and the cause. The

Message property contains a text message about the error, and the Source

property contains the name of the object causing the error. The StackTrace

property can identify the location in the code where the error occurred. You

can include the text message associated with the type of exception by

specifying the Message property of the Exception object, as declared by the

variable you named on the Catch statement.

Table 7.2: Common Exception Classes

Exception Class Descriptions

144

FormatException Failure of a numeric conversion, such as

Integer.Parse or Decimal.Parse.

Usually blank or nonnumeric data.
System.IO.IOException(e.g:

System.IO.FileNotFoundException)
Handles Input Output Errors (for
example: Try to open file that not exist)

System.IndexOutOfRangeException Handles errors generated when a
method refers to an array index out
of range.

System.ArrayTypeMismatchException Handles errors generated when type

is mismatched with the array type
System.ArithmeticException(e.g:

System.DivideByZeroException,

System.OverflowException)

Handles errors generated from
arithmetic calculation, such as division by
zero or overflow of a variable.

System.InvalidCastException Handles errors generated during
typecasting. For example: Failure of a
conversion function, such as CInt or

CDec. Usually blank or nonnumeric data.
System.OutOfMemoryException Handles errors generated from

insufficient free memory.E.g: Not
enough memory to create an object.

Exception Generic exception

Be aware that the messages for exceptions are usually somewhat

terse and not oriented to users, but they can sometimes be helpful.

For example:
Catch MyErr As InvalidCastException

 lblMessage.Text = “Error in input data: ” & MyErr.Message

7.2.3.1 Arithmetic Exception

A simple way to crash a programme is divided a number by zero. Try this

code for a button:

Dim Num1 As Integer

Dim Num2 As Integer

Num1 = 10

Num2 = 0

txtDivide.Text = CInt(Num1 / Num2)

But run the programme and test it out. Click the button and the error message

will popping up in Visual Studio Express 2010 (Figure 7.4):

145

Figure 7.4: OverflowException Message Box (VS Express 2010)

In version 2012/13, the error message (the 2010 version seems more helpful,

and better designed) will appear in Figure 7.5:

Figure 7.5: OverflowException Message Box

Click the Break button, and then stop the programme from running.

When trying to divide by zero, VB.NET throws up the Overflow error

message - there would be just too many zeros to go into the Integer variable

type. Even if you change the Type into a Single or a Double, you'd still get

the same error message.

146

7.2.3.2 Input Output Exception

An example how input output exception will happen. From the controls

toolbox, add a RichTextBox control to a form. Change the Name property of

yourRichTextBox to rt1. A RichTextBox is just like a normal textbox but with

more functionality. Delete or comment out any code for a button, and add the

following line:

rt1.LoadFile("C:\test10.txt",

RichTextBoxStreamType.PlainText)

However, for Windows 7 then change the file name above to this:

"C:\Users\Owner\Documents\test10.txt"

All the line does is to load (or try to) the text file called "test10.txt" into

the RichTextBox. The second argument just specifies that the type of file we

want to load is a Plain Text file. Run the programme, and then click the

button. If a text file called "test10.txt" is not exist in the root folder of

your C drive, you'll get the following Runtime error message (refer Figure 7.6

for version 2010 of Visual Studio Express). In version 2012/13, the same

information can be seen in the first line: "An unhandled exception of

type 'System.IO.FileNotFoundException' occurred in

mscorlib.dll".

Figure 7.6: FileNotFoundException Message Box

147

Click the View Details links under Actions to see the Figure 7.7. The

additional information is quite useful this time. It's saying that the file

"C:\test10.txt" could not be found. If the error occurred in a normal

programme, it would shut down.

Figure 7.7: Details of Exception FileNotFoundException

The coding structure VB.NET uses to deal with such Exceptions is called the

Try … Catch structure and should look like this:

148

The Try word means "Try to execute this code". The Catch word

means "Catch any errors here". The ex is a variable, and the type of

variable it is an Exception object. Because ex is an object variable, it now has

its own Properties and methods. One of these is the Message property.

When run this programme, VB will try to execute any code in the Try part. If

everything goes well, then it skips the Catch part. However, if an error

occurs, VB.NET jumps straight to Catch. Run the programme and test it out.

Click your button. You should see the following error message:

Figure 7.8: Message Box

From Figure 7.7, the first line tells us the Type of Exception it is:

System.IO.FileNotFoundException

It can be added directly to the catch part. Previously, it just catching any error

that might be thrown:

Catch ex As Exception

But if a "file not found" error might be thrown is known, add that to the Catch

line, instead of Exception:

Catch ex As System.IO.FileNotFoundException

There is one last part of the Try … Catch Statement that VB.NET doesn't

add - Finally:

Try

Catch ex As Exception

Finally

End Try

149

The Finally part is always executed, whether an error occurs or not. You

typically add a Finally part to perform any cleanup operations that are

needed. For example, you may have opened a file before going into a Try …

Catch Statement. If an error occurs, the file will still be open. Whether an

error occurs or not, you still need to close the file. You can do that in

the Finally part. But Microsoft advice that you always use Try …

Catch Statements in your code.

7.2.3.3 Handling Multiple Exceptions

To trap for more than one type of exception, multiple Catch blocks

(handlers) can be included. When an exception occurs, the Catch

statements are checked in sequence. The first one with a matching exception

type is used.

Catch MyErr As InvalidCastException

 ‘Statements for non numeric data

Catch MyErr As ArithmeticException

 ‘Statements for calculation problem

Catch MyErr As Exception

 ‘Statements for any other exception

The last Catch will handle any exceptions that do not match either of the first

two exception types. Note that it is acceptable to use the same variable name

for multiple Catch statements.

Activities

1. When should you use Try/Catch blocks? Why?

2. Give an example caused of each types of exception.

References

150

1. https://www.tutorialspoint.com/vb.net/vb.net_exception_handling.htm

