Nizam, Yoosuf and Haji Mohd, Mohd Norzali and Abdul Jamil, Muhammad Mahadi (2018) Development of a user-adaptable human fall detection based on fall risk levels using depth sensor. sensors, 18 (7). pp. 1-14. ISSN 1424-8220
Text
AJ 2018 (364).pdf Restricted to Registered users only Download (3MB) | Request a copy |
Abstract
Unintentional falls are a major public health concern for many communities, especially with aging populations. There are various approaches used to classify human activities for fall detection. Related studies have employed wearable, non-invasive sensors, video cameras and depth sensor-based approaches to develop such monitoring systems. The proposed approach in this study uses a depth sensor and employs a unique procedure which identifies the fall risk levels to adapt the algorithm for different people with their physical strength to withstand falls. The inclusion of the fall risk level identification, further enhanced and improved the accuracy of the fall detection. The experimental results showed promising performance in adapting the algorithm for people with different fall risk levels for fall detection.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | falls; human fall; assistive living; daily activities; fall risk level |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA166-167 Human engineering |
Divisions: | Faculty of Electrical and Electronic Engineering > Department of Electronic Enngineering |
Depositing User: | UiTM Student Praktikal |
Date Deposited: | 22 Nov 2021 03:57 |
Last Modified: | 22 Nov 2021 03:57 |
URI: | http://eprints.uthm.edu.my/id/eprint/3820 |
Actions (login required)
View Item |