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ABSTRACT 

 

 

 

Depth estimation of an object or a scene are used for the purpose of motion detection, 

obstacle detection, positioning, depth mapping, or 3D shape recovery. These 

capabilities can be applied in home, industry, medical, education and other areas of 

applications. There are different types of depth sensor based on different technology, 

which suit different kinds of applications. Depth sensors can be divided into active 

sensor that emits out energy signal and passive sensor that does not require emission 

of energy signal. Camera-based depth sensor such as stereo camera and monocular 

camera are passive sensor. Hence, they do not have external or mutual interference 

problem, no emission hazard, better object detectability, while having the advantage 

of visual information. Compared to monocular camera, depth sensing with stereo 

camera vision has longer depth range. However, stereo camera faces challenges from 

occlusion, radiometric distortion, depth discontinuity, homogenous regions, false 

boundary problem, and reflection issues. Depth estimation with monocular camera 

uses images acquired at different focus settings. This can be achieved by varying the 

lens’ position or the lens’ optical power. Past works on depth sensing with variable 

focus mechanically actuates the lens position. The moving of the lens position results 

in change of field of view or magnification in the images, a phenomenon known as 

lens breathing. Image stacks acquired with linear actuator lens needs to be aligned 

before being processed, which adds on the complexity of image alignment, 

processing time, and dependence on the accuracy of image alignment. The developed 

liquid lens monocular camera system for depth estimation showed successful depth 

estimation with depth from focus technique without the need for image alignment. 

Lens breathing is avoided by varying the thickness of the lens to change the focal 

length without affecting the field of view. This research characterises the liquid lens 

monocular camera for depth estimation of a moving object that utilizes liquid lens to 

eliminate lens breathing. The response time of the liquid lens monocular camera 

system to complete a successful image acquisition at each lens’ voltage change was 
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0.274 s. A function describing the relationship between the liquid lens’ voltage, 

liquid lens’ temperature and object distance is presented, based on experimental 

setup for object at 1 m to 8 m distance. In the second research studies, an object-

based focus measure method based on the mean of sum of modified Laplacian (SML) 

of the edge and texture features of an object image area is presented. In the third 

research work, an automated depth estimation using liquid lens camera system is 

proposed. Based on the experiment for object distance range of 1 m to 8 m with 

depth resolution of 1 m and 1.5 m, the root-mean-square error (RMSE) for depth 

estimation of static object was 21%. Depth estimation of moving object shows 

standard deviation of the steady-state error of 0.78 m and the RMSE was 1.2 m. The 

estimated speed of the moving object was 0.47 m/s. Based on the results, the method 

accurately estimated depth for static object distance of 1 m to 5 m and for moving 

object was 1 m to 4 m.   

  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vii 
 

 

 

 

ABSTRAK 

 

 

 

Anggaran kedalaman sesuatu objek atau pemandangan digunakan untuk tujuan 

pengesanan gerakan, pengesanan halangan, penentuan posisi, pemetaan kedalaman, 

atau pemulihan bentuk 3D. Keupayaan ini dapat diterapkan dalam rumah, industri, 

perubatan, pendidikan dan sudut aplikasi lain. Terdapat pelbagai jenis sensor 

kedalaman berdasarkan teknologi yang berbeza untuk jenis aplikasi yang berlainan. 

Sensor kedalaman boleh dibahagikan kepada sensor aktif yang mengeluarkan isyarat 

tenaga dan sensor pasif yang tidak memerlukan pancaran isyarat tenaga. Sensor 

kedalaman yang berasaskan kamera seperti kamera stereo dan kamera monokular 

merupakan sensor pasif. Oleh itu, mereka tidak mempunyai masalah gangguan 

luaran atau bersama, tidak ada pancaran berbahaya, pengesanan objek yang lebih 

baik, sementara mempunyai kelebihan maklumat visual. Pengesanan kedalaman 

dengan visi kamera stereo mempunyai jarak kedalaman yang lebih panjang 

berbanding dengan kamera monokular. Walau bagaimanapun, kamera stereo 

menghadapi cabaran dari halangan, herotan radiometrik, ketakselanjaran kedalaman, 

sudut homogen, masalah sempadan palsu serta masalah pantulan. Anggaran 

kedalaman dengan kamera monokular menggunakan imej yang diperoleh pada 

tetapan fokus yang berbeza. Ini dapat dicapai dengan mengubah kedudukan lensa 

atau kekuasaan optik lensa. Kajian yang terdahulu dalam pengesanan kedalaman 

dengan fokus berubah secara mekanikal menggerakkan kedudukan lensa. Pergerakan 

kedudukan lensa mengakibatkan perubahan sudut pandangan atau pembesaran pada 

imej adalah fenomena yang dikenali sebagai lens breathing. Tumpukan imej yang 

diperoleh dengan lensa penggerak linear perlu diselaraskan sebelum diproses. Ini 

menambah kerumitan penjajaran imej, masa pemprosesan, dan pergantungan pada 

ketepatan penjajaran imej. Sistem kamera monokular lensa cecair yang 

dikembangkan untuk anggaran kedalaman menunjukkan anggaran kedalaman yang 

berjaya dengan kedalaman dari teknik fokus tanpa memerlukan penjajaran imej. Lens 

breathing dielakkan dengan mengubah ketebalan lensa untuk mengubah panjang 
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fokus tanpa menjejaskan sudut pandangan. Penyelidikan ini mencirikan kamera 

monokular lensa cecair untuk anggaran kedalaman objek bergerak yang 

menggunakan lensa cecair untuk mengelakkan lens breathing. Masa tindak balas 

sistem kamera monokular lensa cecair untuk melengkapkan pemerolehan imej yang 

berjaya pada setiap perubahan voltan lensa adalah 0.274 s. Fungsi yang 

menggambarkan hubungan antara voltan lensa cecair, suhu lensa cecair dan jarak 

objek dibentangkan adalah berdasarkan persediaan eksperimen untuk objek pada 

jarak 1 m hingga 8 m. Dalam kajian penyelidikan kedua, kaedah pengukuran fokus 

berasaskan objek berdasarkan purata keseluruhan Laplacian yang diubahsuai (SML) 

atas ciri-ciri tepi dan tekstur dari sudut imej objek ditunjukkan. Dalam karya 

penyelidikan ketiga, anggaran kedalaman automatik menggunakan sistem kamera 

lensa cecair dicadangkan. Berdasarkan eksperimen untuk jarak objek 1 m hingga 8 m 

dengan resolusi kedalaman 1 m dan 1.5 m, punca min ralat kuasa dua (RMSE) untuk 

anggaran kedalaman objek statik adalah 21%. Anggaran kedalaman objek bergerak 

menunjukkan sisihan piawai ralat keadaan mantap 0.78 m dan RMSE adalah 1.2 m. 

Anggaran kelajuan objek bergerak adalah 0.47 m / s. Berdasarkan hasilnya, kaedah 

mengira kedalaman dengan tepat untuk jarak objek statik 1 m hingga 5 m dan untuk 

objek bergerak adalah 1 m hingga 4 m.  
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CHAPTER 1      

           

           

          

INTRODUCTION 

 

 

 

1.1 Background 

 

Depth estimation is the estimation of depth of an object or a scene for the purpose of 

motion detection, obstacle detection [1], positioning [2], depth mapping [3], or 3D 

shape recovery [4]. These capabilities can be applied in automated home appliances, 

measuring tools, robotic application, human-computer interaction [5], manufacturing 

industry, entertainment, education, automotive [6], and others. There are different 

types of depth sensor based on different technology, which suit different kinds of 

applications. Applications can be categorized into different distance range such as 

short, mid or long range. Many short-range applications are indoors, and often 

having close contacts with human. It can be a single point depth sensor used for 

simple automated task such as dispensing water, lighting control, automotive parking 

system, indoor robot and others. It can also be used for depth measurement or 3D 

scanning application in industrial design, digitization of objects, medical, computer-

aided design, and indoor robotic mapping [7]. Mid-range and long-range depth 

estimation applications are mostly including outdoor robot [8], terrain mapping [9], 

automotive [6], aviation [10], marine traffic surveillance [11] and others.  

Depth sensors for depth estimation can be divided into active or passive 

sensors [12]. Active sensor emits out self-generated energy and the object reflects 

back the signal to the sensor. The sensor determines the object distance by analysing 

the reflected signal. Infrared, ultrasound, radar and Lidar are examples of an active 

sensor. On the other hand, passive sensor does not require to emit out any form of 

energy. Camera-based depth sensor such as stereo camera and monocular camera are 
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passive sensor. For this reason, camera-based depth sensor does not have the 

problem of being susceptible to interference of similar energy sources or pose health 

concern due to the emission of energy. Unlike other active sensor, camera-based 

depth sensor has the highest data density. The acquired monochrome or colour image 

data by the camera can also be used for object recognition [13] besides being used 

for depth estimation. This is not possible for other active depth sensors without the 

fusion of camera.  

 Many short-range applications are used indoor and often having close 

contacts with human. Examples of such applications are phones [18] [19], mobile 

devices [20], wearable computer for interface [21] [22], assistive wearable computer 

[23], computing ecology [24] [25], assistive robots [26] [27] [28] [29] and others. 

Such trend may increase in the future, as computer vision, machine learning and 

computing technology improves. Depth estimation with non-emitting solution will 

become an important option for such applications. Camera-based depth sensor 

provides such solution as it does not rely on emission of energy for depth sensing [30] 

[17].  Camera-based depth estimation using stereo camera or monocular camera does 

not rely on self-emitting energy signal, does not have external or mutual interference 

problem like an active sensor, and is similar to human’s visual modality. 

Camera-based depth estimation can be achieved using stereo camera and 

monocular camera. Compared to monocular camera, depth sensing with stereo 

camera vision has longer depth range [31]. However, by matching two images to 

obtain depth causes stereo camera to face challenge from occlusion [32] where some 

object area is not visible by either side of the camera. Research work is still being 

done to improve the occlusion solution [33] [34] [35]. The depth range in a stereo 

vision is proportional to the baseline distance of the two cameras and the focal length 

of the camera lens. However, increasing the baseline distance will increase the 

missing parts problem and decreasing the field of view [36]. Other challenges in 

stereo vision are radiometric distortion, depth discontinuity, homogenous regions 

[37], false boundary problem, and reflection issues [38]. On the other hand, depth 

sensing with monocular camera uses only one camera, avoiding occlusion problems 

and the correspondence matching problem that are faced in stereo camera [39]. 

Depth estimation with monocular camera is achieved by varying focus setting 

of a scene or object to determine the depth by analysing the change in focus value 

[40] [41]. Depth can be estimated by comparing the sharpness in the images [41] or 
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calculating the degree of blurring with the known camera parameters [40]. Images 

with different focus settings can be acquired with monocular camera by varying the 

lens’ position [40] [41] or the lens’ optical power [42] [43]. Current conventional 

type of lens used in monocular camera is the linear positioning lens or the lens-

motion-type, where the lens’ position is adjusted with an actuator for focusing. 

Several disadvantages of the linear positioning lens are the deterioration from 

mechanical movement, noise during operation, challenges in mass production, and 

design requiring several solid lenses to control wider focal length range [44]. With 

the increasing development of small portable devices and robots, the scalability of 

lens becomes an important challenge. Shrinking of linear positioning lens would 

limit the performance, complicate the process, and reducing the lifetime of the lens 

[44] [45]. On the other hand, the liquid lens is highly adaptable and scalable [45]. 

Due to the concept and design, liquid lenses are inexpensive, durable, quiet during 

operation, vibration insensitivity, high optical quality, and more suitable for the mass 

production and device packaging while exhibiting tunable focal lengths [44]. 

Another disadvantage of the linear positioning lens is the lens breathing [46]. Lens 

breathing occurs due to change in field view as the lens position is moved. The 

images acquired needs to be aligned before being processed. 

 

1.2 Problem statement 

 

Past works on depth sensing with variable focus are done by mechanically moving 

the lens position. The lens is made of solid transparent material such as glass, crystal 

or plastic. An example of a mechanically moving lens is the voice-coil-motor (VCM). 

The moving of the lens results in change of field of view or magnification in the 

image [18] [47]. This phenomenon is also known as lens breathing [46]. In DFF or 

DFD, image stacks acquired with linear actuator lens needs to be aligned before 

being processed. Several methods of pre-processing the images are scaling and 

translating [48], similarity transform [49], Optical flow [18], global homography-

based alignment [47] and others. This pre-processing adds on the complexity of 

image alignment, processing time, and dependence on the accuracy of image 

alignment.  
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This study develops and characterizes the liquid lens camera system for short-

range depth estimation of object. After which, a depth estimation with liquid lens 

camera system for a moving object can be developed. The performance of the liquid 

lens camera system will be analysed. 

 

1.3 Aim and objectives 

 

The aim of this research is to characterise liquid lens monocular camera for depth 

estimation of a moving object that utilizes liquid lens to eliminate lens breathing. The 

objectives of the research are: 

 

i. To characterize the properties of the liquid lens for a camera system in depth 

estimation. 

ii. To investigate the focus measure algorithms in processing time and modify it 

for object depth estimation application. 

iii. To develop an automated depth estimation using liquid lens camera system 

for static and moving object in short-range.  

 

1.4 Scopes 

 

This research concentrates on short-range depth estimation of a moving object with a 

variable focus liquid lens camera system. The depth estimation system is targeted for 

short range indoor application below 8 m. The depth resolution is limited to 1 m. The 

targeted object used in the experiments is a checkerboard object with edge features, 

and black and white colour. The experiments are carried out in an indoor and in a 

well-lighted scene. The camera and targeted object are placed on a flat surface. The 

targeted object is placed perpendicular to the ground. The temperature of the scene 

during the experiment are not controlled. The temperature readings are from heat 

generated by the equipment and from the surrounding temperature. The hardware 

used are commercially available webcam and laptop products. The liquid lens and 

the Arduino board are development and evaluation kits. The programs are carried out 

using MATLAB or C++. 

The DFF and DFD methods for the comparison study are selected from the 

publicly available source code. The study is carried out on the same laptop. The 
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study focuses on comparing the processing time as the aim is for an object-based 

focus measure of a moving object. In this research, the region of interest of the object 

image is manually fixed but it can be further developed to incorporate object 

detection and image segmentation. 

For the depth estimation system using liquid lens camera system, the test on 

static and moving object is limited to object that is directly in front of the camera. 

The object is set approximately at the centre of the image. The tests were carried out 

in indoor and in a well-lighted scene. 

 

1.5 Contribution and novelty 

 

The contributions of this research are as follows: 

i. The response time starting from sending out a liquid lens command signal to 

a stable image acquisition is identified to ensure accurate image acquisition 

every time the lens’ focus setting changes. The steps to obtain the response 

time for liquid lens camera system are provided. 

ii. A function of relationship between the lens’ voltage, lens’ temperature and 

object distance is presented. This contributes to the implementation of liquid 

lens monocular camera to estimate object depth based on focus analysis and 

temperature of the lens. 

iii. A methodology for the estimation of depth based on object-based focus 

measure method and hill-climbing search was proposed. This method 

implemented the characterised liquid lens monocular camera system to 

estimate depth by varying focal length through changing the optical power of 

the lens. The experiment to estimate depth on static and moving object was 

implemented and evaluated. 

 

Novelty of this research: 

i. This research presents a novel characterisation of liquid lens monocular 

camera system. The response time starting from sending out a liquid lens 

command signal to a stable image acquisition is identified to ensure accurate 

image acquisition every time the lens’ focus setting changes. A function of 

relationship between the lens’ voltage, lens’ temperature and object distance 

is also presented. 
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Innovation of this research: 

i. A method to obtain focus measure of an object is presented. The object-based 

focus measure computes the mean of SML of the edge and texture features of 

an object image area. 

ii. A methodology for estimation of depth of an object based on object-based 

focus measure method and hill-climbing search is proposed. This method was 

able to estimate depth on static and moving object in short range application. 

 

1.6 Thesis outline 

 

This thesis consists of five chapters. Chapter 1 covers the background, problems, 

objectives, scopes and contributions of the research work. 

 Chapter 2 presents the overview of the importance of depth estimation and 

the challenges in short range application. Different types of depth sensors are 

reviewed. Comparison of stereo camera and monocular camera in depth sensing is 

presented. Here, the advantage of depth sensing with monocular camera is identified. 

The different types of lens focusing technique used in monocular camera depth 

sensing are reviewed. A comparison of linear positioning lens and liquid lens is made. 

The problems in linear positioning lens are pointed out. Following is the review of 

different depth from focusing techniques. Finally, search algorithms are reviewed for 

continuous and quick search in the depth estimation with varying focus application. 

 Chapter 3 presents the methodology of the research. The hardware assembly 

of the liquid lens camera system is described. The characterisation method for the 

liquid lens monocular camera system for depth estimation is presented. The method 

for compute focus measure on an object is also presented. Lastly, a methodology for 

depth estimation with liquid lens monocular camera system is described, along with 

the experiments for testing on static and moving object.  

Chapter 4 shows the results and discusses the observation of the experiments 

described in Chapter 3. The result of the calibration of temperature sensor on the 

liquid lens module is shown. Next, the response time of the liquid lens monocular 

camera is determined through the experiments. The response time includes sending 

signal to the liquid lens until successful image acquisition of the desired image focus. 

In the characterisation of liquid lens camera system, the function of the relationship 
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