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ABSTRACT 

The essential issue of the power system network is power quality. The bus voltage 

must be maintained as a sinusoidal waveform. Many disturbances affect the supply 

voltage, such as notching, transients, voltage sag/swell. The major power quality 

problems are voltage sag/swell and harmonics, which cause tripping or malfunctioning 

the equipment. The linear PID controller's output suffers from a high amplitude of 

error when the input signals are noisy. This thesis gives an effective solution to protect 

the sensitive loads from disturbances by utilizing the dynamic voltage restorer. It is 

defined as a controlled voltage source connected in series between the sensitive loads 

and the network through a series transformer to inject a proper voltage magnitude to 

keep the sensitive loads at a constant value. The two non-linear controllers employ a 

robust differentiator known as an approximate sliding mode differentiator (ACSMD) 

with a non-linear sliding variable named a terminal PID sliding variable (TPIDSV) or 

arctan PID sliding variable (ARTPIDSV). Simulation results were carried out by 

MATLAB/Simulink to investigate the performance of the proposed controllers. The 

performance improvement obtained from the proposed techniques upon comparison 

with the case study as a linear PID controller, the steady-state error 85%-99%, the total 

harmonic distortion 2%-51%, the voltage sag indices 85%-99% and the load voltage 

magnitude 0.2%-8.7% for voltage sag and 0.08%-2.9% for voltage swell in all cases. 

The results illustrated the DVR structure's ability to overcome the system's 

disturbances, maintaining the voltage magnitude of the sensitive loads at a constant 

value, minimizing the steady-state of error, and keeping the THD at an IEEE standard. 

The DVR system performance is evaluated by utilizing three types of voltage sag 

indices.

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vi 
 

ABSTRAK 

Isu penting rangkaian sistem kuasa adalah kualiti kuasa. Voltan bas mesti dikekalkan 

dalam bentuk gelombang sinusoidal. Pelbagai gangguan mempengaruhi voltan 

bekalan, seperti takik, transien, voltan lendut/kembang. Masalah kualiti kuasa utama 

ialah voltan lendut/kembang dan harmonik, yang menyebabkan peralatan tersekat atau 

tidak berfungsi. Output pengawal PID linier mengalami ralat amplitud tinggi ketika 

isyarat input berisik. Tesis ini memberikan penyelesaian yang berkesan untuk 

melindungi beban sensitif dari gangguan dengan menggunakan pemulih voltan 

dinamik. Ia didefinisikan sebagai sumber voltan terkawal yang dihubungkan secara 

bersiri antara beban sensitif dan rangkaian melalui transformer bersiri untuk 

menyuntikkan voltan yang betul untuk meletakkan beban sensitif pada nilai yang tetap. 

Kedua-dua pengawal tak linier menggunakan pembezaan kuat yang dikenali sebagai 

pembeza mod gelongsor anggaran (ACSMD) dengan pemboleh ubah gelongsor tak 

linier yang dinamakan pemboleh ubah gelongsor PID terminal (TPIDSV) atau 

pemboleh ubah gelongsor arctan PID (ARTPIDSV). Hasil simulasi dilakukan oleh 

MATLAB / Simulink untuk menyiasat prestasi pengawal yang dicadangkan. 

Peningkatan prestasi yang diperoleh dari teknik yang dicadangkan setelah 

dibandingkan dengan kajian kes sebagai pengawal PID linear, ralat keadaan stabil 

adalah 85% -99%, keseluruhan penyelewengan harmonik adalah 2% -51%, indeks 

voltan lendut adalah 85% -99% dan magnitud voltan beban 0.2% -8.7% untuk voltan 

lendut dan 0.08% -2.9% untuk voltan kembang dalam kesemua kes. Hasilnya 

menggambarkan kemampuan struktur DVR untuk mengatasi gangguan sistem, 

mengekalkan magnitud voltan beban sensitif pada nilai yang tetap, meminimumkan 

keadaan ralat stabil, dan menjaga THD pada tahap piawai IEEE. Prestasi sistem DVR 

dinilai dengan menggunakan tiga jenis indeks lendut voltan.
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σ - The observer sliding variable 

Ω - Ohm 

� ��� � - The gain be selected to ensure � go to zero 

�    - The LPF output 

� - Variable introduce in differentiator design 

�(�) - The output of the differentiator 
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�(�) - The source of the steady state of error 

�(�) - The switching function 

�(�)��� - The control input 

��(�) and ��̇              - The uncertainty (noise) in the error signal and the  

  error derivative 

� , q and p                       - The gain be selected to ensure S go to zero 

� - The time constant 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 

1.1 Introduction 

In recent years, power quality has received significant interest in the industrial 

distribution system. The disturbances like voltage sag/ swell, flicker, and harmonics 

are the common power quality problems [1]. In the meantime, power quality problems 

can be defined as a deviation of voltage, current, and frequency from its standard 

values in the power system [2,3]. The increased use of non-linear electronic control 

devices in electrical power systems could increase power quality deterioration. This 

means that more focus is needed by power industry agents [4]. However, from the 

perspective of industrial and commercial producers, a low power quality suffering in 

terms of money, time, and resources [2].  

In terms of power quality, voltage sag and swell are core problems in the power 

systems at the distribution and transmission sides. Voltage sag or voltage dip can be 

described as the short duration of voltage drop in RMS (root mean square) from its 

standard voltage value, which is lower than the nominal voltage range of 0.1 to 0.9 per 

unit (PU) between half-cycle to 1 minute. Depending on the fault types, the voltage 

sags can either be balanced or unbalanced. However, they always have unpredictable 

scales. Voltage swell is characterized as the fast increment in RMS (root mean square) 

voltage value from the standard voltage over the ostensible esteem, extending from 1.1 

to 1.8 PU for a half cycle to 1 minute. As a result, the vast burdens and energization of 

the capacitor banks will be turned off, causing voltage swell [2,5-8]. 

IEEE and IEC have introduced the standards for Power Quality (PQ).  There are 

many types of custom power devices that could be applied to mitigate voltage sag and 
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