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ABSTRACT 

Ischemic stroke is triggered by an obstruction in the blood vessel of the brain, 

preventing the blood to flow to the brain tissues region. Solving this is extremely 

beneficial as Non-enhanced Computed Tomography (NECT) has significant 

shortcomings for posterior fossa (PF): (i) deficient sensitivity (ii) subtle finding and 

(iii) radiation exposure. Consequently, PF ischemic stroke lesions are missed at the 

early stage which increasing the mortality rates. Nowadays, the development of 

Computer-Aided Diagnosis (CAD) is increasingly becoming an important area in 

stroke detection. Despite the rapid development of CAD in stroke diagnosis, no studies 

have been found on stroke detection in PF. Until today, manual delineation of ischemic 

stroke in PF on NECT demands dealing with a large amount of data, which leads to 

late prognosis. As the amount of image data generated by NECT is massive, Deep 

Learning (DL) solutions are among the effective ways to deal with complex and large 

amount of cross-sectional data. Therefore, a new diagnostic algorithm based on DL is 

proposed for ischemic stroke detection in PF. The algorithm framework consists of 

hybrid of improved Xception model and YOLO V2 detector to classify the PF slices 

with ischemic and localise the infarction in classified slices, respectively. Following 

that, a CAD system is established by integrating the proposed algorithmic framework. 

The performance and effectiveness of the proposed algorithmic are evaluated by the 

comparison with the gold standard provided by the radiologists. The proposed 

algorithmic framework has shown to be less prone to overfitting and simultaneously 

improves the detection performance than the original DL model. The results 

demonstrate that the performance measure of 90.77% has been recorded for detection 

rate with average processing time of 1.02 to 1.04 seconds per image. The developed 

algorithm is reported to be reliable to assist the radiologist in ischemic PF diagnosis 

which is important for future healthcare needs.  
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ABSTRAK 

Strok iskemik berlaku disebabkan oleh saluran darah pada otak yang tersumbat, yang 

menghalang pengaliran darah ke kawasan tisu otak. Penyelesaian kepada 

permasalahan ini sangat bermanfaat memandangkan Tomografi Berkomputer Sekata 

(NECT) mempunyai kelemahan yang ketara pada bahagian fosa posterior (PF) iaitu: 

(i) kekurangan sensitiviti (ii) penemuan yang tidak jelas dan (iii) pendedahan radiasi. 

Sebilangan besar strok iskemik di bahagian PF tidak dapat dikesan pada peringkat awal 

dan membawa kepada peningkatan kadar kematian. Kini, pembangunan sistem 

diagnosis yang berbantukan komputer (CAD) adalah penting dalam pengesanan strok. 

Namun, tiada kajian dijumpai mengenai pengesanan strok di bahagian PF. Sehingga 

hari ini, pengesanan strok iskemik pada bahagian PF menggunakan kaedah NECT dan 

ini memerlukan pengendalian jumlah data yang besar, dan mengakibatkan kelewatan 

prognosis. Penyelesaian Pembelajaran Mendalam (DL) merupakan antara cara yang 

berkesan untuk mengendalikan data keratan lintang dalam jumlah yang besar. Oleh 

itu, satu algoritma diagnostik baru berdasarkan DL dicadangkan untuk pengesanan 

strok iskemik pada bahagian PF. Rangka algoritma terdiri daripada gabungan model 

Xception dan pengesan YOLO V2 yang ditambah baik, berperanan untuk 

mengklasifikasikan dan menyetempatkan iskemik pada kepingan PF. Satu sistem 

CAD juga telah dibangunkan dengan mengintegrasikan algoritma seperti yang 

dicadangkan. Penilaian prestasi dan keberkesanan algoritma telah dijalankan dengan 

membuat perbandingan antara algoritma tersebut dengan piawaian emas yang 

ditentukan oleh ahli radiologi. Rangka algoritma ini telah menunjukkan pengurangan 

kecenderungan terhadap overfitting dan meningkatkan prestasi pengesanan 

berbanding model DL yang asli. Hasil kajian menunjukkan bahawa ukuran prestasi 

mencapai 90.77% untuk kadar pengesanan dengan purata masa pemprosesan 1.02 

hingga 1.04 saat bagi setiap imej. Keandalan algoritma yang dibangunkan ini dapat 

membantu ahli radiologi melakukan diagnosis iskemik pada bahagian PF, dan boleh 

mengisi keperluan bidang penjagaan kesihatan pada masa akan datang. 
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1 CHAPTER 1 

INTRODUCTION 

This chapter provides an overview of research background while emphasizing current 

issues on ischemic stroke diagnosis in posterior fossa (PF), described in Sections 1.1 

and 1.2. Subsequently, the objectives along with the scopes of research are presented 

in Sections 1.3 and 1.4, respectively. Research contributions and thesis outline are then 

briefly explained in Sections 1.5 and 1.6, respectively.  

1.1 Project Overview 

The major societal challenge in current global healthcare is dealing with rapid 

progression of ischemic stroke cases. According to Johnson et al. (2019),  there were 

5,528,232 deaths due to stroke in 2016 globally. During that year, the death toll in 

Malaysia was 14,302 as shown in Figure 1.1. Although the number of deaths is lower 

than other countries, the occurrence of people diagnosed with ischemic stroke in 

Malaysia gradually increasing at 29.5% annually (Aziz et al., 2015). Ischemic stroke 

is an injury where the arterial occlusion occurs within the brain due to the acute 

reduction in the blood supply. There are several well-known factors contributing to 

ischemic stroke such as hypertension, atrial fibrillation, prior history of stroke, 

smoking, diabetes, excessive alcohol intake and others (Boo et al., 2016). 
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Figure 1.1: Deaths for stroke in 2016 by location (Johnson et al., 2019) 

In fact, for every minute of delayed treatment, this cerebrovascular disease 

continuously damages approximately 1.8 million neurons of the brain (Urdaneta & 

Bhalla, 2019). Previous studies suggests that it is very important for the radiologist to 

perform stroke imaging procedure in a rapid and efficient way (Cho et al., 2019; Kamal 

et al., 2018). The delay in early diagnosis and treatment would result in drastic spread 

of the ischemic area. Clinically, early diagnosis of ischemic stroke is imperative; 

however, currently it necessitates the application of expensive Magnetic Resonance 

Imaging (MRI) which available only at specialised centres or in private practice. 

Besides the compulsory clinical examination routine of the symptomatic, Non-

enhanced Computed Tomography (NECT) becomes the available option for first line 

of stroke imaging. In general, NECT operates in fast acquisition, cost-efficient, and is 

widely available relative to MRI (Urdaneta & Bhalla, 2019). 

Despite these advantages, it is well known that NECT is deficiently sensitive 

when attempting to detect ischemic in PF region (Kniep et al., 2020). This can be 

described by several facts: first, the loss of gray-white matter differentiation in PF 

region is visible which causes the resemblance of normal tissues; second, the beam 

hardening artifacts produced by thick bone and inadequate contrast resolution limits 

the performance of NECT (Austein et al., 2019; Wolff et al., 2020). The magnitude 

and complexity of diagnosis tasks require a great deal of skills and experience from 

the radiologist. Thus, an early ischemic diagnosis can be strenuous in the clinical 

practice.  

Computer-Aided Diagnosis (CAD) has been widely developed in medical 

image analysis to provide support for the radiologist in the decision-making process 

(Dourado et al., 2019; Kanchana & Menaka, 2015; Tang et al., 2011; Tyan et al., 
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2014). Figure 1.2 illustrates the CAD workflow in supporting the standard review of 

medical diagnosis primarily in radiology. Hospital Information System (HIS) or 

Radiology Information System (RIS) has become the integral part of NECT and MRI 

system to provide patient health information. Radiologists can feasibly combine 

patient reports with images taken along with historical information from HIS or RIS 

in order to obtain a baseline. The image data retrieved during scanning procedure is 

transferred to the CAD system to facilitate the standard review process in the 

workstation.  

 

Figure 1.2: Standard and CAD-supported review workflow (Siemens Healthineers, 

2018) 

There are various techniques applied in the CAD to classify normal and 

ischemic NECT slices using traditional Machine Learning (ML) based method. 

Typically, these CAD systems begin with pre-processing, followed by hand-crafted 

feature extraction and classification steps to segregate normal and abnormal slices 

(Kanchana & Menaka, 2015, 2017; Kniep et al., 2020; Tang et al., 2011). Texture and 

intensity features are the examples of features which have been extracted to be fed into 

Support Vector Machine (SVM), Artificial Neural Network (ANN) and K-Nearest 

Neighbour (KNN) as the input (Aggarwal & Agrawal, 2012; Kanchana & Menaka, 

2015, 2017; Kniep et al., 2020; Tang et al., 2011). 

Deep Learning (DL) has made a breakthrough in medical image classification 

owing to its superior performance in solving a wide range of radiology cases (McBee 

et al., 2018; Suzuki, 2017). Contrary to the conventional ML methods, DL is capable 
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to directly learn the features of an image without a hand-crafted feature extraction step. 

The emergence of DL in medical image classification with diseases such as Alzheimer, 

brain tumour ischemic infarction and dementia are tremendously increasing with high 

performance (Talo et al., 2019). Moreover, studies and research has been recently 

conducted to investigate the possibility of ischemic image classification with acute 

condition based on the DL method (Chin et al., 2018; Dourado et al., 2019; Pereira et 

al., 2018).  

For all the aforementioned reasons, an automated diagnostic algorithm-based 

DL of ischemic stroke in PF slice of NECT is developed as a supportive platform to 

assist radiologists in their decisions. Besides that, the diagnosis from NECT image can 

be significantly improved by implementing CAD in conjunction with clinical 

evaluations.  This proposed work can assist radiologists in clinical decision-making 

with numerous amounts of NECT images. In comparison with other works, this study 

offers the advantage of classifying as well as localising the ischemic in PF. The overall 

performance is evaluated using quantitative and qualitative approaches to assess the 

practicality and reliability of the developed system. 

1.2 Problem Statement  

According to  Pereira et al. (2018), Asians contribute to the highest mortality rates of 

stroke than Westerners. Stroke remains as the third leading cause of mortality in 

Malaysia with 74.8% of patients experiencing their first episode of ischemic (Kooi et 

al., 2016). Ischemic stroke is due to the presence of blood clot or thrombus in the blood 

vessel. This type of stroke is relatively challenging to be identified specifically in PF 

region. Until now, NECT is the solely available option for early assessment of 

ischemic (Austein et al., 2019; Kniep et al., 2020; Vilela & Rowley, 2017; Wolff et 

al., 2020). Due to its prevalent, rapid acquisition and cost-efficient nature, NECT is 

the first option in almost every medical centre.  

The ambiguous nature of decision-making process highly depends on the 

experience of radiologists and can be adversely affected by the high intra- and inter-

observer variability (Kamal et al., 2018). Manual diagnosis of NECT images is 

monotonous and highly prone to errors (Ker et al., 2017). False positive cases usually 

occur because of the behavioural nature of acute ischemic in loss of gray-white matter 

differentiation which is nearly similar to normal tissues. This incident is depicted in 
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Figure 1.3. Another critical issue related to NECT in acute ischemic is poor sensitivity 

(Zürcher et al., 2019). The signs of early ischemic changes in PF are often subtle as 

NECT has low sensitivity of 41.8% in the first 24 hours of ischemic lesion inspection 

(Hwang et al., 2012). Urdaneta & Bhalla (2019) have also reported that ischemic PF 

is generally misdiagnosed for patients with dizziness symptoms. This is caused by the 

existence of beam hardening artifacts due to the amount of bones in PF region and 

time delay for strokes to emerge on the neuroimaging in the white matter relative to 

the gray matter (Hixson et al., 2016).  

 

Figure 1.3: Ischemic stroke detection in PF region 

An early diagnosis of ischemic in PF is extremely important to prevent 

brainstem infarction which can impact the prolonged state of the patient (Kniep et al., 

2020). This incident needs to be promptly recognised in order to initiate adequate 

therapy and alleviate rate of mortality. In addition, the deficiency of well-trained and 

experienced radiologists in medical centres lead the decision-making phase to be 

performed by non-expert medical professionals (Kamal et al., 2018). Thus, this 

explains the need for effectiveness and timely implementation of a robust second 

opinion system that can assist these non-experts in interpreting and diagnosing 

diseases with higher confidence level. 

Based on these circumstances, a diagnostic algorithm-based DL can be 

introduced to detect the ischemic PF stroke. This approach can bring about 

improvements in the ischemic diagnosis of PF region and subsequently reducing the 

mortality rates among patients. This proposed work may benefit the radiologist with 

efficient and accurate clinical assessment of ischemic PF stroke. Practically, their 

competence in analysing complex cases of this incidence can be enhanced through the 

perspectives of a wide range of DL technology.  
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1.3 Aim and Objectives 

This research aims to develop a diagnostic algorithm which can classify and detect 

ischemic stroke in PF slice for early sign of stroke clinical assessment. To achieve the 

aim, the following objectives have been outlined: 

1. To develop a new automated classification method of ischemic in PF slices. 

2. To construct a hybrid DL architecture that supports rapid and efficient detection 

of ischemic in PF slices. 

3. To evaluate the performance of the developed algorithm via a series of 

experimental programme (quantitative and qualitative analysis). 

1.4 Scopes and Limitations 

The restrictions and limitations in terms of the dataset, method and working platform, 

during this research are: 

1. This study focuses on the development of diagnostic algorithm for ischemic stroke 

classification and detection in PF using Convolutional Neural Network (CNN) 

approaches because of its high accuracy in medical image processing.  

2. The medical institution collaborator is UKM Medical Centre. All the ethical 

standards are conducted by the radiologist. Approval is obtained for this 

retrospective study.  

3. The head NECT slices used in this study is scanned by using Toshiba Aquilion 

ONE scanner following standardised parameters specified by the radiologist. Only 

dataset from similar machine is included as accurate analysis can be achieved 

using similar scanning parameters.  

4. The experimental studies are conducted on ischemic stroke infarction in PF slices 

under brain NECT imaging with a restricted number of patients. Due to a vast 

variation in shapes, sizes and locations of PF, it is truly difficult to find the region 

of interest (ROI). Thus, the developed diagnostic algorithm is developed to 

directly detect the ischemic in PF slices without concerning on the ROI 

segmentation.  

5. Two-dimensional (2D) axial NECT brain slices which are stored in DICOM 

format with 512×512 resolutions have been used as the training, validation and 

testing dataset.  
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6. The diagnostic algorithm and GUI are developed using MATLAB R2019b 

toolbox as the software tool and Intel® Core ™ I7-7500U processor with 2.90GHz 

CPU and 8GB RAM as the testing platform. 

1.5 Research Contributions 

This study focuses on the development of algorithm to solve primary problem of 

ischemic stroke detection in PF such as poor sensitivity, inaccurate manual diagnostic 

and loss of gray-white matter differentiation while subside the traditional image 

processing. This study introduces an improved Xception model for the classification 

of ischemic in PF slices. The combination of the dropout method, as well as 

convolutional and max-pooling in the Xception model has shown to be less prone to 

overfitting than the original Xception model. To the best of author knowledge, this is 

the first approach which has been introduced for Xception model. Moreover, the 

advantage of introducing a classification network before detection is to reduce false 

localisation issue in the subsequent stage, in which the detection network focuses only 

on abnormal slices of PF.  

A new approach in the detection stage is constructed by using hybrid of 

improved Xception model and YOLO V2 detector. In the newly proposed scheme, a 

number of detection sub-networks are compared. Max-pooling layer is integrated into 

each of the sub-network to further reduce the training loss. Although several detectors 

are reported in the literature, this work employs YOLO V2 detector due to its capability 

of performing high detection performance in medical image applications. Overall, the 

developed diagnostic algorithm is beneficial to facilitate radiologists in clinical 

emergency settings by integrating DL methods. Despite all efforts, no system or 

method today can provide a specific detection of ischemic in PF. Therefore, this has 

been a significant achievement of the work contained in this thesis.  

1.6 Thesis Outline 

The structure of this thesis is organised as follows: 

Chapter 1 begins by discussing a brief background of this research. The 

problems in conventional ischemic diagnosis are identified and explained. The 
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