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ABSTRACT 

 

 

 

Mixing and dilution are essential procedures in pharmaceutical operation to process 

two or more components in a separate or thoroughly mixed condition until 

homogenous solution was obtained. However, conventional serial dilution method 

used in laboratory assessment causes high usage of reagents, higher complexity 

procedures and costly. Micromixing method provides a better platform that enables 

mixing and dilution of liquid-based reagents which is convenient solutions 

preparation, easy liquid handling and time-saving. In this study, a 

polydimethylsiloxane (PDMS) micromixer was designed, simulated and prototyped 

using vinyl tape method and successfully applied to mix and dilute Cytochalasin-B in 

culture media (CB-DMEM, 30.0 µM) with 0.05 % ethanol solutions (diluent) to 

produce four different concentrations of CB-DMEM (5.3, 10.6, 14.8, and 20.2 µM). 

The different concentrations of CB-DMEM were applied on to ORL-48 microtissues 

produced by using flicking technique. The morphological responses, cell viability and 

cell proliferation of ORL-48 monolayer cells (2D) and microtissues (3D) treated in 

four different CB concentrations were assessed via phase contrast microscopy, 

live/dead staining and Alamar Blue® staining respectively. The results show that both 

2D and 3D of ORL-48 microtissues were only morphologically affected (fibroblastic 

spreading to round shape) while cell viability and cell proliferation show that CB 

treatment solely does not causes apoptosis (≈ 90 % cells are alive and able to 

proliferate). The micromixer employed in solution preparation of CB-DMEM (5.3, 

10.6, 14.8, and 20.2 µM) provide a convenient and faster method to prepare 

cytochemical solution for drug screening and experiments. Besides that, application of 

micromixer consumes less volume of reagents and cost efficient. 
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ABSTRAK 

 

 

 

Pencampuran dan pencairan adalah prosedur penting dalam operasi farmaseutikal 

untuk memproses dua atau lebih komponen dalam keadaan yang berasingan atau 

menyeluruh sehingga larutan homogen diperolehi. Walau bagaimanapun, kaedah 

pencairan siri konvensional yang digunakan dalam penilaian makmal menyebabkan 

penggunaan reagen yang berlebihan, prosedur yang rumit dan mahal. Kaedah 

pencampuran-mikro menyediakan platform yang lebih baik yang membolehkan 

pencampuran dan pencairan reagen berasaskan cecair dengan proses yang tidak 

merumitkan, memudahkan pengendalian cecair dan menjimatkan masa. Dalam projek 

ini, pencampur-mikro berasaskan polydimethylsiloxane (PDMS) direka, 

disimulasikan dan diprototaipkan melalui kaedah pita vinil dan berjaya digunakan 

untuk mencampur dan mencairkan Cytochalasin-B dalam media kultur (CB-DMEM, 

30.0 μM) dengan larutan etanol 0.05% untuk menghasilkan empat kepekatan CB-

DMEM (5.3, 10.6, 14.8, dan 20.2 μM) yang berlainan. Kemudian, empat kepekatan 

CB-DMEM yang berbeza diperkenalkan pada mikrotisu ORL-48 yang dihasilkan 

dengan menggunakan teknik penggilapan melalui pengkapsulan mikro. Respons 

morfologi, daya maju sel dan percambahan sel sel tunggal (2D) dan mikrotisu (3D) 

ORL-48 yang dirawat dalam empat kepekatan CB yang berbeza telah diperhati melalui 

mikroskopi kontras fasa, pewarnaan hidup /mati dan pewarnaan Alamar Blue®. 

Keputusan menunjukkan bahawa kedua-dua sel tunggal (2D) dan mikrotisu (3D) 

ORL-48 hanya terjejas secara morfologi (berselerak ke bentuk bulat) manakala daya 

maju sel dan proliferasi sel menunjukkan bahawa rawatan CB semata-mata tidak 

menyebabkan apoptosis (≈ 90% sel hidup dan mampu membiak). Pencampur mikro 

yang digunakan dalam penyediaan cecair CB-DMEM (5.3, 10.6, 14.8, dan 20.2 μM) 

menyediakan kaedah yang mudah dan cepat untuk menyediakan penyelesaian 

sitokimia untuk pengskrinan ubat dan eksperimen. Selain itu, penggunaan pencampur-

mikro kurang menggunakan reagen dan menjimatkan kos. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

 

 

 

This chapter covers the research background, problem statement, objectives, and scope 

of research. 

 

 Introduction 

 

Microfluidic systems have been widely applied for identification of biochemical 

products, diagnosis, drug testing and screening in chemical and biological fields. 

General information concerning micromixing techniques and microfluidic 

technologies employed in in biological and chemical application is briefly explain in 

research background. The problem statement highlights the weakness of the current 

method for mixing and diluting (serial conventional dilution method) in laboratory 

assessment. Consequently, a convenient and time saving method was introduced to 

enable linear mixing and dilution of cytochemical solutions. 

 

 Research background 

 

Dilution and mixing is one of the important procedure in chemical and biological 

analysis to mix and dilute single or multiple reagents such as enzymes, cytochemical 

solutions, biological and chemical assays into desired concentration solutions to be 

employed in both chemical and biological analysis [1]. The conventional serial dilution 

method used in laboratory assessment to mix and dilute consume more chemicals and 

solutions, time and laboratory plastic wares. This is because the procedures repeat the 
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calculations, titration and accurate pipetting which to withdraw a specific volume of 

stock solution and dilute them in the separate conical tube [2, 3]. In addition, most of 

the laboratory plastic wares and pipettes are not reusable and cleanable which 

contribute to many laboratory plastic wares waste that need to be managed. 

Application of microfluidic mixer (micromixer) to dilute and mix reagents provide a 

solution which consumes fewer reagents, time-saving and less laborious [4, 5].  

Microfluidic is defined as a system consists of integrated microchannels 

which are able to be fabricated in micro or nano-scales with at least one of the 

dimensions is less than or equal to 1.0 mm [6]. The general idea of microfluidic mixing 

is to achieve thorough and rapid mixing of two or numerous samples in microscale 

devices [7]. Based on mixing principles, micromixers are categorised into two groups: 

active and passive micromixers. Active micromixers require external perturbation 

energy to blend the sample species and achieve optimum mixing. Types of external 

perturbation energy includes pressure field [8], electrokinetic [9], dielectrophoretic 

[10], electrowetting [11], magneto-hydrodynamic [12] and ultrasound [13]. Passive 

micromixers are dependent on the mass transport phenomena and are driven by 

molecular diffusion and chaotic advection. Generally, these devices are designed with 

channels geometry in order to increase the surface area between the different fluids 

and contact time. Passive micromixers can be categorised as T- and Y-shaped 

micromixers [14], parallel lamination micromixers [15], sequential lamination 

micromixers [16], focusing enhanced mixers [17], chaotic advection micromixers [18] 

and droplet micromixers [19]. However, design and fabrication of microfluidic mixer 

involves complex operational control, require well equipped clean room and expensive 

and highly toxic chemicals such SU-8 photoresists and etchants [20]. 

Passive micromixer utilises no energy input except the mechanism of infused 

liquid (flow rate) at a constant rate. In addition, the magnitude of flow rate applied 

dependent on the design of the micromixer to achieve micromixing. A previous study 

[21], shows that twisted T-shaped micromixer with 200 µm in depth and 200 µm wide 

requires a flow rate lower than 1.00 ml/min for acceptable mixing performance. Based 

on a reported study [22], parallel liquid infusion into micromixer at high flow rates 

may enhance mixing by induction of turbulence. It is observed that size distribution of 

emulsion decreases when the flow rate increases due to increase in turbulent energy. 

The maximum flow rates fed into the micromixer was 40 ml/min. 
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In clinical medicine and biological studies, microfluidic systems have been 

applied for identification of biochemical products, diagnosis, and drug discovery. 

Implementation of micromixing technologies in the microfluidic system enables 

biological screening [23], enzyme assay [24], cell lysis [25] and biochemical analytical 

[26] to be conducted. Integration of micromixing into enzyme assays contribute 

several advantages such as improved cost efficiency, low sample consumption and 

reagents can be thoroughly mixed with enzymes [27]. High-throughput permit 

parallelisation of molecular sorting and a small volume of samples used enable 

microfluidic to be selected as a tool for biological screening [28]. By integrating 

micromixers with microvalves and micropumps, a micromixer is able to add two or 

more samples before furthered into polymerase chain reaction (PCR) which is a key 

process in biological engineering. Due to its high sensitivity, high throughput, less 

material consumption, low cost, portable and easily designed, microfluidics devices 

offer limitless potential and application in point-of-care diagnostics, disease 

management and patient care such as in cancer studies [29, 30]. 

Oral cancer is in eleventh order of the most common cancer worldwide as 

reported by World Health Organization. Annually, there are 400,000 new victims of 

oral cancer and approximately 300,000 died of this disease [31]. South and South East 

Asian countries are among the countries with 80% of these cases occurs [32]. 

Smoking, excessive alcohol consumption and betel chewing are the contributing 

factors estimated to account for about 90% of oral cancer [33]. Most of the cancer 

research publications [34, 35], are still working on monolayer cells for assessment of 

therapy drugs on cancer cells. The validity of results published for cell biology 

research using monolayer of cells (2D cell culture) are questionable and criticised due 

to simplified model for cell biology study [36]. Biosensor and Bioengineering 

Laboratory of Universiti Tun Hussein Onn Malaysia (UTHM) had engineered a 

flicking technique to culture oral squamous carcinoma cells (ORL-48) in three 

dimensions (3D) using calcium alginate [37]. The collaborator of the laboratory is, 

Cancer Research Malaysia (CRM) which has mission to establish new laboratory 

models to find new ways to treat oral cancer. CRM has one of the largest collections 

of Asian oral cancer cell lines that have been used by other researchers in many 

countries including the UK, USA, Thailand, and India to study the cancer therapeutic 

drugs. In this study, ORL-48 microtissues and Cytochalasin-B were employed to 

understand the resistivity of 3D cancerous cell lines on cell permeable mycotoxin as 
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the 3D cancerous cell lines have higher towards apoptosis inducing drugs [38]. Besides 

that, morphological responses, cell viability, and cell proliferation of ORL-48 

microtissues reveal the resistance towards Cytochalasin-B while employment of 

micromixer provides convenient method to prepare Cytochalasin-B in different 

concentrations. The mixing and dilution performance of the micromixer was assessed 

via spectrophotometry. The morphological responses, cell viability and cell 

proliferation of treated microtissues of ORL-48 were analysed using phase contrast 

microscopy, live/dead staining and Alamar Blue® staining. The backbone of this 

project is to be useful to prepare cytochemical solution in different concentrations via 

time saving and convenient method and understand the resistance of 3D cancerous cell 

lines toward cytochemical treatment. 

 

 Problem statement 

 

Mixing and dilution are important processes in diagnostic and biological analyses 

while the conventional way of mixing and diluting different fluids consume a large 

volume of reagents and time to be applied and analyse [39]. By using a micromixer to 

generate different concentration of treatment reagents, fewer stock reagents 

(approximately 5.0 ml) are used and economically cost effective to analyse the 

reactions of tissues and cells towards a range of concentrations of treatment reagents 

and identifying the half maximal inhibitory concentration, (IC50) of the treatment 

reagents. IC50 is a quantitative measure indicates quantity of particular drug or 

inhibition substance is needed to inhibit a given biological process. Micromixer 

provides convenient, fast and linear mixing and dilution which shorten the time and 

reduces the cost for solution preparations compared to conventional serial dilution 

method. 

Infusion flow rates and parallel fluid infusion are important parameters to 

allow fluids to mix and dilute well in micromixer. Current commercial infusion pump 

which provides flow rates in nl/min to µl/min may not be able to infuse at an optimum 

flow rate for enhanced mixing and dilution. Customised infusion pump with optimum 

flow rate for the micromixer provide linear dilution and mixing of the solutions. 

Although monolayer of cell are commonly used for drug screening, the reliability of 

the results is questionable due to its simplified 2D cell model which does not reflect 

the real microenvironment of cancerous cell lines and tumours. Based on literature 
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reviews, a micromixer could be designed via simple vinyl tape method to mix and 

dilute cytochemical solutions and generate four different output concentrations. 

Hence, the purpose of this project is to design, simulate and prototype a micromixer 

and customised infusion pump system to mix and dilute Cytochalasin-B in culture 

media (CB-DMEM, 30.0 µM) with 0.05 % ethanol solution to produce four different 

concentrations of CB-DMEM by linear dilution and mixing. The micromixing system 

used provide convenient and time saving for cytochemical solutions preparation into 

different concentrations. The four different concentrations of Cytochalasin-B were 

used to treat ORL-48 microtissues which reveals the effects of different concentrations 

of CB-DMEM on ORL-48 microtissues (3D) compared to monolayer of ORL-48 cells 

(2D). 

 

 Objectives of the research 

 

This study embarks on the following objectives: 

 

a. To design a PDMS micromixer for mixing and dilution of Cytochalasin-B in 

culture media (CB-DMEM). 

b. To develop a customised infusion pump system which enable optimum flow rate 

for linear mixing and dilution via the PDMS micromixer. 

c. To investigate the morphological responses of ORL-48 microtissues, cell viability 

and proliferation of ORL-48 microtissues treated in different concentrations of 

Cytochalasin-B 

 

 Scopes of research 

 

The scope of the study is limited to design and development of a PDMS based 

microfluidic mixer (micromixer) via vinyl tape method. The micromixer was applied 

to dilute and mix CB-DMEM (30.0 µM) with 0.05 % ethanol solution to produce four 

different concentrations of CB-DMEM (5.3, 10.6, 14.8 and 20.2 µM). In order to 

achieve linear mixing and dilution, a customised electronic infusion pump was 

developed to provide flow rates of 0.5, 1.0 and 2.0 ml/min based on fluid mixing 

simulation via COMSOL Multiphysics version 4.2. Dilution and mixing performance 

of the micromixer was assessed by using spectrophotometry, photometric analysis and 
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Beer’s standard calibration curve of concentration against absorbance of CB-DMEM 

produced from serial dilution method as a reference graph. Four different 

concentration of CB-DMEM (5.3, 10.6, 14.8 and 20.2 µM) were collected into four 

separated centrifuge tubes and introduced to monolayer (2D) and microtissues (3D) of 

ORL-48 in petri dishes. The morphological response of ORL-48 microtissues and 

monolayer cells towards four different concentrations of CB were assessed via phase 

contrast microscopy. The study of cell viability and proliferation of treated ORL-48 

microtissues and monolayer of cells were investigated by using live and dead staining 

and Alamar Blue® staining.  

 

 Thesis outline 

 

This thesis is divided into five chapters. Chapter 1 provides an overview of this project 

and the objectives, scopes and problem statement of the research. Chapter 2 briefly 

explains microfluidic mixer and mixing principles, reviews of the methods to fabricate 

microfluidic device, review of common polymer as microfluidic materials, previous 

research on microfluidic device in cell culture system, oral squamous carcinoma cells, 

comparison of 2D and 3D cell culture, review of commercialised products in cell 

culture system, review of microencapsulation cells and biopolymer, Cytochalasin-B 

(CB), review of pharmacology studies in 2D and 3D cell model, and review of 

biophysical characterisation techniques. Chapter 3 outlined the experimental 

procedure of this research including the design and simulation of fluid mixing in 

micromixer, prototype and fabrication of PDMS micromixer using vinyl tape method, 

development of customised infusion pump system, performance assessment of the 

micromixer, microencapsulation of ORL-48 cells, and characterisation of biophysical 

properties of treated ORL-48 microtissue. Chapter 4 presented the results and 

discussions on the research project which includes simulation of linear fluid mixing, 

the prototype of the microfluidic mixer, electronic infusion pump system, micromixing 

and dilution of CB stock solution with 0.05 % ethanol solution, the growth of ORL-48 

microtissue, and characterisation of treated ORL-48 microtissue using CB. At last but 

not least, Chapter 5 delivered the conclusion, thesis contribution and recommendations 

for future work. 
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