ASTRONOMY FOR KIDS E-LEARNING SYSTEM USING MARKERLESS AUGMENTED REALITY

By

CHE SAMIHAN BINTI CHE DALIM

This thesis Submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirement for the Degree of Master of Science

(Multimedia System)

Universiti Putra Malaysia

JANUARY 2013
Hannes Kaufman (1996) claims that due to advances in the development of pedagogical concepts, applications and technology, the use of small scale or mobile immersive virtual or augmented reality systems could become feasible for educational institutions within this decade. One of the approaches how to practice computers in education are computer-based simulations and visualizations of various natural phenomena. The problem of such simulations is on how to decrease the gap between the real world and the abstract models which are used in simulations. The students have sometimes difficulties with understanding abstract visualisations even if they are presented in 3D space. The most frequent solution to this problem is found in some educational movies where the real life phenomena are presented and some abstract or virtual information is mixed to such sequences. Augmented reality seems particularly well suited with the current educational needs especially for early childhood education as it overlays information onto real world scene. In this project, I developed a mentoring system which uses markerless Augmented Reality in the aim of providing an interactive learning process to the students in order to better enhance their understanding on Eclipse.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan ijazah Master Sains Komputer

SISTEM E-PEMBELAJARAN ASTRONOMI UNTUK KANAK-KANAK MENGGUNAKAN REALITI BERTAMBAH TANPA PENANDA

Oleh

CHE SAMIHAH BINTI CHE DALIM

JANUARI 2013

Penyelia: Puteri Suhaiza Binti Sulaiman, PhD

Fakulti: Sains Komputer dan Teknologi Maklumat

LIST OF TABLES

Table 1: Interaction Technique..28
Table 2: Hardware and Software Requirements...33
Table 3: Q1 and Q2...39
Table 4: Q3 and Q4...39
Table 5: Q5 and Q6...40
Table 6: Q7, Q8 and Q9...40
Table 7: Q10 and Q11...41
Table 8: Q12...41
LIST OF FIGURES

Figure 1.0: Project Gantt chart ..14
Figure 1.2: 3D Modeling ...18
Figure 1.3: Texturing ...19
Figure 1.4: Animation ..20
Figure 1.5: Review Recording ...20
Figure 1.6: Sound Recording ...21
Figure 1.7: Create Project in After Effects ...21
Figure 1.8: Create New Composition in After Effects ...22
Figure 1.9: Import Rendered Sequences ..22
Figure 2.0: Re-time Sequence ...23
Figure 2.1: Set Render Output ...23
Figure 2.2: Choose Render Output ...24
Figure 2.3: Create Project in Adobe Premiere ..24
Figure 2.4: Import Materials ...25
Figure 2.5: Lay Video Audio in Timeline ..25
Figure 2.6: Export Media ...26
Figure 2.7: Choose Export Setting ...26
Figure 2.8: Overview of Solar System Application ...27
Figure 2.9: Tracking Object ...28
Figure 3.0: Tracking Object Process ..29
Figure 3.1: Techniques and Deliverables ..34
Figure 3.2: Expected Final Application ..34
Figure 3.3: Overview of Questions ..42
Figure 3.4: Result Q1 ..44
Figure 3.5: Result Q2 ..45
Figure 3.6: Result Q3 ..46
Figure 3.7: Result Q4

Figure 3.8: Result Q5

Figure 3.9: Result Q6

Figure 4.0: Result Q7

Figure 4.1: Result Q8

Figure 4.2: Result Q9

Figure 4.3: Result Q10

Figure 4.4: Result Q11

Figure 4.5: Result Q12
TABLE OF CONTENTS

ABSTRACT..ii
ABSTRAK..iii
DEDICATION...iv
DECLARATION..vii
LIST OF TABLES..viii
LIST OF FIGURES..ix

CHAPTER 1: INTRODUCTION

1.1 Overview...1
1.2 Problem Statement...4
1.3 Project Objective...5
1.4 Scope of Project...6
1.5 Justification of Project..6
1.6 Summary..7
1.7

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction...8
2.2 Seamless Interaction...9
2.3 Tangible Interface Metaphor...10
2.4 Transitional Interface...11
2.5 Conclusion of Literature Review...12

CHAPTER 3: METHODOLOGY

3.1 Introduction...13
3.2 Planning...13
3.2.1 Brainstorming...13
3.2.2 Finding Research Topic..13
3.2.3 Preparing Gantt chart..14
3.3 Analysis...15
CHAPTER 1

INTRODUCTION

1.1 Overview

The exponential growth of technology has made it imperious for learning to happen rapidly. The fast developments in internet and multimedia technologies serve as the fundamentals enablers towards the expansion of learning into a new dimension, which resulted in the growth of e-learning.

In Malaysia, e-learning is defined as the use of network and multimedia technologies to improve the quality of learning by enabling access to knowledge and remote resources for the development of a knowledge society or K-Society. To realize this concept, e-learning has been applied to many level of education in Malaysia, and has been proven that it increases the quality of teaching and learning process. Portable dictionary, E-book, Distant / Virtual Classroom and interactive CD are among the numerous forms of technology applied in today’s classroom.

Augmented reality is one of the rapid advancement in multimedia technology. Augmented Reality (AR) is a variation of Virtual Environments (VE), or Virtual Reality as it is commonly called. VE technologies completely immerse a user inside a synthetic environment. While immersed, the user cannot see the real world around him. In contrast, AR allows the user to see the real world, with virtual objects superimposed upon or composited with the real world. Therefore, AR complements reality, rather than completely replacing it (Ronald T. Azuma, 1997).

Augmented Reality technology has its root began in 1957 when a gentleman named Morton Helig innovate a machine called the Sensorama, an invention which awarded him the Father
of Virtual Reality. The machines functions as a simulator for one to four people that provides the illusion of reality using a 3D motion picture with smell, stereo sound, vibrations of the seat, and wind in the hair to create the illusion. While it was really more an adventure in full virtual reality, there are clearly elements of AR involved with both the devices in place between the user and the environment and that fact that the environment itself was itself, the real world viewed in real time situation, even if recorded.

In 1966, the first attempt in making AR a usable possibility achieved with the invention of the head-mounted display or HMD, a device which is used in both AR and VR today. The person responsible for the invention was Professor Ivan Sutherland of Electrical Engineering at Harvard University. However, during that time, it appears some limitations especially in the graphical abilities as it was too early in the gauge of computer technology. The HMD delivered just simple wireframe models of generated environments.

In 1992, Professor Tom Caudell who was at that time working for a project of searching an easier way to help in the manufacturing and engineering process of the aviation company he was working with, the Boeing’s Computer Services, in Seattle, came across some intricate software that could overlay the positions of where certain cables in the building process were supposed to go. It facilitated the mechanics as they did not have to try or ask to translate from what they found described in abstract diagram in manuals.

In the same year, AR technology began to strengthen its existence in this world with the invention Virtual Fixtures, the first functioning AR system for the US Air Force. The man behind this creation is LB Rosenberg, and he described fixtures as prompts to help guide the user in their task.

AR hits the arts world in 1994 as Julie Martin became the responsible person to bring the concept into public performance. She created a government-funded show in Australia,
sounding rather like ITV celeb show, called Dancing in Cyberspace where dancers and acrobats interacted with virtual object projected into the same physical space as themselves. Since then, AR technology began to expand its growth tremendously.

There are numerous applications encompasses various field developed by using Augmented Reality technology. ARToolKit is the pioneer, and one of the much available AR software for AR application development. ARToolKit allowed video capture tracking of the real world to combine with the interaction of virtual objects and provided a 3D graphics that could be overlaid on any operating system platform.

Gaming industry has also deployed many AR applications. The first outdoor mobile AR video game was developed by Bruce Thomas and his team in the Wearable Computer Lab at the University of South Australia. The game was named ARQuake, take the integration of GPS sensors data and the head-mounted display to create the AR environment in the game.

The Augmented Reality technology also come into the world of mobility when smartphone’s industry booming. Users of smartphones were introduced to many AR applications such as Wikitude, which allows Android users to take in the world through their mobile phone cameras and see augmentations on the screen of points of interest nearby. Other smartphone developers such as Apple and Samsung soon follow this innovation and many more interesting AR applications made available to integrate with their products.

In medical field, operation always play the most important role in patient treatment, and as a rule, the process always based on combination of doctor’s ability and medical instruments. As computers become more and more portable, powerful and visible, it is possible for surgeons to present their operation under computer assistance. Augmented Reality is such computing-based technology that can promote accuracy and safety for surgery. An example of prototypical applications of Augmented Reality in medical is RAMP, an abbreviation of
Real-time Applications for medical Procedures which can produce the indirect viewing of both virtual models and the final delivery process for training physician during clinical practices. It has been known to be efficient and helpful in some medical simulator research (Chunze Li, 2005).

In education, using computer simulations and visualizations is one of the popular approaches in learning process. It brings together two disparate fields, the traditional sciences and computer graphics. The ability of Augmented Reality in augmenting the audio-visual contents related to the education contents may serve as a motivation for the learning process to be carried out efficiently.

1.2 Problem Statement

In their 2007 book, authors Junco and Mastrodicasa provided the result of their research study about the personality profiles of Millennials, or commonly known as Generation Y. They reported that generation Y whom we may define as those who were born between 1983 to early 2000, used technology at higher rates compared to people from other generation. This finding may explains why today’s kids especially those who are still in primary school prefer to use digital devices compared to their textbooks. Today’s students find it boring to use their textbook except for classroom activities. This is a problem to the educators as well as the parents because textbooks are the main references for a student as it represent the actual standard in learning process. This phenomenon can lead to the assumption that the students would not use the textbook for self-study.
The other problem with today’s education process is that the conventional linear teaching method that is carried out without interactivity will leave lesser experience to the students, thus lead to a less interest in certain critical subject such as Science. While some subjects can only be taught without additional educational tools, some might need it to enhance the understanding towards certain process. In learning process, understanding on certain topics can be enhanced when students try to relate the new knowledge with the real world representation, and understand it better if it is done interactively.

1.3 Project Objective

The objective of this project is to consider the potential of Augmented Reality as one of the multimedia technology in order to help engaging the students and their textbooks. The objective can be specifically outlined as follows:

1. Enhance textbooks in order to engage a reader in ways that have never been possible by designing a mentoring system to serve the purpose of self-studying.

2. Provide students with augmented audio-visual contents as the representation of their textbook contents which they can interact with in real time.

3. Provide how to interact and augment the educational programs contents without the use of fiduciary markers.
1.4 Scope of Project

The application developed in this project is designed mainly for the students in standard six of Malaysia public elementary school who are also known as teenagers of generation Y who was born in year 1983 to early 2000. The contents of the application were constructed based on their Science for Year-Six textbook. The contents integrate all multimedia elements such as text, video, sound, animation and images. It covers Unit 6 of the textbook, titled Eclipse from page 91 of the textbook until page 100. This application is a desktop-based application its deployment limited to only home desktop player.

1.5 Justification of Project

E-learning has become a common practice in today’s education, mainly because it offers a great variety of educational tools and serves as an additional initiative to achieve educational goals. The main reason e-learning was introduced is to make use of all multimedia technologies available to be integrated with educational contents in order to provide a more interactive and interesting way of learning. Interactivity can be achieved in many ways; however it will always be better if it involves the interaction of both user and application, in real time, and real world. Augmented Reality is the technology which offers this kind of possibility.

Augmented Reality has become so vast in scope, expanding from one field to another and contributes in so many applications development. Its ability in providing fully immersive interaction with users is a great opportunity to be deployed for education purpose. Since
students of generation Y attracted the most to digital interaction, it serves the best platform to be used compared to other methods.

1.6 Summary

This rest if the report is organized in the following manner: Chapter 2 provides a brief literature review of previous work on Augmented Reality, focusing mainly in education field. Chapter 3 describes the steps involved for the methodology used throughout the development of this project. Chapter 4 discusses the results and some analysis from the survey carried out. Chapter 5 concludes the whole project. In this chapter, there is summary of the method, findings and advantages of the project.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This section briefly discusses on previous works that have been done using Augmented Reality approach mainly in the field of education.

Augmented Reality defines the ability of overlaying computer graphics onto the real world. The technology enables users to simultaneously see the real world and the virtual imagery attached to it. For the past few years, this can only be made possible by using certain dedicated devices such as head-mounted display or glasses to connect the real world and the virtual imagery. However, nowadays with the advancement in technology, these two separated world can also be combined by using gestures of one’s body. As the result, AR interfaces enhances the real world experience in ways that has never been possible.

Successful single user Augmented Reality interfaces have been developed for computer aided-instruction [5], manufacturing [4], and medical visualization [2]. These applications managed to enhance the experience of interaction between a person and the real world in ways that never been possible before. Bajura et al for instance have developed a medical interface that overlays virtual ultrasound images onto a patient’s body, allowing doctors to have “X-Ray” vision in a needle biopsy task.

In printing industry, Freiner has made an innovation to help user to handle their laser printer efficiently. What he did was using Augmented Reality techniques to allow users see virtual annotations appearing over a laser printer, showing them how to repair the machine. The
great characteristics of this application were that the user can move around the three dimensional virtual image and view it from any vantage point, just like a real object.

AR technology has developed extremely significant to the point where it can be applied to a much broader range of application areas, and education is one of the areas where this technology could be especially treasured. There are numerous reasons why augmented reality is said possible to offer a different educational experience, for example, AR supports seamless or immersive interaction between real and virtual environments, the use of a tangible interface metaphor for object manipulation as well as the ability to transition smoothly between reality and virtually.

2.2 Seamless Interaction

Augmented Reality offers the seamless interaction ability. In a classroom situation, students will understand better if they are in the common workspace. However it still hard to achieve in computer-based education even if they are side by side because they are working on separate computers. It is believed that students will perform better if they were gathering together around a single machine. This is what motivates researchers from across the world to create an environment which can gather students especially in distance learning. This is where the idea of using Augmented Reality arises.

A Real-Time Interactive Virtual Classroom is one of the examples of AR system developed to serve this purpose. The system can handle video, audio, electronic slides, handwritten text material, and ASCII text. The system allows instructors to control the entire session. Remote participants can interact with the live class in real-time by being able to ask questions which are audible and visible to other participants. With this system, remote participants can get an experience close to that of the in-class participants [9].
Another example is the work done by Yuanchun Shi et al in “Smart Remote Classroom” and [8]. Yuanchun Shi tried to solve the difficulties of creating a virtual classroom that is insufficient in the support of large-scale user access and cannot accommodate heterogeneous devices and network access [10]. This work tackles these difficulties by developing a hybrid application-layer Multicast protocol called TORM and an adaptive Content Delivery Scheme called AMTM to facilitate a large scale users to access a virtual classroom with different devices and network conditions at once. They also developed dedicated software called SameView which take use of the proposed TORM and AMTM technology, which results in the ability to record all the entire process of a class into a compound multimedia document for later retrieval of the class.

All of the above technology was then gathered together to develop an augmented classroom called Smart Classroom where the user interface of the SameView for the teacher are distributed in and merged with the room space. Thus the teacher can instruct the remote students just like face-to-face teaching in a conventional classroom.

2.3 Tangible Interface Metaphor

In education, Augmented Reality can also be used to enhance collaborative task. In Augmented Reality, there is a close relationship between virtual and physical objects. The physical objects can be enhanced in ways not normally possible such as by providing dynamic information overlay and physically based interactions. AR applications based on a perceptible or tangible interface metaphor use physical objects to manipulate virtual information in an intuitive manner.

A good example of this is the StudierStube project of Schmalsteig, et al [6] and [7]. In mathematics and geometry, the main advantage of using an AR system is that students actually see three dimensional objects which previously they had to calculate and construct
with traditional methods like pen and paper. Instead of working with such old methods, it is better to work directly in 3D space. In this work, user use see-through head mounted display to collaboratively view 3D models of scientific data superimposed on the real world. As a result, complex spatial problems may be understood better and faster, as well as spatial relations. Schmalsteig et al report that users find the interface very natural and conducive to real world collaboration, because the groupware support can be mostly left to social protocols.

2.4 Transitional Interfaces

Transitional interfaces in Augmented Reality scope refers to the smooth transition between realism towards virtuality.

As computers become more pervasive and invisible there is a need for new interfaces that blur the line between reality and virtual reality and let users easily move between the physical and digital realm. The best example for this transition is the young children who often fantasize about being swallowed up into the pages of a fairy tale and becoming part of the story. The MagicBook perhaps is the best example of application which fits the needs of these young children. The MagicBook is a mixed reality interface that uses a real book to seamlessly transport users between reality and virtuality [3]. A vision-based tracking method is used to overlay virtual models on real book pages, creating an Augmented Reality scene. When users see an AR scene they are interested in they can fly inside it and experience it as an immersive Virtual Reality.
2.5 Conclusion of Literature Review

Although Augmented Reality technology has already been in place for years and has already achieved its maturity, its potential in education is just beginning to be explored. Contrasting with other computing technologies, AR deals with seamless collaboration between the real and virtual worlds, a perceptible interface metaphor and a means for transitioning between real and virtual world. Both educators and researchers should work hand in hand to ensure that this technology is explored and deployed for the improvement of education quality.
CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter will discuss the Prototyping Model which was used throughout the completion of this project. The stages involved in this model are planning, analysis, system design, implementation, testing, installation and operation. Each stage consists of several tasks.

3.2 Planning

This phase defines the project activities and describes how the project will be accomplished. Planning helps in the estimation of time and resources required, and provide a framework for review and control. For this project, the planning phase was divided into 3 sub task:

3.2.1 Brainstorming

During brainstorming, a discussion with project supervisor was carried out. The discussion issues involved observing everyday scenarios from which we listed out some problems. After that we gather some ideas to overcome the problems and construct it in the form of project objectives.

3.2.2 Finding Research Topic

To overcome the problems, a few research topics which are related to the problems were examined. The most relevant topics which meet some criteria defined earlier
were extracted from the list and thorough check was done to them. For this project, the research topics are in the scope of Augmented Reality fields.

3.2.3 Preparing Gantt Chart

Once the research topics have been identified, a Gantt chart is prepared. The Gantt chart consists of the tasks involved, the duration to perform the tasks and the sequencing of these tasks. The Gantt chart serves as the guideline to ensure the project runs smoothly and following the given dateline. Refer Figure 1.0 for this project’s Gantt chart.

This project was completed within 16 weeks with planning and requirement analysis process was carried out earlier during proposal preparation. The Gantt chart of this project is as shown in Figure 1.0. It includes major activities and task taken for the whole development period.

![Figure 1.0: Project Gantt chart](image-url)
3.3 Analysis

After identifying all the attributes involved in this project during planning phase, thorough analysis is done. This involves analyzing on existing techniques used to cater the scenarios discussed during the brainstorming session and specify the requirements needed. Analysis phase were constructed by 4 sub tasks:

3.3.1 Literature Review

Literature review is an important process in every research or project development. It is a continuous process which means that it is done from the starting point of the project until the completion of the project. In this stage, review has been made to various existing works which related to Augmented Reality.

3.3.2 Problem Statement

From the brainstorming session, the problems were then constructed into a form of statements.

1. Students are lack of motivations to use their textbooks except for classroom activity. It gives a great possibility that they won’t use it for self-study.

2. Conventional linear teaching method which is without interactivity leave lesser experience to students, thus lead to a less interest in certain critical subject such as Science.
3.3.3 Project Objectives

In order to overcome the problems, some ideas were expressed in the form of project objectives. The goal or objectives of a project is very important because it will at the end determine whether the project is a success or a failure. The objectives of this project are:

1. To enhance textbooks in order to engage a reader in ways that have never been possible by designing a mentoring system to serve the purpose of self-studying.
2. To provide students with augmented audio-visual contents as the representation of their textbook contents which they can interact with in real time.
3. To provide how to interact and augment the educational program contents without the use of fiduciary markers.

3.3.4 Requirements

To achieve the objectives of the project, some requirements were identified. The requirements tell about what the application should cover and what it will not cover. It defines the scope of the project as follows.

1. The application will be a desktop-based application, which can be run on both Windows and Mac operating system.
2. The application is designed for year-six students of Malaysia public elementary school.
3. The contents in the application are from Unit 6: Eclipse, of Science for Year-Six textbook.
3.4 Application Design

Application design describes the overall structure of the application in order to make it a functional application. Generally, for this project, the application was designed by considering 3 main steps; Propose techniques, contents design flow and interactivity design flow.

1. Propose Technique

For this project, the design process was divided into 2 main sections:

a. Content creations

b. Interactivity

For content creation, the technique involved were 3D modeling, texturing, animating using Autodesk Maya 2012, adding effects and video compositing using Adobe After Effects, sound recording using Audacity and video editing by using Adobe Premiere.

For the interactivity part, the augmented reality environment is built by using D’Fusion Studio by Total Immersion. This part is the heart of the project where the interaction between user and the application was created to achieve the project objective. Interactivity part includes setting up the camera, configure it to make the interaction works well and manage all the attributes to ensure that it functions as how it should be.
2. Contents Creation

The contents for the application were developed using various tools. D’Fusion studio takes 3D objects as the contents. 3D modeling is the first step in the contents creation, followed by texturing and animating.

The steps taken in Autodesk Maya 2012 to create the animation for page 1 (same basic concepts applied to the other 3D contents creation, with slight changes) are:

a. 3D Modeling

Create > NURBS > Primitives > Sphere > rename > Scale (depends on the size of the planets) > ENTER > Save

![Figure 1.2 3D Modeling](image)

Repeat the steps to create the rest of the planets

b. Texturing

Window > Rendering Editors > Hypershade > click Lambert icon (8 times to create a total of nine Lambert shading groups in the Hypershade window) > rename > apply shaders to the planet (select a planet in the perspective window > right-clicks it's material > drag up to highlight Assign Material to Selection > release button to select it) > Save
c. **Create Animation**

Press F2 (open Animation menu set) > Set animation length using Range slider (enter 1 in Scene Start Frame and 240 in Scene End Frame) > click Animation Preference icon > Setting (set Time to NTSC 30fps).

Animate the Mercury, repeat by the rest:

- Select Mercury, and press E to activate the Rotate tool. Press F to focus on Mercury in the perspective view, or zoom in on it manually.
- Make sure current frame is frame 1 of the animation range by clicking and dragging the Scrub bar to place it at the desired frame.
- For Mercury, set initial keyframe for the Y-axis rotation. Click the Rotate Y’s attribute name in the Channel Box to select it. In Main Menu bar, choose Animate > set key.
- Using the Scrub bar, go to frame 240. Grab the rotation manipulator handle by the Y-axis and turn it clockwise a few times. Release the mouse button.
Choose Animate > set key with the Rotate Y attribute still selected in the Channel Box.

Scrub Time Slider to play back animation.

Save

Figure 1.4 Animation

d. Sound Recording in Audacity

Open Audacity folder and click on the icon

Start by clicking the record button (red circle) and begin speaking.

Once finish, click the stop button (yellow square).

To review the recording, click the play button (green triangle)

Go to file, export as mp3

Figure 1.5: Review Recording
e. Basic video compositing using Adobe After Effects

- Create a new project (File > New > New Project)

- Create a new Composition, set the comp resolution to 1024x768

 (Composition > New Composition)
Figure 1.8: Create New Composition in After Effects

- Import rendered image sequences from Maya (File > Import > File)

Figure 1.9: Import Rendered Sequences
➢ Place the sequence on the timeline, re-time the sequence to make it in sync with audio.

![Time Stretch](image)

Figure 2.0: Re-time Sequence

➢ Set render for output (Composition > Add to Render Queue)

![Render Queue](image)

Figure 2.1: Set Render Output
Choose render output format (Output Module : Custom: Windows Media, Codec: Windows Media Video 9 Advanced Profile, Bitrate mode: Constant, Maximum Bitrate: 10000, Image Quality: 100)

Figure 2.2: Choose Render Output

f. Video Editing using Adobe Premier

Create New Project (File > New > Project)

Figure 2.3: Create Project in Adobe Premiere
REFERENCES

[8] Radu Dondera, Chun Jia, Voicu Popescu et al, “Virtual Classroom Extension for Effective Distance Education”, Purdue University, 2008
