Abstract

In this thesis we investigate theoretically various types of sculptured thin film (STF) envisioned as platforms for optical sensing. A STF consists of an array of parallel nanowires which can be grown on a substrate using vapour deposition techniques. Typically, each nanowire has a diameter in the range from $\sim 10 - 300$ nm while the film thickness is $\lesssim 1\mu$m. Through careful control of the fabrication process, both the optical properties and the porosity of the STF can be tailored to order. These abilities make STFs promising for optical sensing applications, wherein it is envisaged that the material to be sensed infiltrates the void region in between the parallel nanowires and hence changes the optical properties of the STF. Various homogenization formalisms can be used to estimate the constitutive parameters of the infiltrated STFs. In this thesis two different homogenization formalisms were used: the Bruggeman formalism (extended and non–extended versions) and the strong-permittivity-fluctuation theory (SPFT). These were used in investigations of the following optical–sensing scenarios: (i) Electromagnetic radiation emitted by a dipole source inside an infiltrated chiral STF. The effects of using the extended Bruggeman homogenization formalism, which takes into account the nonzero size of the component particles, were studied. (ii) Surface–plasmon–polariton waves on a metal–coated, infiltrated columnar thin film. The influences of using the extended SPFT formalism, which takes into account the nonzero size of the component particles and their statistical distributions, were explored. (iii) A metal–coated infiltrated chiral STF which supports both surface-plasmon-polariton waves and the circular Bragg phenomenon. The possibility of using in parallel both surface-plasmon-polariton waves and the circular Bragg phenomenon was investigated using the non–extended Bruggeman formalism. Our numerical studies revealed that the design performance parameters of the infiltrated STF are bode well for these optical–sensing scenarios. The use of inverse Bruggeman formalism was also investigated: this was found to be problematic in certain constitutive parameter regimes, but not those for optical–sensing scenarios considered in this thesis.
Contents

Acknowledgements iv
Abstract v
Publications and Presentations vi
Contents ix
List of Acronyms and Symbols xii
List of Figures xvii

1 Introduction
1.1 Background of Research 1
1.2 Objectives of Research 2
1.3 Importance of Research 2
1.4 Framework of Research 2

2 Homogenization formalisms
2.1 Introduction 5
2.2 The Maxwell Equations and Constitutive Relations 5
2.3 Depolarization dyadic 8
2.4 Distributional statistics 10
2.5 Homogenization formalisms 11
2.5.1 Preliminaries 11
2.5.2 Maxwell Garnett formalism 11
2.5.3 Bruggeman formalism 12
2.5.4 Strong Property Fluctuation theory 13
2.6 Conclusion 15
List of Acronyms and Symbols

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBP</td>
<td>circular Bragg phenomenon</td>
</tr>
<tr>
<td>CLC</td>
<td>cholesteric liquid crystal</td>
</tr>
<tr>
<td>CSTF</td>
<td>chiral sculptured thin film</td>
</tr>
<tr>
<td>CTF</td>
<td>columnar thin film</td>
</tr>
<tr>
<td>LCP</td>
<td>left circular polarization</td>
</tr>
<tr>
<td>RCP</td>
<td>right circular polarization</td>
</tr>
<tr>
<td>SMP</td>
<td>surface multiplasmonics</td>
</tr>
<tr>
<td>SPFT</td>
<td>strong-permittivity-fluctuation theory</td>
</tr>
<tr>
<td>SPP</td>
<td>surface-plasmonic-polaritonic</td>
</tr>
<tr>
<td>STF</td>
<td>sculptured thin film</td>
</tr>
</tbody>
</table>

Operators and functions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>([A]^{ad})</td>
<td>adjoint of matrix (A)</td>
</tr>
<tr>
<td>([A]^{-1})</td>
<td>inverse of matrix (A)</td>
</tr>
<tr>
<td>([A]^T)</td>
<td>transpose of matrix (A)</td>
</tr>
<tr>
<td>(\text{det}(A))</td>
<td>determinant of matrix (A)</td>
</tr>
<tr>
<td>(\text{Im}(\cdot))</td>
<td>imaginary part of (\cdot)</td>
</tr>
<tr>
<td>(\text{Re}(\cdot))</td>
<td>real part of (\cdot)</td>
</tr>
<tr>
<td>(\text{tr}(A))</td>
<td>trace of matrix (A)</td>
</tr>
<tr>
<td>(\delta(\cdot))</td>
<td>Dirac delta function</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>f</td>
<td>volume fraction</td>
</tr>
<tr>
<td>k_0</td>
<td>free-space wavenumber</td>
</tr>
<tr>
<td>L</td>
<td>correlation length</td>
</tr>
<tr>
<td>n_f</td>
<td>refractive index of the fluid filling the void region</td>
</tr>
<tr>
<td>n_s</td>
<td>refractive index of the deposited material</td>
</tr>
<tr>
<td>r_p</td>
<td>complex-valued reflection</td>
</tr>
<tr>
<td>r_t</td>
<td>complex-valued transmission</td>
</tr>
<tr>
<td>Z_0</td>
<td>free-space intrinsic impedance</td>
</tr>
<tr>
<td>ϵ_0</td>
<td>permittivity of free-space</td>
</tr>
<tr>
<td>μ_0</td>
<td>permeability of free-space</td>
</tr>
<tr>
<td>λ_0</td>
<td>free-space wavelength</td>
</tr>
<tr>
<td>χ</td>
<td>column inclination angle</td>
</tr>
<tr>
<td>χ_v</td>
<td>vapour flux incidence angle</td>
</tr>
<tr>
<td>η</td>
<td>size parameter</td>
</tr>
<tr>
<td>γ_b</td>
<td>shape parameter</td>
</tr>
<tr>
<td>ω</td>
<td>angular frequency</td>
</tr>
<tr>
<td>ϵ_m</td>
<td>permittivity of metal</td>
</tr>
<tr>
<td>θ_{inc}</td>
<td>angle of incidence</td>
</tr>
</tbody>
</table>
Vectors

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>magnetic induction</td>
</tr>
<tr>
<td>D</td>
<td>dielectric displacement</td>
</tr>
<tr>
<td>E</td>
<td>electric field</td>
</tr>
<tr>
<td>H</td>
<td>magnetic field</td>
</tr>
<tr>
<td>J</td>
<td>source density</td>
</tr>
<tr>
<td>r</td>
<td>position vector</td>
</tr>
<tr>
<td>(u_{x,y,z})</td>
<td>cartesian unit vectors</td>
</tr>
<tr>
<td>(u_{r,n,b})</td>
<td>tangential, normal and binormal unit vectors</td>
</tr>
</tbody>
</table>

3 \times 3 dyadics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>polarizability dyadic</td>
</tr>
<tr>
<td>D</td>
<td>depolarization dyadic</td>
</tr>
<tr>
<td>I</td>
<td>identity dyadic</td>
</tr>
<tr>
<td>G</td>
<td>dyadic Green function</td>
</tr>
<tr>
<td>U</td>
<td>shape dyadic</td>
</tr>
<tr>
<td>S</td>
<td>rotational dyadics</td>
</tr>
<tr>
<td>(\varepsilon_{cstf})</td>
<td>permittivity constitutive dyadic of CSTF</td>
</tr>
<tr>
<td>(\varepsilon_{ctf})</td>
<td>permittivity constitutive dyadic of CTF</td>
</tr>
<tr>
<td>(\Sigma^{[n]})</td>
<td>nth-order mass operator</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Framework of research .. 4

2.1 Schematic image of the component particles for the Maxwell Garnett formalism.
All the ellipsoidal particles have the same shape and orientation, but randomly
distributed. (Image is reprinted from [16]) 12

2.2 Schematic image of the component particles for the Bruggeman formalism.
All material a and material b particles have the same ellipsoidal shape, but
the shape for each component materials are generally different. The particles
for each component materials are randomly distributed but have identical
orientation. (Image is reprinted from [16]) 12

2.3 Schematic image of the component particles for the SPFT. All material a and
material b particles have the same ellipsoidal shape. The particles for each
component material are randomly distributed, but have identical orientation.
(Image is reprinted from [16]) .. 14

3.1 Plots of ϵ_a as determined by the inverse Bruggeman formalism (red, solid
curves) and the inverse Maxwell Garnett formalism (blue, dashed curves) versus
f_a for $\epsilon_b = \pm 2$ and $\epsilon_{MG}^{Br,hcm} = 3$. Estimates of ϵ_a delivered by the inverse Maxwell
Garnett formalism are strictly valid only for $f_a \lesssim 0.3$ 19

3.2 Plots of the real and imaginary parts of ϵ_a as determined by the inverse Bruggeman
formalism (red, solid curves) and the inverse Maxwell Garnett formalism (blue, dashed curves) versus f_a for $\epsilon_b = 2$ and $\epsilon_{MG}^{Br,hcm} = 3 + \delta i$ where
$\delta \in \{0.1, 1, 10\}$. Estimates of ϵ_a delivered by the inverse Maxwell Garnett formalism are strictly valid only for $f_a \lesssim 0.3$ 20

3.3 As Fig. 3.2 except that $\epsilon_b = -2$.. 21

4.1 Scanning electron micrograph of CTF. (Image is reprinted from [44]) 24
4.2 Scanning electron micrograph of CSTF (Image is reprinted from [49]).

4.3 Schematic of (a) CTF and (b) CSTF growing, with column inclination angle χ, on a substrate. The vapour incidence angle is $\chi_v \leq \chi$. The columns grow along the direction of the unit vector \mathbf{u}_r.

5.1 Real and imaginary parts of the relative permittivity parameters ϵ_{a2}, ϵ_{b2} and ϵ_{c2} versus refractive index $n_\ell \in (1,1.5)$ and relative size parameter $k_0 \eta \in (0,0.2)$.

5.2 A schematic diagram of the scenario under investigation: radiation emitted from a dipole source embedded within an infiltrated CSTF occupying $-L < z < L$. Herein, CSTF is made from patinal® titanium oxide.

5.3 Projections of $|P_{LCP}|$ and $|P_{RCP}|$ (scaled by $10^{13} \omega^{-2} |p|^{-2}$) onto the $z = 0$ plane for $z^{obs} > L$ and $z^{obs} < -L$. Here $\lambda_0 \in (683.6nm, 763.6nm, 803.6nm)$ and $n_\ell = 1.0$.

5.4 As Fig. 5.3 but with $\lambda_0 \in (745.2nm, 825.2nm, 865.2nm)$ and $n_\ell = 1.25$. The relative permittivity parameters $\{\epsilon_{a2}, \epsilon_{b2}, \epsilon_{c2}\}$ for the infiltrated CSTF were computed using the non–extended version of the Bruggeman homogenization formalism.

5.5 As Fig. 5.4 but with $\lambda_0 \in (804.9nm, 884.9nm, 924.9nm)$ and $n_\ell = 1.5$.

5.6 λ^Br_0 and $\Delta \lambda^Br_0$ plotted against n_ℓ for $\theta^{obs} = 0^\circ$ (solid, red curve), $\theta^{obs} = 30^\circ$ (dashed, green curve) and $\theta^{obs} = 60^\circ$ (broken dashed, blue curve). The relative permittivity parameters $\{\epsilon_{a2}, \epsilon_{b2}, \epsilon_{c2}\}$ for the infiltrated CSTF were computed using the non–extended version of the Bruggeman homogenization formalism.

5.7 As Fig. 5.3 but the relative permittivity parameters $\{\epsilon_{a2}, \epsilon_{b2}, \epsilon_{c2}\}$ for the infiltrated CSTF were computed using the extended version of the Bruggeman homogenization formalism with $\eta = 0.1/k_0$, and $\lambda_0 \in (688.4nm, 768.4nm, 808.4nm)$.

5.8 As Fig. 5.7 but with $\lambda_0 \in (746.5nm, 826.5nm, 866.5nm)$.

5.9 As Fig. 5.7 but with $\lambda_0 \in (810.1nm, 890.1nm, 930.1nm)$.

5.10 λ^Br_0 and $\Delta \lambda^Br_0$ plotted against $k_0 \eta$ for $n_\ell = 1.0$ (solid, red curve), $n_\ell = 1.25$ (dashed, green curve) and $n_\ell = 1.5$ (broken dashed, blue curve), as computed using the extended Bruggeman homogenization formalism. The angle $\theta^{obs} = 0^\circ$.

5.11 The projections of P_{LCP} and P_{RCP} with $\epsilon_{a2} = 4.6, \epsilon_{b2} = 5.4, \epsilon_{c2} = 5.0$ and $n_\ell = 1.5$ which were computed using non-extended version of the Bruggeman homogenization formalism and $z > L$ is filled by a fluid of refractive index $n_\ell = 1.5$.

xv
5.12 The projections of \mathbf{P}_{RCP} with $\epsilon_{d2} = 4.6, \epsilon_{b2} = 5.4, \epsilon_{c2} = 5.0$ and $n_\ell = 1.5$. Also
(a) $z = L - 40$, (b) $z = L - 40 - 1200$, (c) $z = L - 40 - 2400$, (d) $z = L - 40 - 3600$,
(e) $z = L - 40 - 4800$ and (f) $z = L - 40 - 6000$ and $z > L$ is filled by a fluid of
refractive index $n_\ell = 1.5$. 53

5.13 The projections of \mathbf{P}_{RCP} with $\epsilon_{d2} = 4.6, \epsilon_{b2} = 5.4, \epsilon_{c2} = 5.0$ and $n_\ell = 1.5$. Also (a)
$z = L - 40$, (b) $z = L - 40 - 1200$, (c) $z = L - 40 - 2400$, (d) $z = L - 40 - 3600$, (e)
$z = L - 40 - 4800$ and (f) $z = L - 40 - 6000$ and there is no fluid above the CSTF. 53

5.14 The projections of \mathbf{P}_{RCP} with $\epsilon_{d2} = 4.6, \epsilon_{b2} = 5.4, \epsilon_{c2} = 5.0$ and $n_\ell = 1.5$. Also (a)
z = $L/2 + 200$, (b) $z = L/2 + 160$, (c) $z = L/2 + 120$, (d) $z = L/2 + 80$, (e) $z = L/2 + 40$,
(f) $z = L/2$, (g) $z = L/2 - 40$, (h) $z = L/2 - 80$, (i) $z = L/2 - 120$, (j) $z = L/2 - 160$
and (k) $z = L/2 - 200$ and there is no fluid above the CSTF: 55

6.1 The real and imaginary parts of the relative permittivity parameter ϵ_{d2} of a fluid–
infiltrated CTF, as computed using the extended second–order SPFT, plotted
against $\eta/L \in (0, 1)$ and $k_0 L \in (0, 0.2)$. The refractive index of the fluid infiltrating
the CTF is fixed at $n_\ell = 1.5$. 61

6.2 The real and imaginary parts of the relative wavenumber σ plotted against
$\eta/L \in (0, 1)$ and $k_0 L \in (0, 0.2)$. 62

6.3 The real part of q_c plotted against $\eta/L \in (0, 1)$ and $k_0 L \in (0, 0.2)$. 62

6.4 A p–polarized plane wave incident on a metal–coated, infiltrated CTF in the
modified Kretschmann configuration. The incident electric field phasor \mathbf{E}_{inc}
($z < 0$) gives rise to a reflected electric field phasor \mathbf{E}_{ref} ($z < 0$) and a transmitted
electric field phasor \mathbf{E}_{tr} ($z > L_\\theta$). 63

6.5 The absorbance A_p (red, solid curve) plotted against θ_{inc} (in degree), for the
modified Kretschmann configuration with $\epsilon_d = 6.76, \epsilon_m = -56 + 21i, \epsilon_\ell = 2.25$,
$L_m = 10 \text{ nm}, L_\\theta = L_m + 1000 \text{ nm}, \eta/L = 1.0$ and $k_0 L = 0.2$. Also plotted is the
quantity $|r_p|^2$ (blue, dashed curve), calculated when $L_m = 0$. Here, $\theta^{inc}_{\theta} = 70.8^\circ$. 65

6.6 As Fig. 6.5 except that the quantities plotted are the reflectance $|r_p|^2$ (red, solid
curve) and $\beta |t_p|^2$ (blue, dashed curve). Here, $\theta^{inc}_{\theta} = 70.8^\circ$. 65

6.7 The angle θ^{inc}_{θ} (in degree) for the scenario represented in Fig. 6.6, plotted versus
$\eta/L \in (0, 1)$ and $k_0 L \in (0, 0.2)$. 66

6.8 As Fig. 6.7 except that the quantity plotted is $d^2 \left(|r_p|^2 \right) / d\theta^{inc}_{\theta}$ (in per degree2),
evaluated at $\theta_{inc} = \theta^{inc}_{\theta}$. 66
6.9 The figure of merit ρ (in degree/RIU) plotted against $\eta/L \in (0, 1)$ and $k_0L \in (0, 0.2)$ for $n_\ell = 1.5$ and $n_\ell = 1.0$.

6.10 The dynamic figure of merit ρ_{RI} (in degree/RIU) plotted against $\eta/L \in (0, 1)$ and $k_0L \in (0, 0.2)$ for $n_\ell = 1.5$.

7.1 A schematic diagram of the geometry under consideration.

7.2 Absorptance for incident LCP (red, solid curve) and RCP (blue, dashed curve) plane waves plotted versus θ_{inc} for $n_\ell = 1.25$, $\chi_v = 25^\circ$, and $\lambda_0 = 526.4$ nm.

7.3 As Fig. 7.2 except that the quantities plotted are the reflectances $R_L = R_{LL} + R_{RL}$ (red, solid curve) and $R_R = R_{LR} + R_{RR}$ (blue, dashed curve).

7.4 Angles $\tilde{\theta}_{inc}^{(1)}$ and $\tilde{\theta}_{inc}^{(2)}$ plotted against the refractive index n_ℓ and free-space wavelength λ_0, for $\chi_v = 25^\circ$. The acronym RIU stands for refractive-index unit.

7.5 Sharpness of R_R peak, as gauged by the second derivative $d^2R_R/d\theta_{inc}^2$ evaluated at $\theta_{inc} = \tilde{\theta}_{inc}^{(1)}$ and $\tilde{\theta}_{inc}^{(2)}$ against the refractive index n_ℓ and free-space wavelength λ_0, for $\chi_v = 25^\circ$.

7.6 Figures of merit $\rho^{(1)}$ and $\rho^{(2)}$ plotted against the refractive index n_ℓ and free-space wavelength λ_0, for $\chi_v = 25^\circ$.

7.7 Refractive-index sensitivity $\rho_{RI}^{(1)}$ and $\rho_{RI}^{(2)}$ plotted against the refractive index n_ℓ and free-space wavelength λ_0, for $\chi_v = 25^\circ$.

7.8 Reflectances $R_{LL,LR,RL,RR}$ and transmittances $T_{LL,LR,RL,RR}$ plotted against the free-space wavelength λ_0 for $\chi_v = 25^\circ$ and $\theta_{inc} = 10^\circ$. The CSTF is infiltrated with a fluid of refractive index $n_\ell = 1.0$ (blue, broken-dashed curves), 1.25 (red, solid curves) and 1.5 (green, dashed curves).

7.9 As for the R_{RR} plots in Fig. 7.8 except (a) for $\chi_v = 15^\circ$ and (b) for $\chi_v = 30^\circ$.

7.10 Refractive-index sensitivity $d\lambda_h^{hole}/dn_\ell$ plotted against λ_h^{hole} for $\chi_v = 15^\circ$ (blue, broken dashed curve), 25° (red, thick solid curve), and 30° (green, dashed curve).

A.1 Plots of the real and imaginary parts of ϵ_a as determined by the inverse Bruggeman formalism (red, solid curves) and the inverse Maxwell Garnett formalism (blue, dashed curves) versus f_a for $\epsilon_b = 2$ and $\epsilon_{hcm}^{Br, MG} = 3 + \delta i$ where $\delta \in [0.01, 0.001]$.

A.2 Plots of the real and imaginary parts of ϵ_a as determined by the inverse Bruggeman formalism (red, solid curves) and the inverse Maxwell Garnett formalism (blue, dashed curves) versus f_a for $\epsilon_b = -2$ and $\epsilon_{hcm}^{Br, MG} = 3 + \delta i$ where $\delta \in [0.01, 0.001]$.

xvi
B.1 Schematic for SPP propagation at interface between metal and dielectric material. 88

B.2 Distribution for the electric field of a \(p \)-polarized SPP wave at interface between metal and dielectric material. .. 89

C.1 The projections of \(P_{LCP} \) and \(P_{RCP} \) with \(\epsilon_{a2} = 3.26, \epsilon_{b2} = 4.46, \epsilon_{c2} = 3.78 \) and
\(n_l = 1.0 \) which were computed using non-extended version of the Bruggeman homogenization formalism and there is no fluid above the CSTF. 93

C.2 The projections of \(P_{LCP} \) and \(P_{RCP} \) with \(\epsilon_{a2} = 3.89, \epsilon_{b2} = 4.9, \epsilon_{c2} = 4.4 \) and
\(n_l = 1.25 \) which were computed using non-extended version of the Bruggeman homogenization formalism and there is no fluid above the CSTF. 94

C.3 The projections of \(P_{LCP} \) and \(P_{RCP} \) with \(\epsilon_{a2} = 3.89, \epsilon_{b2} = 4.9, \epsilon_{c2} = 4.4 \) and
\(n_l = 1.25 \) which were computed using non-extended version of the Bruggeman homogenization formalism and \(z > L \) is filled by a fluid of refractive index
\(n_\ell = 1.5 \). ... 95

C.4 The projections of \(P_{LCP} \) and \(P_{RCP} \) with \(\epsilon_{a2} = 3.94 + 0.0075i, \epsilon_{b2} = 4.92 + 0.0085i, \)
\(\epsilon_{c2} = 4.38 + 0.0084i \) and \(n_l = 1.25 \) which were computed using extended version of the Bruggeman homogenization formalism and \(z > L \) is filled by a fluid of refractive index \(n_\ell = 1.5 \). ... 96

C.5 The projections of \(P_{LCP} \) and \(P_{RCP} \) with \(\epsilon_{a2} = 4.6, \epsilon_{b2} = 5.4, \epsilon_{c2} = 5.0 \) and \(n_l = 1.5 \)
which were computed using non-extended version of the Bruggeman homogenization formalism and there is no fluid above the CSTF. 97
Chapter 1

Introduction

1.1 Background of Research

Composite materials are produced by mixing together different component materials. This process has been studied for quite a long time ago, and has been applied in various applications. A mixture of materials may be considered effectively homogenous when wavelengths are much larger than the particle sizes of the component materials. The estimation of the constitutive parameters of such a homogenized composite material (HCM) is central to the work described in this thesis. Several theoretical approaches can be implemented to estimate the constitutive parameters of HCM [1, 2, 3]. The most common approaches are based on the Maxwell Garnett formalism and the Bruggeman formalism [4]. Like most conventional approaches to homogenization, the Maxwell Garnett formalism and the Bruggeman formalism do not take the statistical distribution of the component particles into account. Instead, the spatial distributions are characterized by volume fraction alone. Moreover, the depolarization dyadics which characterize the electromagnetic response of each component particle embedded in the comparison medium is treated on a vanishingly small region and is represented by the singularity of the corresponding dyadic Green function [5, 6]. In this thesis the conventional homogenization formalisms were used Chap. 3 (Maxwell Garnett and Bruggeman) and Chap. 7 (Bruggeman). In Chap. 5 the extended homogenization formalism based on Bruggeman formalism which takes into account the size of the component particles is used. Meanwhile, in Chap. 6 the statistical distribution of the components phases is taken into account in a more sophisticated homogenization approach known as strong-property-fluctuation theory (SPFT) [7, 8, 9]. This approach is also known as strong-permittivity-fluctuation theory when it is applied to dielectric materials.
1.2 Objectives of Research

The aims of this project are as follows;

a) to understand the concept of homogenization formalisms and including inverse homogenization

b) to study sculptured thin films (STFs), especially columnar thin films (CTFs) and chiral sculptured thin films (CSTFs), with a view to possible applications as optical sensors

c) to explore the emission of electromagnetic radiation from a dipole source embedded inside an infiltrated CSTF where the extended version of Bruggeman formalism is implemented in homogenization studies

d) to investigate the potential of CTF as platforms for exciting surface plasmon polariton (SPP) where the extended version of the second order SPFT is employed in homogenization studies

e) to elucidate the ability of CSTF for exciting surface multi plasmonic (SMP) and exploiting circular Bragg phenomenon (CBP) in parallel where the non-extended version of Bruggeman formalism is applied in homogenization studies

1.3 Importance of Research

The work in this thesis is chiefly aimed at providing a guideline for experimental efforts by presenting numerical studies. We predict how the design parameters of an infiltrated STF which accommodates a more sophisticated homogenization formalisms effect its performance and sensitivity based on optical sensors in particular in exciting SPP and exploiting CBP.

1.4 Framework of Research

This thesis consists of eight chapters. The first chapter discusses the background of research, objectives of research, importance of research and framework of research.

In Chap. 2, the theory describing the electromagnetic response of an inclusion embedded in the comparison medium and the statistical distribution of the components phases is
presented. This chapter also provides discussion on conventional approaches of homogenization to estimate the constitutive parameters of HCMs, namely Maxwell Garnet formalism, Bruggeman formalism and SPFT.

Chap. 3 is focused on the Bruggeman formalism for inverse homogenization. The limitation of this formalism is studied by comparing the results with the inverse Maxwell Garnett formalism. Numerical studies are presented for dissipative and nondissipative homogenization scenarios.

The background of STF is provided in Chap. 4. Two types of STF are considered, i.e., CTF and CSTF. Homogenization studies on these STF used to estimate their constitutive parameters also presented in this chapter.

In Chap. 5, the emission of electromagnetic radiation from a dipole source embedded inside an infiltrated CSTF is explored. The extended version of Bruggeman formalism is implemented. This study is extended by investigating the influence of different positions of the dipole source. The non-extended version of the Bruggeman formalism is considered in this case.

Chap. 6 is investigating the potential of CTF as platforms for exciting SPP. Higher order homogenization technique, based on an extended version of the second order SPFT is used to estimate the constitutive parameters of the infiltrated CTF.

Our final numerical works are revealed in Chap. 7. This work investigates the ability of CSTF for exciting SMP and exploiting CBP in parallel. In order to determine the relative permittivity parameters of the infiltrated CSTF, the non-extended version of Bruggeman homogenization formalism is implemented.

Chap. 8 consists the summary of this research. Also provided are some recommendations for future works. The framework of this research is summarized in Fig. 1.1.
Figure 1.1: Framework of research
Chapter 2

Homogenization formalisms

2.1 Introduction

The mixture of two component materials yields a composite material which may be regarded as effectively homogeneous when the particle sizes of the component material are small enough compared to wavelengths involved. The estimation study of the effective constitutive parameters of such homogenized composite materials (HCMs) is the main focus in this chapter. In order to achieve this, we first provide a brief introduction to Maxwell equations [10] and constitutive relations which is important in describing the electromagnetic properties of the materials, as provided in Sec. 2.2. It is followed by a presentation of the theory of the depolarization dyadic (Sec. 2.3) and distributional statistics (Sec. 2.4) which both provide the nanostructural details of the ellipsoidal particles inside the materials. Finally, the homogenization formalisms studies are given in Sec. 2.5. We considered three homogenization formalisms i.e., Maxwell Garnett formalism, Bruggeman formalism and strong–property–fluctuation theory (SPFT).

2.2 The Maxwell Equations and Constitutive Relations

The Maxwell equations provide the starting point in characterizing all electromagnetic phenomena. Maxwell equations in the time–domain take the form [11]

\[\nabla \times \mathbf{E}(\mathbf{r}, t) = -\frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t), \quad (2.1) \]

\[\nabla \times \mathbf{H}(\mathbf{r}, t) = \frac{\partial}{\partial t} \mathbf{D}(\mathbf{r}, t) + \mathbf{J}(\mathbf{r}, t), \quad (2.2) \]
\[\nabla \cdot \mathbf{B}(r, t) = 0, \quad (2.3) \]
\[\nabla \cdot \mathbf{D}(r, t) = \rho(r, t), \quad (2.4) \]

where \(\mathbf{E}(r, t) \), \(\mathbf{H}(r, t) \), \(\mathbf{D}(r, t) \) and \(\mathbf{B}(r, t) \) stand for the electric field, magnetic field, dielectric displacement and magnetic induction respectively, while the current and charge densities are represented by \(\mathbf{J}(r, t) \) and \(\rho(r, t) \), respectively. In the following, we only make use of 2.1 and 2.2.

Eqs. 2.3 and 2.4 can be derived from 2.1 and 2.2 under the assumption of continuity of charge \[11\]. The two vector differential equation 2.1 and 2.2 involve four unknown vector fields, \(\mathbf{E}(r, t) \), \(\mathbf{H}(r, t) \), \(\mathbf{D}(r, t) \) and \(\mathbf{B}(r, t) \). In order to allow a unique solution for the field vectors, further equations are required. These equations take the form of the constitutive relations which characterize the behaviour of the material when applying fields to the material. For an anisotropic dielectric medium, the constitutive relations may be written as \[11, 12\]

\[\mathbf{D}(r, t) = \int_{-\infty}^{0} \tilde{\epsilon}(r, t') \cdot \mathbf{E}(r, t - t') \, dt', \quad (2.5) \]
\[\mathbf{B}(r, t) = \mu_0 \mathbf{H}(r, t), \quad (2.6) \]

where \(\tilde{\epsilon}(r, t') \) indicates the time domain permittivity dyadic, while \(\mu_0 \) represents the permeability of free space which both have a role in specifying the material. The time dependence of \(\mathbf{D} \) is different to that of \(\mathbf{E} \) since the material requires some time to respond to the applied field.

In solving for fields \(\mathbf{D} \) and \(\mathbf{E} \), it is complicated if the constitutive relations 2.5 and 2.6 are directly substituted into the Maxwell equations 2.1 and 2.2. Instead, we introduce Fourier transformation \[13\]

\[f(r, \omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(r, t) \exp(i\omega t) \, dt, \quad (2.7) \]

to transfer the time-domain to the frequency-domain. The \(f(r, \omega) \) is representing the frequency-domain \(\tilde{\epsilon}, \mathbf{E}, \mathbf{D}, \mathbf{B}, \mathbf{H} \) and \(\mathbf{J} \) while \(\omega \) is an angular frequency.

After applying Fourier transform to 2.5 and 2.6 along with the convolution theorem\[13\]

Suppose that \(f(r, t) \) and \(g(r, t) \) are piecewise continuous, bounded, and absolutely integrable on the \(t \)-axis. Then the convolution is

\[(f \ast g)(r, t) = \int_{-\infty}^{\infty} f(r, t') g(r, t - t') \, dt', \quad (2.8) \]
and its Fourier transformation

\[\mathcal{F}(f \ast g) = \sqrt{2\pi} \mathcal{F}(f) \mathcal{F}(g), \quad (2.9) \]

the constitutive relations in frequency–domain may be written as

\[\mathbf{D}(\mathbf{r}, \omega) = \varepsilon(\mathbf{r}, \omega) \cdot \mathbf{E}(\mathbf{r}, \omega), \quad (2.10) \]
\[\mathbf{B}(\mathbf{r}, \omega) = \mu_0 \mathbf{H}(\mathbf{r}, \omega). \quad (2.11) \]

Therefore, the Maxwell equations 2.1 and 2.2 are presented in the frequency-domain as

\[\nabla \times \mathbf{E}(\mathbf{r}, \omega) = i\omega \mu_0 \mathbf{H}(\mathbf{r}, \omega), \quad (2.12) \]
\[\nabla \times \mathbf{H}(\mathbf{r}, \omega) = -i\omega \varepsilon(\mathbf{r}, \omega) \cdot \mathbf{E}(\mathbf{r}, \omega) + \mathbf{J}(\mathbf{r}, \omega). \quad (2.13) \]

Upon eliminating \(\mathbf{H}(\mathbf{r}, \omega) \) from 2.12 and 2.13, we obtain

\[\nabla \times \nabla \times \mathbf{E}(\mathbf{r}, \omega) - \omega^2 \mu_0 \varepsilon(\mathbf{r}, \omega) \cdot \mathbf{E}(\mathbf{r}, \omega) = i\omega \mu_0 \mathbf{J}(\mathbf{r}, \omega). \quad (2.14) \]

Since 2.14 is a linear equation, we may express its solution in terms of dyadic Green function per

\[\mathbf{E}(\mathbf{r}, \omega) = i\omega \mu_0 \int_V \mathbf{G}(\mathbf{r} - \mathbf{r}', \omega) \cdot \mathbf{J}(\mathbf{r}', \omega) \, d^3 \mathbf{r}'. \quad (2.15) \]

Herein, \(\mathbf{G}(\mathbf{r} - \mathbf{r}', \omega) \) is called the dyadic Green function which is a function of the field point \(\mathbf{r} \) and the source point \(\mathbf{r}' \). The integration is calculated within the source region \(V \). Substitution of 2.15 into 2.14 shows that \(\mathbf{G}(\mathbf{r} - \mathbf{r}', \omega) \) must satisfies the differential equation [11]

\[\nabla \times \nabla \times \mathbf{G}(\mathbf{r} - \mathbf{r}', \omega) - \omega^2 \mu_0 \varepsilon(\mathbf{r}, \omega) \cdot \mathbf{G}(\mathbf{r} - \mathbf{r}', \omega) = \delta(\mathbf{r} - \mathbf{r}') \mathbf{I}. \quad (2.16) \]

with \(\delta(\mathbf{r} - \mathbf{r}') \) is the Dirac delta function and \(\mathbf{I} \) is \(3 \times 3 \) identity dyadic representing the source terms in 2.14. Generally, the dyadic Green function can be thought as representing the response of the medium at \(\mathbf{r} \) to a point source at \(\mathbf{r}' \).
2.3 Depolarization dyadic

Depolarization dyadics play an important role in characterizing the electromagnetic response of an ellipsoidal inclusion embedded in an anisotropic dielectric comparison medium, for example, which take the form [14]

\[
D_{\text{cm}} = \int_{V_0} G_{\text{cm}}(r) \, d^3 r = \int_{V_0} G_{\text{cm}}(U \cdot r) \, d^3 r. \tag{2.17}
\]

Herein, \(G_{\text{cm}}(r)\) is the dyadic Green function of the comparison medium in which the inclusion is embedded. Explicit expressions for dyadic Green functions are not generally available for anisotropic materials. However, it suffices here to consider the spatial Fourier transform of \(G_{\text{cm}}(r)\), viz

\[
\tilde{G}_{\text{cm}}(q) = \int_{r} G_{\text{cm}}(r) \exp \left(i q \cdot r \right) \, d^3 r, \tag{2.18}
\]

and which can be found by taking the spatial Fourier transform of 2.16. We obtain

\[
\tilde{G}_{\text{cm}}(q) = -i \omega \mu_0 \left(q \times I + \omega^2 \mu_0 \epsilon_{\text{cm}} \right)^{-1}, \tag{2.19}
\]

wherein \(\epsilon_{\text{cm}}\) denotes the permittivity dyadic of the comparison medium. The ellipsoidal surface of \(V_\eta^0\) in 2.17 is parametrized by

\[
r_e(\theta, \phi) = \eta \hat{r}(\theta, \phi), \tag{2.20}
\]

in which \(\hat{r}(\theta, \phi)\) is the radial unit vector specified by the spherical polar coordinates \(\theta\) and \(\phi\). The symmetric shape dyadic \(U\) (of unit determinant) maps the spherical region \(V^0\) of radius \(\eta\) onto the ellipsoidal region \(V_\eta^0\). The dyadic Green function in the case of an anisotropic dielectric comparison medium [5], characterized by the permittivity dyadic \(\epsilon_{\text{cm}}\), satisfies the partial differential equation 2.16. In order to consider the depolarization of an inclusion of nonzero volume, \(D\) is expressed as the sum [14]

\[
D_{\text{cm}}(\eta) = D^0_{\text{cm}}(\eta) + D^\eta_{\text{cm}}(\eta), \tag{2.21}
\]

where

\[
D^0_{\text{cm}}(\eta) = \lim_{\eta \to 0} \frac{\eta}{2 \pi^2} \int_q \frac{1}{q^2} \left(\frac{\sin(q\eta)}{q\eta} - \cos(q\eta) \right) \tilde{G}_{\text{cm}}(U^{-1} \cdot q) \, d^3 q, \tag{2.22}
\]

\[
D^\eta_{\text{cm}}(\eta) = \frac{\eta}{2 \pi^2} \int_q \frac{1}{q^2} \left(\frac{\sin(q\eta)}{q\eta} - \cos(q\eta) \right) \tilde{G}_{\text{cm}}(U^{-1} \cdot q) \, d^3 q. \tag{2.23}
\]
and
\[\mathcal{G}_{cm}^\infty \left(\frac{U}{-1} \cdot \mathbf{q} \right) = \lim_{q \rightarrow \infty} \mathcal{G}_{cm} \left(\frac{U}{-1} \cdot \mathbf{q} \right), \tag{2.24} \]
\[\mathcal{G}_{cm}^\eta \left(\frac{U}{-1} \cdot \mathbf{q} \right) = \mathcal{G}_{cm} \left(\frac{U}{-1} \cdot \mathbf{q} \right) - \mathcal{G}_{cm}^\infty \left(\frac{U}{-1} \cdot \mathbf{q} \right). \tag{2.25} \]

Thus, the dyadic \(D_0 = \frac{U}{cm} \) corresponds to the limit \(\eta \rightarrow 0 \) i.e., considering vanishingly small inclusions, whereas the dyadic \(D_\eta = \frac{U}{cm} \) provides the nonzero size of the inclusion particles i.e., \(k_\eta \ll 1 \) but \(k_\eta > 0 \) where \(k_\eta \) is wavenumber in free space and \(k_0 = \frac{2\pi}{\lambda} \) with \(\lambda \) being wavelength. The volume integral 2.22 can be simplified to the \(\eta \)-independent double integral [5, 6]
\[\mathcal{D}_0 = \frac{1}{4\pi i \omega} \int_0^{2\pi} d\phi \int_0^\pi d\theta \sin \theta \left(\frac{1}{\text{tr} \left(\epsilon_{cm} \cdot A \right)} \right), \tag{2.26} \]
where
\[A = \text{diag} \left(\frac{\sin^2 \theta \cos^2 \phi}{U_x^2}, \frac{\sin^2 \theta \sin^2 \phi}{U_y^2}, \frac{\cos^2 \theta}{U_z^2} \right) \tag{2.27} \]
for \(U = \begin{pmatrix} U_x & 0 & 0 \\ 0 & U_y & 0 \\ 0 & 0 & U_z \end{pmatrix} \).

On the other hand, by applying the residue calculus to 2.23, we have the surface integral
\[\mathcal{D}_\eta (\eta) = \frac{1}{4\pi i \omega} \int_0^{2\pi} d\phi \int_0^\pi d\theta \sin \theta \left(\frac{3(k_+ - k_-)}{2\eta} \right) + i \left(\frac{3}{2\eta} \right) \left(\frac{\omega^2 \mu_0}{\kappa_+^3 - \kappa_-^3} \right) \right] A + i \omega^2 \mu_0 \left(\kappa_+ - \kappa_- \right) \beta, \tag{2.28} \]
with
\[\alpha = \left[2 \epsilon_{cm} - \text{tr} \left(\epsilon_{cm} \right) \right] \cdot A - \text{tr} \left(\epsilon_{cm} \cdot A \right) - \frac{\text{tr} \left(\epsilon_{cm} \cdot A \right) \text{tr} \left(A \right)}{\text{tr} \left(\epsilon_{cm} \cdot A \right)} A, \tag{2.29} \]
\[\beta = \frac{\epsilon_{cm} - \text{det} \left(\epsilon_{cm} \right) A}{\text{tr} \left(\epsilon_{cm} \cdot A \right) A}, \tag{2.30} \]
\[\Delta = \left[\left(\text{tr} \left(\epsilon_{cm} \cdot A \right) - \text{tr} \left(\epsilon_{cm} \right) \text{tr} \left(A \right) \right)^2 - 4 \text{det} \left(\epsilon_{cm} \right) \text{tr} \left(A \right) \text{tr} \left(\epsilon_{cm} \cdot A \right) \right]^{1/2}, \tag{2.31} \]
\[\kappa_\pm = \mu_0 \omega^2 \left[\text{tr} \left(\epsilon_{cm} \cdot A \right) \text{tr} \left(A \right) - \text{tr} \left(\epsilon_{cm} \cdot A \right) \pm \Delta \right]. \tag{2.32} \]

The double integrals 2.26 and 2.28 may be evaluated using standard numerical techniques [15].

2.4 Distributional statistics

Consider the homogenization of two different material phases labelled as phase a and phase b. Both phases are considered to consist of randomly distributed, but identical orientation ellipsoidal particles. The size of the particles is specified by η, whereas the ellipsoidal shape is given by U. The space occupied by the component material a and component material b is partitioned into the disjoint regions V_a and V_b. Hence, the distributional statistics of the component phases are expressed by the characteristic functions [7]

\[
\Phi_\ell (r) = \begin{cases}
1, & r \in V_\ell, \\
(\ell = a, b). & \\
0, & r \notin V_\ell, \end{cases}
\] (2.33)

The nth moment of Φ_ℓ is given by the ensemble-average $\langle \Phi_\ell (r_1), ..., \Phi_\ell (r_n) \rangle$ which describes the probability of $r_1, ..., r_n$ inside V_ℓ. The key concept of ensemble-average is to take an average over a large number of different samples of the two component materials. The volume fraction of phase ℓ is given by the first moment of Φ_ℓ; i.e. $\langle \Phi_\ell (r) \rangle = f_\ell$ and obviously $f_a + f_b = 1$. It is noteworthy that the first moment, which only considers the volume fraction of the two components, does not give more information about the composite materials. A more comprehensive description is given by the second moment of Φ_ℓ, which provides a two–point covariance function [8]

\[
\langle \Phi_\ell (r) \Phi_\ell (r') \rangle = \begin{cases}
\langle \Phi_\ell (r) \rangle \langle \Phi_\ell (r') \rangle, & |U^{-1} \cdot (r - r')| > L, \\
\langle \Phi_\ell (r) \rangle, & |U^{-1} \cdot (r - r')| \leq L. \end{cases}
\] (2.34)

The correlation length L is required to be larger than the size of the component particles but much smaller than the wavelength in order to consider the mixture is homogeneous. Certainly, higher–order moment of the Φ_ℓ give a more comprehensive statistical description of composite materials. But, in this thesis we only considered for the first and second order moments of Φ_ℓ, as higher–order moments as described elsewhere [8, 16].
2.5 Homogenization formalisms

2.5.1 Preliminaries

A composite material is formed as a mixture of component materials and yet may be considered effectively homogenous provided that wavelengths are sufficiently larger than the particle sizes of the component materials. The estimation of the constitutive parameters of such a homogenized composite material (HCM) is often derived using the very popular approaches called the Maxwell Garnett homogenization formalism and the Bruggeman homogenization formalism [1, 17]. Like most conventional approaches to homogenization, the Bruggeman formalism does not take the statistical distribution and size of the component phase particles into account. Instead, the spatial distributions are characterized by volume fraction alone and the electromagnetic response of each component particle is treated as a vanishingly small depolarization volume. Therefore, extended homogenization formalisms have been formulated in which a nonzero volume is attributed to the component phase particles [18, 19]. The electromagnetic response of an inclusion embedded in the comparison medium is usually described by the depolarization dyadic. Meanwhile, the statistical distribution of the components phases is characterized by SPFT [20].

2.5.2 Maxwell Garnett formalism

The Maxwell Garnett formalism is intended to estimate the constitutive dyadic of HCM of two component materials. Suppose material \(a\) represents an ellipsoidal inclusion characterized by shape dyadic \(U\). The inclusions may be regarded as randomly distributed, but with identical orientation, as shown in Fig. 2.1. Meanwhile, material \(b\) is regarded as the comparison material with unspecified morphology. Thus, we introduce [4]

\[

\varepsilon_{hcm}^{MG} = \varepsilon_b + f_a a_{a/b} \cdot \left(I - i \omega f_a D_{a/b} (\eta) \cdot a_{a/b} \right)^{-1}, \tag{2.35}
\]

as the Maxwell Garnett estimate of the HCM relative permittivity of an anisotropic dielectric composite material with

\[

a_{a/b} = \left(\varepsilon_a - \varepsilon_b \right) \cdot \left[I + i \omega D_{a/b} (\eta) \cdot \left(\varepsilon_a - \varepsilon_b \right) \right]^{-1}, \tag{2.36}
\]

the polarisability dyadic and \(D_{a/b} (\eta) \left(D_{a/b} (\eta) \right)\) the depolarization dyadic in the component material \(b\).
2.5.3 Bruggeman formalism

In the Bruggeman formalism material a and material b are treated symmetrically. That is, both materials may be regarded as randomly distributed, but with particles identical orientation as illustrated in Fig. 2.2. Furthermore, the shape dyadic of material a and material
as specified by U^a and U^b, respectively. Generally, $U^a \neq U^b$. Therefore, the Bruggeman estimate is generalized as [4]

$$f_a a_{a,Br} + f_b a_{b,Br} = 0,$$ \hspace{1cm} (2.37)

with polarisabilities

$$a_{a,Br} = (\varepsilon_a - \varepsilon_{hcm}^{Br}) \cdot \left[1 + i \omega D_{U^a^*Br} (\eta) \cdot (\varepsilon_a - \varepsilon_{hcm}^{Br}) \right]^{-1},$$ \hspace{1cm} (2.38)

$$a_{b,Br} = (\varepsilon_b - \varepsilon_{hcm}^{Br}) \cdot \left[1 + i \omega D_{U^b^*Br} (\eta) \cdot (\varepsilon_b - \varepsilon_{hcm}^{Br}) \right]^{-1}. \hspace{1cm} (2.39)$$

In solving the nonlinear dyadic Eq. 2.37 for ε_{hcm}^{Br}, the common solution method is Jacobi iteration [21]. Thus, the iterative solution is

$$\varepsilon_{hcm}^{Br} (n) = F \{\varepsilon_{hcm}^{Br} (n-1)\}, \hspace{1cm} (n = 1, 2, ...),$$ \hspace{1cm} (2.40)

where

$$F \{\varepsilon_{hcm}^{Br}\} = \left\{ f_a \varepsilon_a \cdot \left[1 + i \omega D_{U^a^*Br} (\eta) \cdot (\varepsilon_a - \varepsilon_{hcm}^{Br}) \right]^{-1} + f_b \varepsilon_b \cdot \left[1 + i \omega D_{U^b^*Br} (\eta) \cdot (\varepsilon_b - \varepsilon_{hcm}^{Br}) \right]^{-1} \right\}^{-1} \left\{ f_a \left[1 + i \omega D_{U^a^*Br} (\eta) \cdot (\varepsilon_a - \varepsilon_{hcm}^{Br}) \right]^{-1} + f_b \left[1 + i \omega D_{U^b^*Br} (\eta) \cdot (\varepsilon_b - \varepsilon_{hcm}^{Br}) \right]^{-1} \right\}^{-1},$$

and $\varepsilon_{hcm}^{Br} (0) = \varepsilon_{hcm}^{MG}$.

2.5.4 Strong Property Fluctuation theory

A more sophisticated approach to homogenization is provided by SPFT. As for the Bruggeman formalism, SPFT treats the two component material symmetrically, but in higher–order implementations of the SPFT, the shapes and orientations of both component material a and material b particles need to be the same (i.e., $U^a = U^b$). Therefore, the Bruggeman formalism can also be thought of SPFT, but at the lowest order of approximation. A schematic illustration of SPFT is given in Fig. 2.3.

SPFT accommodates the distributional statistics of the particles of the component phases contained by material a and material b. That means, the HCM constitutive parameters are estimated by iterative refinements of the comparison material. The iterations are expressed in term of correlation functions. The two–point covariance function 2.34 along with the correlation length L, describes the statistical geometry of material a and material b and is often implemented to the second order of SPFT. Thus, the second order SPFT estimates of
Figure 2.3: Schematic image of the component particles for the SPFT. All material \(a\) and material \(b\) particles have the same ellipsoidal shape. The particles for each component material are randomly distributed, but have identical orientation. (Image is reprinted from [16]).

The constitutive dyadic of the HCM is given by [22]

\[
\epsilon^{\text{SPFT}[2]}_{\text{hcm}} = \epsilon_{\text{cm}} - \frac{1}{i\omega} \left(I + \Sigma^{[2]} \cdot D U_{\text{hcm}} (\eta) \right)^{-1} \cdot \Sigma^{[2]}.
\]

(2.42)

Herein, \(\Sigma^{[2]}\) is the second order mass operator provided by [23]

\[
\Sigma^{[2]} = f_a f_b \left(a_{a|cm} - a_{b|cm} \right) \cdot D U_{\text{hcm}} (\eta) \cdot \left(a_{a|cm} - a_{b|cm} \right),
\]

(2.43)

with polarisability density dyadics

\[
a_{a|cm} = i\omega \left(\epsilon_a - \epsilon_{\text{cm}} \right) \cdot \left[I + i\omega D U_{\text{hcm}} (\eta) \right]^{-1} \cdot \left(\epsilon_a - \epsilon_{\text{cm}} \right),
\]

(2.44)

\[
a_{b|cm} = i\omega \left(\epsilon_b - \epsilon_{\text{cm}} \right) \cdot \left[I + i\omega D U_{\text{hcm}} (\eta) \right]^{-1} \cdot \left(\epsilon_b - \epsilon_{\text{cm}} \right).
\]

(2.45)

The mass operator \(\Sigma^{[n]}\) is null at the zeroth and first order [9]. Hence, \(\epsilon^{\text{SPFT}[0]}_{\text{hcm}} = \epsilon^{\text{SPFT}[1]}_{\text{hcm}} = \epsilon_{\text{cm}}\) for which the constitutive parameters of the comparison material \(\epsilon_{\text{cm}}\) are provided by Bruggeman formalism estimation \(\epsilon^{Br}_{\text{hcm}}\) [9]. The depolarization dyadic \(D U_{\text{hcm}} (\eta)\) in 2.42 and 2.43 corresponds to component particles with the same shape dyadic \(U\) in the comparison material.
2.6 Conclusion

In this chapter we described the homogenization formalisms used in the later chapters of this thesis. These mathematical constructions will be implemented for certain dielectric materials with a view to optical sensing applications.
Chapter 3

The Bruggeman formalism for inverse homogenization

A composite material is formed as a mixture of component materials. Its may be regarded as being effectively homogeneous when wavelengths are sufficiently larger than the particle sizes of the component materials that make up the composite material. The estimation of the constitutive parameters of such a homogenized composite material (HCM) is often derived using a very widely applied homogenization formalism approach called the Bruggeman formalism [2, 24], from a knowledge of the constitutive parameters of its component materials, along with a knowledge of the distributional statistics and shapes of its component particles [2, 22]. Applications of Bruggeman formalism are continuing to emerge, for examples, in recent developments pertaining to complex HCMs [25, 26] and negatively–refracting metamaterials [22, 27]. However, a certain limitation of the Bruggeman homogenization formalism was reported in 2004 for isotropic dielectric HCMs [28]. The manifestation of physically–implausible Bruggeman estimates resulted from the choice of constitutive parameters for the component materials and independent of the distributional statistics or shapes of the component particles. This limitation which is also relevant to active [29] and anisotropic [30] HCMs, also extends to the Maxwell Garnett homogenization formalism which shares a common provenance with the Bruggeman formalism [17].

In this chapter, we investigate the applicability of the Bruggeman formalism to the inverse homogenization scenario wherein the relative permittivity of one of the component materials is estimated from a knowledge the relative permittivities of the other component material and the HCM. We restrict our attention to the simplest possible case of an isotropic dielectric HCM arising from two isotropic dielectric component materials. Formal expressions have
been established for the inverse Bruggeman formalism (and the inverse Maxwell Garnett formalism) in the general setting of bianisotropic HCMs [31], but in certain cases these formal expressions may be ill–posed [32] and the ranges of applicability of these inverse formalisms have not been established. Generally, inverse problems may be ill–posed even when the corresponding forward problems are well–posed [33]. However, the inverse Bruggeman formalism is fundamentally different to the forward Bruggeman formalism as further described in Sec. 3.1 and some illustrative numerical examples in Sec. 3.2. Our study is partly motivated by very recent implementations of the inverse Bruggeman formalism in estimating nanoscale constitutive and morphological parameters of certain sculptured thin films [34], which is a key step in modelling the electromagnetic response of infiltrated sculptured thin films [35, 36].

3.1 Theory

We consider the homogenization of two isotropic dielectric component materials with relative permittivities ϵ_a and ϵ_b. The component materials a and b are assumed to be distributed randomly as spherical particles with volume fractions f_a and $f_b = 1 - f_a$, respectively. The Bruggeman estimate of the relative permittivity of the corresponding HCM, namely ϵ_{hcm}^{Br}, is provided via [24]

$$f_a \frac{\epsilon_a - \epsilon_{hcm}^{Br}}{\epsilon_a + 2 \epsilon_{hcm}^{Br}} + f_b \frac{\epsilon_b - \epsilon_{hcm}^{Br}}{\epsilon_b + 2 \epsilon_{hcm}^{Br}} = 0,$$

(3.1)

which is nonlinear in ϵ_{hcm}^{Br}. A straightforward manipulation of 3.1 delivers the explicit formula

$$\epsilon_a = \frac{(f_a - 2 f_b) \epsilon_b + 2 \epsilon_{hcm}^{Br}}{f_b (\epsilon_b - \epsilon_{hcm}^{Br}) + f_a (\epsilon_b + 2 \epsilon_{hcm}^{Br})} \epsilon_{hcm}^{Br}$$

(3.2)

for ϵ_a in terms of ϵ_b, ϵ_{hcm}^{Br}, f_a and f_b. Since the component materials a and b are treated in an identical manner within the Bruggeman formalism, the corresponding formula for ϵ_b has the same form as 3.2. Notice that as the inverse Bruggeman equation 3.2 does not involve a square root, there is no scope for $\text{Im} \{\epsilon_a\}$ being nonzero if $\epsilon_b, \epsilon_{hcm}^{Br} \in \mathbb{R}$. This contrasts with the forward Bruggeman formalism where a square root term enables $\text{Im} \{\epsilon_{hcm}^{Br}\}$ to be nonzero even though $\epsilon_a, \epsilon_b \in \mathbb{R}$. This physically–implausible scenario can arise when $\epsilon_a/\epsilon_b < 0$ [28]. Consequently, the explicit formula 3.2 provides the inverse formalism estimate of ϵ_a or ϵ_b whereas the forward formalism estimate of the relative permittivity of the HCM is provided by selecting a root of a quadratic equation. Therefore, the range of applicability of the inverse
Bruggeman formalism cannot be inferred from a knowledge of the range of applicability of the forward Bruggeman formalism.

For comparison, we introduce the Maxwell Garnett estimate of the HCM relative permittivity [24]

\[\epsilon_{hcm}^{MG} = \epsilon_b + \frac{3f_a \epsilon_b (\epsilon_a - \epsilon_b)}{\epsilon_a + 2 \epsilon_b - f_a (\epsilon_a - \epsilon_b)} \] (3.3)

and its corresponding inverse

\[\epsilon_a = \frac{(2 + f_a) \epsilon_{hcm}^{MG} - 2f_b \epsilon_b}{(1 + 2f_a) \epsilon_b - f_b \epsilon_{hcm}^{MG} \epsilon_b}. \] (3.4)

The limiting behaviour of the inverse Bruggeman estimate 3.2 as compared with that of the inverse Maxwell Garnett estimate 3.4 is especially revealing. In the limit \(f_a \to 1 \), both estimates yield the relative permittivity of the HCM, as they must \(^1\). In the limit \(f_a \to 0 \), the inverse Bruggeman formalism yields \(\epsilon_a \to -2 \epsilon_{hcm}^{Br} \) whereas the inverse Maxwell Garnett formalism yields \(\epsilon_a \to -2 \epsilon_b \). Therefore, the two inverse estimates differ markedly as \(f_a \) approaches zero, provided that \(\epsilon_b \) and the relative permittivity of the HCM are sufficiently different.

3.2 Numerical studies

For our numerical studies, we explore the inverse Bruggeman estimate 3.2, in comparison with the inverse Maxwell Garnett estimate 3.4, by means of some illustrative numerical examples. We consider three different scenarios. First is nondissipative homogenization scenarios, followed by dissipative homogenization scenarios and finally the scenario when \(\text{Re} \{ \epsilon_{hcm}^{Br, MG} \} / \text{Re} \{ \epsilon_b \} < 0 \). For nondissipative scenarios, the forward Bruggeman formalism runs into difficulties when \(\epsilon_a / \epsilon_b < 0 \), but not when \(\epsilon_a / \epsilon_b > 0 \) \(^2\). Accordingly, let us begin by focussing on the regimes \(\epsilon_{hcm}^{Br, MG} / \epsilon_b < 0 \) and \(\epsilon_{hcm}^{Br, MG} / \epsilon_b > 0 \). In Fig. 3.1, plots of \(\epsilon_a \), as determined by the inverse Bruggeman formalism and the inverse Maxwell Garnett formalism, versus \(f_a \) are provided for the cases where \(\epsilon_b = \pm 2 \) and \(\epsilon_{hcm}^{Br, MG} = 3 \). When \(\epsilon_{hcm}^{Br, MG} / \epsilon_b > 0 \) the inverse Bruggeman and inverse Maxwell Garnett estimates are in fairly close agreement. However, the values of \(\epsilon_a \) yielded by the two inverse formalisms differ markedly when \(\epsilon_{hcm}^{Br, MG} / \epsilon_b < 0 \), except in the limit as \(f_a \) approaches unity. Most notably, the inverse Brugg-

\(^1\)The Maxwell Garnett estimate of the HCM relative permittivity is only strictly applicable in the dilute composite regime \(f_a \lesssim 0.3 \). Accordingly, estimates of \(\epsilon_a \) delivered by the inverse Maxwell Garnett formalism are strictly valid only for \(f_a \lesssim 0.3 \). However, \(\epsilon_{hcm}^{MG} \) coincides with one of the Hashin–Shtrikman bounds on the HCM relative permittivity which applies at all values of \(f_a \) \(^3\).
man estimate becomes singular and undergoes a change in sign as the volume fraction increases through $f_a = 0.56$, whereas the inverse Maxwell Garnett value remains finite and does not change sign.

\[
\varepsilon_b = 2, \quad \varepsilon_{Br, MG}^{hcm} = 3
\]

Figure 3.1: Plots of ε_a as determined by the inverse Bruggeman formalism (red, solid curves) and the inverse Maxwell Garnett formalism (blue, dashed curves) versus f_a for $\varepsilon_b = \pm 2$ and $\varepsilon_{Br, MG}^{hcm} = 3$. Estimates of ε_a delivered by the inverse Maxwell Garnett formalism are strictly valid only for $f_a \lesssim 0.3$.

Next we turn to dissipative homogenization scenarios. In the case of the forward Bruggeman formalism, problems arise when $\text{Re}\{\varepsilon_a\}/\text{Re}\{\varepsilon_b\} < 0$ and the degree of dissipation is relatively small. If $\text{Re}\{\varepsilon_a\}/\text{Re}\{\varepsilon_b\} < 0$ and the degree of dissipation is relatively large or if $\text{Re}\{\varepsilon_a\}/\text{Re}\{\varepsilon_b\} > 0$, then the forward Bruggeman formalism was found to deliver physically plausible estimates of the HCM relative permittivity [28]. Accordingly, we consider the regimes where $\text{Re}\{\varepsilon_{Br, MG}^{hcm}\}/\text{Re}\{\varepsilon_b\} > 0$ with the degree of dissipation in the HCM being relatively small, moderate and large. Graphs of the real and imaginary parts of ε_a, as estimated by the inverse Bruggeman and inverse Maxwell Garnett formalisms, are plotted versus f_a in Fig. 3.2 for the cases $\varepsilon_b = 2$ and $\varepsilon_{Br, MG}^{hcm} = 3 + \delta i$ where $\delta \in \{0.1, 1, 10\}$. When the degree of HCM dissipation is relatively small ($\delta = 0.1$), the estimates of the real and imaginary parts of ε_a provided by the inverse Bruggeman and inverse Maxwell Garnett formalisms agree fairly closely. When the degree of HCM dissipation is moderate ($\delta = 1$), there is still fairly close agreement between the inverse Bruggeman and inverse Maxwell Garnett values of ε_a for most values of f_a. Crucially, however, for $f_a < 0.05$ the imaginary part of ε_a estimated by the inverse Bruggeman formalism is negative–valued (unlike $\text{Im}\{\varepsilon_a\}$ estimated by the inverse Maxwell Garnett formalism which is positive–valued). Here $\text{Im}\{\varepsilon_a\} < 0$ is not a physically–plausible outcome as it implies that the homogenization of an active material a and a nondissipative material b results in a dissipative HCM. For both the real and imaginary parts of ε_a, the discrepancies between the values estimated by the two inverse formalisms become enormous when the degree of HCM dissipation is relatively large ($\delta = 10$). Furthermore, the inverse Bruggeman
estimate is physically implausible for a much larger range of \(f_a \) values; i.e., Im\(\{ \varepsilon_a \} \) estimated by inverse Bruggeman formalism is negative–valued for \(f_a < 0.3 \) when \(\delta = 10 \).

![Graphs showing real and imaginary parts of \(\varepsilon_a \) as determined by different formalisms.](image)

Lastly, we explore the Re\(\{ \varepsilon_{Br, MG} \} \)/Re\(\{ \varepsilon_b \} < 0 \) regime. Plots of the real and imaginary values of \(\varepsilon_a \) in Fig. 3.3 correspond to the same parameter values as those used for Fig. 3.2 except that here \(\varepsilon_b = -2 \). The estimates of the inverse Bruggeman formalism are now physically implausible due to Im\(\{ \varepsilon_a \} < 0 \) for a wide range of \(f_a \) values, regardless of whether the degree of HCM dissipation is relatively small, moderate or large. In contrast, the estimate of Im\(\{ \varepsilon_a \} \) provided by the inverse Maxwell Garnett formalism is positive–valued for all scenarios considered. Additionally, the real parts of \(\varepsilon_a \) delivered by the two inverse formalisms differ
enormously except when \(f_a \) approaches unity, for all degrees of HCM dissipation considered.

![Diagram](image_url)

Figure 3.3: As Fig. 3.2 except that \(\epsilon_b = -2 \).

3.3 Closing remarks

From our numerical studies, we have found that in the case of dissipative HCMs, the inverse Bruggeman estimates of \(\epsilon_a \) can be physically implausible when

(i) \(\text{Re}\{\epsilon^{Br}_{hcm}\} / \text{Re}\{\epsilon_{b}\} > 0 \) and the degree of HCM dissipation is moderate or greater; or

(ii) \(\text{Re}\{\epsilon^{Br}_{hcm}\} / \text{Re}\{\epsilon_{b}\} < 0 \) regardless of the degree of HCM dissipation.

In the case of nondissipative HCMs, enormous discrepancies can exist between the estimates of \(\epsilon_a \) provided by the inverse Bruggeman formalism and the inverse Maxwell Garnett formalism when \(\epsilon^{Br, MG}_{hcm} / \epsilon_{b} < 0 \). The constitutive parameters chosen in Sec. 3.2 to illustrate the
limitations of the inverse Bruggeman formalism were representative examples. Further numerical studies for other choices of constitutive parameters conforming to scenarios (i) and (ii) (presented in Appendix A) yielded qualitatively similar results. Therefore, we conclude that the inverse Bruggeman formalism should be applied with great caution.

Finally, we note that in the very recent implementations of the inverse Bruggeman formalism which motivated this study [34, 35, 36], the relative permittivity parameters were positive–valued and the materials were nondissipative. The estimates yielded by the inverse Bruggeman formalism in these cases seem physically plausible, but the acid test can only be provided by suitable experimental measurements.
Chapter 4

Sculptured thin films

4.1 Introduction

Sculptured thin films (STFs) are nanostructured materials with anisotropic and unidirectionally nonhomogenous which can be designed and fabricated using physical vapour deposition (PVD) techniques. In a controllable manner, various columnar morphologies of STF can be formed in 2D and 3D [38], which have been termed as sculptured nematic thin films (SNTFs) [39] and thin-film helicoidal bianisotropic medium (TFHBMs) [40, 41], respectively. For example, slanted columns, chevrons, C-shaped, S-shaped and zigzag for 2D STFs while helixes and superhelixes are examples for 3D STFs [42]. In this chapter, we provide a rough introduction of the simple slanted columns known as columnar thin films (CTFs) as well as the more complex shape known as chiral sculptured thin films (CSTFs). These two types of STF are implemented in our studies in the following chapters of this thesis. Homogenization studies on STFs with particular to estimate their constitutive parameters are also presented in this chapter.

4.2 Columnar thin films

CTF was first studied during the 1960s [43]. It consists of a parallel array of columnar nanowires which may be grown on the substrate by directing the vapour flux at an angle χ_v to a fixed substrate during PVD. Under certain conditions, parallel columns are oriented at angle $\chi \geq \chi_v$ to a planar substrate [42] (see Fig. 4.1). Furthermore, through judicious control of the vapour deposition process, both the macroscopic optical properties and the porosity of the CTF can be tailored to order [45]. Consequently, CTFs are promising candidates as platforms for optical sensing applications, wherein it is envisaged that the species to be
sensed is contained within a fluid which penetrates the void regions in between the CTF’s columns for which the column diameter can range from 10 to 300 nm.

Figure 4.1: Scanning electron micrograph of CTF. (Image is reprinted from [44])

A recent theoretical investigation highlighted the fact that surface-plasmon-polariton (SPP) waves (see Appendix B for further details), guided by the planar interface of an infiltrated CTF and a thin layer of metal, may be usefully harnessed for optical sensing [36]. In this scenario, the angle of incidence required to excite an SPP wave was found to be acutely sensitive to changes in the refractive index n_ℓ of the fluid which fills the CTF’s void regions. Furthermore, the phase speed and propagation length of the SPP wave were also sensitive to n_ℓ.
Bibliography

[54] A. Lakhtakia and J. A. Polo Jr., Morphological influence on surface–wave propagation at the planar interface of a metal film and a columnar thin film, Asian J. Phys. 17 (2008) 185–191. (The value of \(\text{Im}[\chi_v]\) for \(\chi_v = 5^\circ\) presented in Table 1 should be 0.0108.)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal / Page</th>
</tr>
</thead>
</table>
