ANTI-PROLIFERATIVE EFFECT OF METHYL GALLATE ISOLATED FROM
M. Pajang Kosterman IN SELECTED CANCER CELL LINES

AZLEN BINTI CHE RAHIM

A thesis submitted in
fulfillment of the requirement for the award of the
Degree of Master of Science

Faculty of Applied Sciences and Technology
Universiti Tun Hussein Onn Malaysia

SEPTEMBER 2019
Adherence, effort and dedication were the fundamental elements for the completion of my master dissertation, but even more was the support from my family members, to both of my parents Che Rahim bin Che Mat, Rohani binti Abd Rahman, to my dearest husband, Muhammad Fawwaz Haikal bin Fauzi, my siblings, Mohd Taufiq, Nabihah and Adam, today I dedicate them this important achievement, because without their presence, support and comprehension, I would have not achieve what I have today.

I also dedicate this to:

My colleagues, My sisters, My brothers, for their invaluable support, love and intellectual stimulation during completion of this dissertation.

To my supervisory committee members, for their overwhelming academic and endless moral support.
ACKNOWLEDGEMENT

First and foremost, I would like to thank The Almighty for giving me chances for completing this study. I am grateful to have the main supervisor, Assoc Prof Dr Mohd Fadzelly bin Abu Bakar, for all the guidance, assistance and patience during the study journey. Not to forget, the Co-Supervisors, Dr Nur Kartinee binti Kassim, and Professor Dr Johnson Stanslas for their help during my study at Universiti Putra Malaysia. I am also grateful to have Ms Lim Pei Chee, Mrs Hafizah binti Zaini and Mr Han from UPM for their help and technical assistance throughout the project. Special thanks also to Ministry of Higher Education (MoHE) for granting research grant under Fundamental Research Grant Scheme (FRGS2015 vot 1560) for this study.

The most important, my special thanks goes to both parents, husband, and siblings for their sincere prayers, love and continued support. Not forgotten all my friends in Universiti Tun Hussein Onn (UTHM) and Universiti Putra Malaysia (UPM) which involved direct and indirectly through this research journey, thank you for your support which has made this possible.
ABSTRACT

Mangifera pajang (Bambangan) is an indigenous fruit originated from Borneo Island. The kernel of *M. pajang* has been reported to possess various health benefits due to the phytochemicals content. As cancer is one of the most leading cause of death in Malaysia, this study was aimed to isolate and elucidate an aromatic ester, methyl gallate from the kernel extract of the *M. pajang* and determine the anti-proliferative potential of aromatic ester, methyl gallate which induce the cell cycle arrest and killing mechanism via apoptosis in selected cancer cell line. Chromatography methods were used in this study to isolate methyl gallate (C₈H₈O₅) from methanol crude extract. Identification of the isolated compound was done by spectroscopic methods including infrared (IR), mass spectrometry (MS), nuclear magnetic resonance (NMR) and comparison with reported data. The potential of anti-proliferative activity was investigated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against breast (MCF-7 and MDA-MB-231), prostate (PC-3), pancreatic (Capan-2) and colon (HCT-116) cancer cell lines. The effect of methyl gallate on cell cycle arrest and apoptosis were confirmed by using cell cycle analysis and Annexin V staining. The results showed that methyl gallate displayed significant anti-proliferative activity against MCF-7 and moderate activity against PC-3 with an IC₅₀ values of 54.7 µM and 97.6 µM respectively. Based on the IC₅₀ value of MTT assay, MCF-7 cell line was selected for further determination of cell cycle arrest and apoptosis analysis. The cell cycle progression of MCF-7 cells treated with methyl gallate showed increased in cell population in sub-G₁ phase indicating apoptosis and cell cycle arrest at G₀/G₁. In addition, the effect of methyl gallate on apoptosis induction resulted in total apoptotic cells were increased in time dependent manner. As a conclusion, methyl gallate isolated from kernel of *M. pajang* possess antiproliferative effect against breast cancer cell via apoptosis pathway.
ABSTRAK

Mangifera pajang (Bambangan) ialah buah-buahan nadir yang berasal dari kepulauan Boneo. Biji buah M. pajang dilaporkan mempunyai pelbagai manfaat terhadap kesehatan dan ini adalah disebabkan kehadiran pelbagai fitokimia. Memandangkan kanser merupakan penyebat utama kematian di Malaysia, objektif kajian ini adalah untuk memencilkan sebatian ester aromatik, metil gallat (C₈H₈O₅) daripada ekstrak biji buah M. pajang dan menentukan potensi aktiviti anti-proliferatif yang telah mengaruhihkan mekanisma pembunuhan sel secara terkawal (apoptosis) dan fasa-fasa sel. Kaedah kromatografi yang digunakan telah berjaya memencilkan ester aromatik, metil gallat (C₈H₈O₅) daripada ekstrak mentah metanol. Pengenalpastian sebatian dilakukan dengan menggunakan kaedah spektroskopi termasuk inframerah (IR), spektroskopi jisim (MS), resonans magnetik nuklear (NMR) dan perbandingan data yang sedia ada. Potensi aktiviti anti-proliferatif oleh sebatian pencilan telah dilakukan dengan menggunakan asai MTT terhadap beberapa jenis sel kanser seperti kanser payudara (MCF-7 dan MDA-MB-231), prostat (PC-3), pankreas (Capan-2), dan kolon (HCT-116). Analisis pembunuhan sel yang dirawat dengan metil gallat terhadap kematian secara apoptosis dan fasa-fasa sel dilakukan dengan analisis fasa sel dan pewarnaan Annexin V. Keputusan aktiviti sitotoksik oleh metil gallat menunjukkan aktiviti yang signifikan terhadap sel kanser payudara (MCF-7) dengan nilai IC₅₀ 54.7 µM dan aktiviti sederhana terhadap sel kanser prostat (PC-3) dengan nilai IC₅₀ 97.6 µM. Berdasarkan keputusan asai MTT, sel kanser payudara (MCF-7) telah dipilih untuk kajian mekanisma pembunuhan sel dan fasa sel. MCF-7 sel yang dirawat dengan metil gallat menunjukkan peningkatan peratusan sel dalam fasa sub-G₀ dan terdapat penahanan sel berlaku pada fasa G₀/G₁. Manakala, keputusan asai apoptosis menunjukkan sel yang dirawat dengan metil gallat mendorong kematian secara selari dengan masa rawatan. Sebagai rumusan, sebatian terpencil daripada biji buah M. pajang, metil gallat mempunyai kesan sebagai bahan anti-proliferatif ke atas sel barah payudara.
TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS AND ABBREVIATIONS xv

LIST OF APPENDICES xvii

LIST OF PUBLICATIONS xviii

CHAPTER 1 INTRODUCTION 1
 1.1 Background of Research 1
 1.2 Problem statement 3
 1.3 Objectives of the study 4
 1.4 Significance of study 4
 1.5 Scope of study 5

CHAPTER 2 LITERATURE REVIEW 6
 2.1 Cancer 6
 2.1.1 Apoptosis and cell cycle 7
 2.1.2 Prevalence of cancer in Malaysia 9
 2.1.3 Breast cancer 11
CHAPTER 3 MATERIALS AND METHODS

3.1 Instrumentation 33
3.2 Plant materials and sample collection 34
3.3 Chromatographic method 35
 3.3.1 Thin Layer Chromatography (TLC) 35
 3.3.2 Column Chromatography (CC) 35
3.4 Extraction 35
 3.4.1 Fractionation 36
 3.4.2 Isolation and elucidation of methyl gallate 36
3.5 Anti-proliferative study 37
 3.5.1 Cell culture 37
 3.5.2 MTT assay 38
3.6 Morphological assessment of apoptotic cells by phase-contrast inverted microscope 39
3.7 Cell cycle Analysis 39
3.8 Apoptosis analysis 39
3.9 Statistical analysis 40

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Extraction on Mangifera pajang Kosterman 41
4.2 Isolation and elucidation of methyl gallate 42
4.3 Anti-proliferative activity 49
4.3.1 Screening of the Antiproliferative Activity of Methyl gallate on Breast Cancer Cell Lines (MCF-7 and MDA-MB-231), Prostate Cancer Cell Line (PC-3), Pancreatic Cancer Cell Line (Capan-2), and Colon Cancer Cell Line (HCT-116) 49

4.4 Microscopic observation of cellular morphology using phase contrast inverted microscope 53

4.5 Cell cycle distribution 56

4.5.1 Cell cycle analysis of MCF-7 cells incubated with methyl gallate 56

4.6 Apoptosis analysis 59

4.6.1 Effect of methyl gallate on early and late apoptosis 59

CHAPTER 5 CONCLUSION AND RECOMMENDATION 65

5.1 Conclusion 65

5.2 Recommendation for future research 66

REFERENCES 68

VITA 88
LIST OF TABLES

2.1 Diseases in which alterations of apoptosis are involved (Favaloro et al., 2012) 9
2.2 Ten of most frequent cancers of all residence in Malaysia in 2007 (National Cancer Registry, 2011) 10
2.3 Cancer Incidence by major ethnics group in Malaysia from 2007 to 2011 (Azizah et al., 2016) 11
2.4 Proximate nutrient composition of the flesh of M. pajang (Ibrahim et al., 2010) 19
2.5 List of phytochemical compounds from M. pajang 20
2.6 Structures of derivatives of gallic acids and the structural formula (Source: Subramaniam et al., 2015). 29
4.1 Yield of crude extract in successive sequential extraction of M. pajang 41
4.2 1H and 13C of methyl gallate 48
4.3 The effect of methyl gallate on different cell types expressed as IC$_{50}$ values in MTT assay after 96 hours of treatment. Data were represented as mean ± SD for at least three independent experiments. 50
4.4 Flow cytometric analysis of Annexin V and 7-AAD dead cell staining in MCF-7 cells treated with IC$_{50}$ concentration of methyl gallate for 24, 48, 72 and 96 h. 59
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The overall phases involved in the cell cycle (Campbell Biology 9th ed)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Mangifera pajang Kosterm (A: the whole plant, B: fruit part C: kernel part)</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Common biosynthesis pathway of secondary metabolites which involved shikimic acid, mevalonic, aliphatic and aromatic acid pathways. (Tolonen, 2003)</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Classification of phenolic compounds as secondary metabolites from plants. (Source: Liu, 2004)</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic structure of major flavonoid (Source: Ravishankar et al., 2013)</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Structures of flavovols A) Kaempferol B) Quercetin C) Isorhamnetin D) Myricetin (Source: Ravishankar et al., 2013)</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Biosynthesis pathway of Methyl gallate (Source: Subramaniam, et al., 2015).</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of methodology</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Fractionation of methanol extract. (C1-C23; Collection 1-23, F1-F7; Fraction 1-7).</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Chemical structure of methyl gallate</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>IR spectrum of methyl gallate</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>EI-MS spectrum of methyl gallate</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>1H NMR spectrum of methyl gallate</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>13C NMR spectrum of methyl gallate</td>
<td>46</td>
</tr>
</tbody>
</table>
4.6 Dose response curve of different types of cancer cell lines treated with methyl gallate for 96 hours at different concentration.

4.7 Normal phase-contrast inverted micrograph of untreated MCF-7 cells. Untreated cells remained healthy throughout the incubation period (24h). Cells were incubated in RPMI 1640 media maintained at 37 °C and 5% CO₂ (100X magnification)

4.8 Normal phase-contrast inverted micrograph of MCF7 cells treated with 54.7 uM of Methyl gallate for 48 h. Cells were cultured in RPMI 1640 media maintained at 37 °C and 5% CO₂. CS: Cell shrinkage (400X magnification)

4.9 Normal phase-contrast inverted micrograph of MCF7 cells treated with 54.7 uM of Methyl gallate for 72 h. Cells were cultured in RPMI 1640 media maintained at 37 °C and 5% CO₂. CS: Cell shrinkage (400X magnification)

4.10 Normal phase-contrast inverted micrograph of MCF7 cells treated with 54.7 uM of Methyl gallate for 96 h. Cells were cultured in RPMI 1640 media maintained at 37 °C and 5% CO₂. BL; blebbing of cell membrane, CS: Cell shrinkage (400X magnification)

4.11 Cell cycle phase distribution analysis, which provided evidence of G₀/G₁ phase arrest induction in the cell cycle progression of MCF7 cells treated with 54.6 uM methyl gallate. Results were represented as means ± SD of three independent experiments. ‘*’ indicates a significant difference from the control ($p < 0.05$)

4.12 Flow cytometric analysis of cell cycle phase distribution of MCF-7 cells with IC₅₀
concentration with different time of treatment A) control B) 24h C) 48h D) 96 h. Region I: Sub-G0/G1 peak, Region II: G0/G1 phase, Region III: S phase, Region IV: G2/M phase. 58

4.13 The distribution of cells undergoing early and late apoptosis, together with those live cells not in apoptosis and the total of apoptosis was determined in MCF-7 cells following treatment methyl gallate at 24h in comparison to respective control. The values are presented as mean ± standard error of mean of three determinations. 60

4.14 The distribution of cells undergoing early and late apoptosis, together with those live cells not in apoptosis and the total of apoptosis was determined in MCF-7 cells following treatment methyl gallate at 48h in comparison to respective control. The values are presented as mean ± standard error of mean of three determinations. 61

4.15 The distribution of cells undergoing early and late apoptosis, together with those live cells not in apoptosis and the total of apoptosis was determined in MCF-7 cells following treatment methyl gallate at 72h in comparison to respective control. The values are presented as mean ± standard error of mean of three determinations. 61

4.16 The distribution of cells undergoing early and late apoptosis, together with those live cells not in apoptosis and the total of apoptosis was determined in MCF-7 cells following treatment methyl gallate at 96h in comparison to respective control. The values are presented as mean ± standard error of mean of three determinations. 62

4.17 Effect of methyl gallate on apoptosis profile after treatment with IC50 concentration (54.7 uM)
for B) 24 h C) 48 h D) 72 h and E) 96 h on MCF7 cells. Untreated cells (A) act as control in this experiment. Data represent one of three independent experiments.
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Celcius</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>Concentration that needed to produce 50% cells inhibition</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mg</td>
<td>miligram</td>
</tr>
<tr>
<td>mL</td>
<td>mililitre</td>
</tr>
<tr>
<td>mm</td>
<td>milimeter</td>
</tr>
<tr>
<td>mM</td>
<td>miliMolar</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µL</td>
<td>microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>micro molar</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>CC</td>
<td>Column chromatography</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin Dependent Kinase</td>
</tr>
<tr>
<td>DIP</td>
<td>Direct Induction Probe</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-pycrylhydrazyl radical</td>
</tr>
<tr>
<td>EI-MS</td>
<td>Electron Impact-Mass Spectrometry</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing/ antioxidant power</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier Transform-Infrared</td>
</tr>
<tr>
<td>G₀</td>
<td>Resting phase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>G_1</td>
<td>Gap 1 phase</td>
</tr>
<tr>
<td>G_2</td>
<td>Gap 2 phase</td>
</tr>
<tr>
<td>HCT-116</td>
<td>Colon Cancer cell lines</td>
</tr>
<tr>
<td>MCF-7</td>
<td>Hormone dependent breast carcinoma cell line</td>
</tr>
<tr>
<td>MCF-10A</td>
<td>Normal human breast cell</td>
</tr>
<tr>
<td>MDA-MB-231</td>
<td>Non-hormone dependent breast carcinoma cell line</td>
</tr>
<tr>
<td>MHz</td>
<td>MegaHertz</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>PC-3</td>
<td>Prostate carcinoma cell line</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium Iodide</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>RPMI 1640</td>
<td>Roswell Park Memorial Institute 1640</td>
</tr>
<tr>
<td>S</td>
<td>Synthesis phase</td>
</tr>
<tr>
<td>TFC</td>
<td>Total Flavonoid Content</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TPC</td>
<td>Total Phenolic Content</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Yield of each crude extract in successive sequential extraction of M. pajang</td>
</tr>
<tr>
<td>B1</td>
<td>Some of photos from the extraction of crude extract, chromatography technique, crystallization and until the visualization of single compound under the UV light.</td>
</tr>
<tr>
<td>C1</td>
<td>IC<sub>50</sub> value of antioxidant activity of each of the crude extracts from kernel of M. pajang.</td>
</tr>
<tr>
<td>C2</td>
<td>Graph shows IC<sub>50</sub> value of antioxidant activity of each of the crude extracts from kernel of M. pajang.</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

Journals:

Conference:

(i) International Conference on Drug Discovery and Translational Medicine (ICDDTM 2018), 4-5 December 2018, The Everly Hotel, Putrajaya, Malaysia.
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Cancer is a major public health burden worldwide and it is the leading cause of death in both developed and developing countries. The increasing number of death due to cancer is correlated with the modernisation of lifestyle, improved socioeconomic status (Asegaonkar et al., 2015), and exposure to sunlight (Zima et al., 2001). According to a report by Torre et al. (2015), high cancer incidences including lung, colorectal, breast, and prostate cancer are reported to occur at high income countries (HIC). Meanwhile, cancer incidence for low and middle-income countries (LMIC) is growing, with stomach, liver, oesophageal, and cervical cancer having the highest rate. It is also estimated that over 20 million of new cases will be expected annually by as early as 2025 (Bray, 2014). According to an online database of The International Agency for Research on Cancer (IARC)- GLOBCAN 2012, prostate and lung cancer are top cases commonly diagnosed among males in 87 countries worldwide, while breast and cervical cancers are the most frequently diagnosed in females (Torre et al., 2015).

Chemoprevention has become familiar in the cancer research area, particularly in drug development, pharmacology, and molecular biology research. People has realised that effective cancer treatments such as chemotherapy, radiotherapy, and drug therapy still could not challenge the potential of chemoprevention as the survival rate of cancer patients is still low (Ladas, 2004; Liu, 2009). Chemoprevention is an alternative in preventing the development of cancer by using specific agents either to inhibit, delay, or reverse carcinogenesis (Tamimi et al., 2002). Meanwhile, chemotherapy is another term that is involved in the cancer research. Unlike the
chemoprevention, chemotherapy is one of modes of treatment in cancer patients with
the utilisation of chemotherapeutic drugs (Liu, 2009).

Malaysia is one of the Asian countries that are blessed with diverse biological
resources and high in percentage of flora, which are believed to have medicinal and
nutritional values. It is estimated that there are about 370 species of local fruits in
Malaysia (Rukayah, 2002; Mirfat, Salma, & Razali, 2016). Other than for
commercialisation purposes, tropical fruits in Malaysia are grown for local
consumption and medicinal uses. Most of the indigenous fruits in Malaysia are wild
fruits that are naturally distributed in the forests and most of them are underutilised
(Abu Bakar & Fry, 2013). Some of the underutilised fruits especially in Borneo that
are available in Malaysia are bacang (Mangifera foetida), bambangan (Mangifera
pajang), cerapu (Garcinia prainiana), durian (Durio), jambu (Syzygium aqueum),
kuini (Mangifera odorata), pulasan (Nephelium mutabile), and salak (Salacca zalacca)
(Hock et al., 2016). Many of these fruits are unpopular due to the lack of promotion,
not being fully explored, and minimal space for planting (Chai et al., 2008).

The nutritional and medicinal benefits of plants, fruits, and vegetables are
receiving great attention nowadays as they have been shown to provide a better support
for human wellbeing. Recently, plant-derived products have been the major target for
many studies due to their versatile applications. Some medicinal plants have been
reported to possess anticancer activity, where polyphenols from fruits and vegetables
are the responsible molecules for chemopreventive effects (Mutalib et al., 2016). It has
also been reported that plant-derived materials possess highly diverse and complex
molecular structures compared to synthetic drugs and play an important role in human
health and in the development of new anticancer drugs (Faezizadeh, Gharib, &
Godarzee, 2016). A study by Liu (2004) also reported that diets which are rich in fruits
and vegetables are good sources of natural phytochemicals which work synergistically
to exhibit antioxidant and anticancer activities.

Phytochemicals in plants play a major role in contributing to human health.
High dietary intake of fruits and vegetables as well as whole grains is strongly
associated with reduced risk of getting chronic diseases, such as cancer and
cardiovascular diseases (CVD). The United States National Academy of Sciences also
emphasised the importance of adding citrus fruits, carotene-rich fruits, and vegetables
to diet to reduce the risk of cancer (Liu, 2003). Research and development of rare and
underutilised fruits is becoming economically important nowadays as it promotes a
new generation of ‘superfruits’ which have the potential to be developed as functional food and nutraceuticals.

In Southeast Asia, there are many varieties of local fruits such as mango (*Mangifera indica*), durian (*Durio*), rambutan (*Nephelium lappaceum*), and papaya (*Carica papaya*), which are sold locally and globally. However, there are also fruits that are sold locally but have not been fully explored. For example, *Mangifera pajang* is a native fruit that can only be found in the Borneo Islands (Malaysia: Sabah, Sarawak; Brunei; Indonesia: Kalimantan) and is rarely discovered in Peninsular Malaysia. This fruit is prevalent among the Kadazan-Dusun community in Sabah as an accompaniment to their meal and traditional cuisine (Tangah *et al.*, 2017). Many studies on *M. pajang* phytochemicals have reported their health-beneficial properties.

1.2 Problem statement

Based on cancer statistics, deaths caused by cancers are known to increase annually. The leading cancers among males in Malaysia are lung, nasopharynx, stomach, urinary bladder, rectum, liver, and colon cancers. Meanwhile, cervix, breast, lung, colon, and rectum cancers are majorly being diagnosed in females in Malaysia (Kasri, 1993). In addition, Azizah *et al.* (2016) added that Malay females have the highest rate of breast cancer incidence. The increase in death rate due to cancer are related to several factors such as burden to patients due to the increase in cost for cancer treatment. Not only that, current cancer therapies including surgery, radiotherapy, chemotherapy, and drugs have a major drawback towards the patients such as bad side effects after the therapy (Partridge *et al.*, 2001). The cancer patients must bear with symptoms such as nausea, anaemia, and hair loss. Not only that, the development of chemoresistance is a persistent problem and makes it difficult for the patients to deal with the treatment. There is thus a great need towards finding a better alternative on cancer therapy including traditional medicine, which has become an important approach to control cancer. Apart from that, there has been a focus on natural products from plant sources to be developed as functional food to provide better ways for cancer patients to reduce their burden.
1.3 Objectives of the study

General objective:
To explore the potential of local fruits, *Mangifera pajang* to be developed as nutritional food.

Specific objectives:
(i) To isolate and elucidate methyl gallate from the kernel of *M. pajang*.
(ii) To evaluate the *in-vitro* anti-proliferative activity of the methyl gallate extracted from kernel extract of *M. pajang* against selected cancer cell lines.
(iii) To evaluate the effect of methyl gallate isolated from kernel extract of *M. pajang* on apoptosis event and cell cycle arrest in selected cancer cell lines.

1.4 Significance of study

With the increasing trend of cancer incidence of each year, number of efforts are needed in order to provide better alternative to reduce the percentage of mortality due to cancer. One of the efforts is through the changes in diet (Willet, 1995). Diet that is rich in plants and fruits could be a better solution in reducing cancer incidence as fruits and plants are known to possess various health benefits and anticancer properties. Fruits and vegetables play a vital role in the health of human beings by providing various phytochemicals such as phenolic compounds and flavonoids to promote health (Abu Bakar et al., 2010). These compounds are known to be natural antioxidants which are abundantly present in plants and fruits. These compounds have been the main target for scientists as they provide not only nutritional value but have promising effects on health as well.

Since many studies have provided findings on the biological and health-promoting effects of *M. pajang*, further evaluation of anticancer properties of the active extract from this fruit can provide more details about the active compounds and their biological activities. With the aim to identify and isolate active natural compounds from the active extract of *M. pajang* fruit, this study provides a better explanation in the fundamental mechanism of actions in killing cancer cells.
1.5 **Scope of study**

In the present study, the antiproliferative potentials of natural products were explored. *M. pajang* fruit is abundantly found in Borneo Island and the focus was given on its kernel part. Given that many past studies have reported that *M. pajang* kernel displayed many health benefits such as antioxidant activity due to the diversity of polyphenols. Higher antioxidant activity has suggested by some in-vitro and in-vivo study which certain antioxidant agent selectively inhibit the growth of tumour cells, induce the cellular differentiation, and also may alter the intracellular redox state, hence enhances the effect of cytotoxic therapy (Ladas *et al.*, 2004). In this study, emphases are given to the one of the remarks on the cancer manifestation that involved in the cancer development, which is apoptosis. The effects of the natural products on cancer development are also discussed.
CHAPTER 2

LITERATURE REVIEW

2.1 Cancer

Cancer is a disease where abnormal cells continue to grow in an uncontrolled manner and disregard the normal rules of cell division (Kumar et al., 2016). Normally, body cells control the process of cell division, cell death, and cell differentiation, but cancer cells ignore the regulation, resulting in uncontrolled cell growth and proliferation (Li & Wang, 2014). These uncontrolled cancer cells will proliferate, resulting in the formation of tumours (Kumar et al., 2016). This abnormal proliferation can continue and spread to other parts of the body; this is called metastasis and may be fatal (Hejmadi, 2009).

There are two types of cancer cells, which are malignant and benign tumour cells. Benign tumours are tumours that do not spread and usually pose little threat to the host since they are localised and small (Lodish, Berk, & Zipursky, 2000). On the other hand, malignant tumours are non-localised and invade other surrounding tissues (Lodish et al., 2000). A benign tumour has a slower growth speed than a malignant one (Baba & Catoi, 2007).

Cancer can be treated in several ways; the available technologies today are surgery, radiotherapy, immunotherapy, and chemotherapy. Some of the methods use anticancer drugs or defined as chemopreventive agents, such as those derived from plants such as taxol (found in Taxus brevifolia), combretastatin A-4 (from Combretum caffrum) (Srivastava et al., 2005), camptothecin (isolated from Camptotheca acuminata), vinblastine, and vincristine (found in Catharanthus roseus) (Colgate & Molyneux, 2007).
2.1.1 Apoptosis and cell cycle

Apoptosis is a programmed, physiological mode of cell death mechanism for removing unwanted and detrimental cells in a silent manner during embryonic development, tissue homeostasis, and immune regulation (Orangi et al., 2016). The normal regulation of this molecular mechanism becomes a drawback when the pathway of apoptotic signalling is altered, leading to development of cancer and diseases (Favaloro et al., 2012). Cells that have severe DNA damage and are unsuccessfully removed by apoptosis would acquire mutation and this enables them to grow and proliferate uncontrollably.

Apoptosis can be initiated by two pathways: extrinsic and intrinsic. The extrinsic pathway is induced by extracellular stimuli such as binding of ligand to death receptor on cell surface or cytokine stimulation which results in the activation of caspase cascade and alteration in gene expression profile. Meanwhile, the intrinsic pathway is induced by many ranges of stimuli such as DNA damage, transcription/translation damage, or virus infection (Hollier et al., 2007).

Caspase-dependent apoptosis is characterised by the activation of a series of pathways, leading to the activation of a family of proteases (caspases), resulting in an ordered disruption, which is a more favourable way of cell disruption without the leakage of cellular components and induction of inflammation (Favaloro et al., 2012). Apoptosis is more favourable than necrosis due to the response of the cells towards receiving the cell-death signals. A report by Saraste & Pulkki (2000) briefly described the characteristics of cell at the onset of apoptosis: it begins with the shrinkage of the cell and the nucleus, followed by condensation of nuclear chromatin masses. Next, the nucleus progressively breaks up; this is termed as karyorrhexis. The budding cells are detached from the surrounding tissue and become extensions and the plasma membrane seals to form a separate membrane around detached solid cellular materials, or known as apoptotic bodies, which are enclosed together with cellular organelles and fragments of the nucleus. Later, these apoptotic bodies are engulfed by neighbouring cells such as macrophages and parenchyma cells (Kerr et al., 1994).

In a cell cycle research, it is necessary to synchronise a population of cells at a stage in the cell cycle, so that the cellular or biochemical features of that stage can be analysed. Numerous drugs, including thymidine and hydroxyurea, block DNA synthesis by inhibiting the synthesis of specific nucleotides, which results in a
REFERENCES

with Conventional Therapeutics? *Current Medical Chemistry*, 22(26), 3025-3039.

Studies. *Clinical Gastroenterology and Hepatology, 10*(6), 639-645. doi: http://dx.doi.org/10.1016/j.cgh.2012.01.010

Placzek, W. J., Wei, J. Kitada, S., Zhai, D., Reed, J. C., Pellechia, M. A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis.1:e40

Thompson, R. J., Jacques, D., Haslam, E., and Tanner, R. J. N. (1972). Plant proanthocyanidins. Introduction the isolation, structure and distribution in
nature of plant procyanidins. *Journal of Chemical Society Perkins Transaction, 1*:1387

