OPTIMIZATION OF STAND-ALONE PHOTOVOLTAIC SYSTEM BY IMPLEMENTING FUZZY LOGIC MPPT CONTROLLER

MOKHTAR BIN HASHIM

A project report submitted in partial fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering
Universiti Tun Hussein Onn Malaysia

JULY, 2013
ABSTRACT

A photovoltaic (PV) generator is a nonlinear device having insolation-dependent volt-ampere characteristics. Since the maximum-power point varies with solar insolation, it is difficult to achieve an optimum matching that is valid for all insolation levels. Thus, Maximum power point tracking (MPPT) plays an important role in photovoltaic (PV) power systems because it maximizes the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This project presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on a comparative study between the most conventional controller namely Perturb and Observe (P&O) algorithm and is compared to a design fuzzy logic controller (FLC). The introduction of fuzzy controller has given very good performance on whatever the parametric variation of the system.
ABSTRAK

Penjana photovoltaic (PV) adalah sejenis peranti tidak lelurus yang mempunyai spesifikasi volt-ampere yang bergantung kepada ketumpatan sinaran matahari. Oleh kerana titik maksimum kuasa berubah-ubah mengikut kecerahan sinaran matahari, maka ia adalah sukar untuk mencapai nilai padanan maksimum yang sah untuk setiap peringkat kecerahan. Oleh itu, pengesanan titik kuasa maksimum (MPPT) memainkan peranan penting dalam system kuasa photovoltaic (PV) kerana ia dapat memaksimumkan kuasa keluaran dari sistem PV untuk satu set keadaan dan seterusnya memaksimunkan kecekapan tatasusunan PV tersebut. Projek ini mempersembahkan satu pengesan titik kuasa maksimum (MPPT) yang menggunakan teori fuzzy logic untuk sistem PV. Kerja-kerja ini memfokuskan kepada satu kajian perbandingan antara pegawal paling konvensional iaitu P&O algoritma dan dibandingkan dengan rekabentuk pengawal fuzzy logic (FLC). Pengenalan kepada pengawal fuzzy logic telah memberikan prestasi yang sangat baik dalam apa saha perubahan parameter system tersebut.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DIDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Motivation
1.2 Project Background
 1.2.1 PV Equivalent Circuit
 1.2.2 PV Module Characteristic
 1.2.3 Need for Maximum Power Tracking
 1.2.4 How Maximum Power Point is Obtain
 1.2.5 Methods of Peak Power Tracking
1.3 Problem Statement
1.4 Project Objectives
1.5 Project Scopes

CHAPTER 2 LITERATURE REVIEW

13
CHAPTER 3 METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Modelling PV Devices</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Modelling of DC-DC Boost Converter</td>
<td>25</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Boost Converter and It Operation</td>
<td>25</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Design of The Boost Converter</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>MPPT algorithm used for simulation in Matlab<sup>R</sup>/Simulink<sup>R</sup>.</td>
<td>30</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Perturb and Observation (P&O)</td>
<td>30</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Fuzzy Logic MPPT Controller</td>
<td>32</td>
</tr>
</tbody>
</table>

CHAPTER 4 SIMULATION AND RESULTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Simulink Model of PV Devices</td>
<td>34</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Simulink model of the new calculated current</td>
<td>35</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Simulink model of diode saturation current</td>
<td>35</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Simulink model of nominal saturation current</td>
<td>36</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Simulink model of PV module</td>
<td>36</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Simulation result of PV module characteristic curve.</td>
<td>37</td>
</tr>
<tr>
<td>4.2</td>
<td>Simulation result of PV module is directly connected to resistive load</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>Simulation result for BP SX 150 PV module coupled with boost converter and the P&O MPPT algorithm.</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>Simulation comparison between the P&O MPPT algorithm and Fuzzy Logic MPPT controller.</td>
<td>44</td>
</tr>
<tr>
<td>CHAPTER 5 CONCLUSION AND RECOMMENDATION</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>5.1 Conclusion</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>5.2 Recommendation</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

3.0 Fuzzy logic controller rules base 33

4.0 Electrical characteristics data of PV module taken from the datasheet 35
LIST OF FIGURES

1.0 Typical diagram of MPPT in a PV System 2
1.1 Typical circuit of PV solar cell 3
1.2 Characteristics of a typical solar PV module 5
1.3 Changes in the characteristics of the solar pv module due to change in insolation level. 6
1.4 Change in the module characteristics due to the change in temperature 7
1.5 Block diagram of a typical MPPT system 7
1.6 DC/DC converter helps in tracking the peak power point 9
1.7 PV module is directly connected to a (variable) resistive load. 10
1.8 I-V curve of PV module and various resistive load 11
3.0 The equivalent circuit of the Practical photovoltaic cell 18
3.1 Characteristic I–V curve of the PV cell. The net cell current I is composed of the light-generated current I_{pv} and the diode current I_d. 19
3.2 Characteristic I–V curve of a practical PV device and the three remarkable points: short circuit (0, I_{sc}), MPP (V_{mp}, I_{mp}), and open circuit (V_{oc},0). 22
3.3 Physical structure of a PV cell. 22
4.4 Circuit diagram of boost converter 25
3.5 The OFF state diagram of the boost converter 26
3.6 The ON state diagram of the boost converter 26
3.7 Inductor current waveform 27
3.8 Inductor voltage waveform 27
3.9 Perturb and Observation (P&O) Flow Chart 31
3.10 Fuzzy logic controller design 32
4.0 Picture of BP SX 150S PV module 34
4.1 Simulink model of new calculated current 35
4.2 Simulink model of diode saturation current (I_o) 35
4.3 Simulink model of nominal saturation current (I_{on}) 36
4.4 Simulink model PV modules 36
4.5 I-V curves of BP SX 150S PV module at various irradiances and simulated with temperature 25°C. 37
4.6 P-V curves of BP SX 150S PV module at various irradiances and simulated with temperature 25°C 37
4.7 I-V curves of BP SX 150S PV module at various temperatures and simulated with irradiance 1000 W/m2. 38
4.8 P-V curves of BP SX 150S PV module at various temperatures and simulated with irradiance 1000 W/m2. 38
4.9 Simulink model of PV module is directly connected to the resistive load 39
4.10 Simulation result of PV module is directly connected to the resistive load at irradiance 1000 W/m2 and temperature 25°C. 40
4.11 Simulation result of PV module is directly connected to the resistive load at various irradiances and temperature 25°C. 40
4.12 Simulink model of P&O MPPT algorithm 41
4.13 Simulink model of PV module coupled with DC-DC Boost converter and P&O MPPT algorithm 41
4.14 Simulation result of PV module coupled with DC-DC Boost converter and P&O MPPT algorithm 42
4.15 Fuzzy membership functions for input E(k). 42
4.16 Fuzzy membership functions for input CE(k). 43
4.17 Fuzzy membership functions for output dD(k). 43
4.18 fuzzy rules surface 43
4.19 Simulink model for comparison of tracking power between P&O algorithm and Fuzzy Logic MPPT controller. 44
4.20 Comparison of tracking power between P&O algorithm and Fuzzy Logic MPPT controller at irradiance 1000 W/m2 and temperature at 25°C. 44
CHAPTER 1

INTRODUCTION

1.1 Motivation

In the last years global warming and energy policies have become a hot topic on the international agenda. Developed countries are trying to reduce their greenhouse gas emissions. Renewable energy sources are considered as a technological option for generating clean energy. Among them, photovoltaic (PV) system has received a great attention as it appears to be one of the most promising renewable energy sources. Photovoltaic power generation has an important role to play due to the fact that it is a green source. The only emissions associated with PV power generation are those from the production of its components.

However, the development for improving the efficiency of the PV system is still a challenging field of research. MPPT algorithms are necessary in PV applications because the MPP of a solar module varies with the irradiation and temperature, so the use of MPPT algorithms is required in order to obtain the maximum output power from a solar array.
Therefore, the motivation of this thesis is to obtain the maximum power point (MPP) of photovoltaic (PV) system by using Fuzzy Logic Controller (FLC). Hence, this thesis focused on the well-known Perturb and Observe (P&O) algorithm and compared to a design fuzzy logic controller (FLC). A simulation work dealing with MPPT controller, a DC/DC Boost converter feeding a load is achieved. The result will show the validity of the proposed Fuzzy Logic MPPT in the PV system.

1.2 Project Background

A photovoltaic system for isolated grid-connected applications as shown in Fig. 1.0 is a typically composed of these main components:

i. PV module that converts solar energy to electric power
ii. DC-DC converter that converts produced DC voltage by the PV module to a load voltage demand.
iii. Digital controller that drives the converter operation with MPPT capability.

Fig. 1.0. Typical diagram of MPPT in a PV System
1.2.1 PV Equivalent Circuit

The model of solar cell can be categorized as p-n semiconductor junction; when exposed to light, the DC current is generated. As known by many researchers, the generated current depends on solar irradiance, temperature, and load current. The typical equivalent circuit of PV cell is shown in Fig. 2.0.

![Fig. 1.1 Typical circuit of PV solar cell](image)

The basic equations describing the I-V characteristic of the PV model are given in the following equations: [11]

\[0 = I_{SC} - I_D - \frac{V_D}{R_p} - I_{PV} \quad \text{(1.0)} \]

\[I_D = I_0 (e^{V_D/R_T} - 1) \quad \text{(1.1)} \]

\[V_{PV} = V_D - R_s I_{PV} \quad \text{(1.2)} \]
Where:

- I_{PV} is the cell current (A).
- I_{SC} is the light generated current (A).
- I_D is the diode saturation current (A).
- R_s is the cell series resistance (ohms).
- R_P is the cell shunt resistance (ohms).
- V_D is the diode voltage (V).
- V_T is the temperature voltage (V).
- V_{PV} is the cell voltage (V).

1.2.2 PV Module Characteristic

The photovoltaic modules are made up of silicon cells. The silicon solar cells which give output voltage of around 0.7V under open circuit condition. When many such cells are connected in series we get a solar PV module. Normally in a module there are 36 cells which amount for a open circuit voltage of about 20V. The current rating of the modules depends on the area of the individual cells. Higher the cell area high is the current output of the cell. For obtaining higher power output the solar PV modules are connected in series and parallel combinations forming solar PV arrays. A typical characteristic curve of the called current (I) and voltage (V) curve and power (W) and voltage (V) curve of the module is shown is shown in Fig.1.2
1.2.3 Need for Maximum Power Tracking

Power output of a Solar PV module changes with change in direction of sun, changes in solar insolation level and with varying temperature as shown in the Fig. 1.3&1.4.

As seen in the PV (power vs. voltage) curve of the module there is a single maximum of power. That is, there exists a peak power corresponding to a particular voltage and current. We know that the efficiency of the solar PV module is low about 13%. Since the module efficiency is low it is desirable to operate the module at the peak power point so that the maximum power can be delivered to the load under varying temperature and insolation conditions. Hence maximization of power improves the utilization of the solar PV module. A maximum power point tracker (MPPT) is used for extracting the maximum power from the solar PV module and transferring that power to the load.
A dc/dc converter (step up/step down) serves the purpose of transferring maximum power from the solar PV module to the load. A dc/dc converter acts as an interface between the load and the module fig.1.5. By changing the duty cycle the load impedance as seen by the source is varied and matched at the point of the peak power with the source so as to transfer the maximum power.

Fig.1.3 Changes in the characteristics of the solar PV module due to change in insolation level.
Fig. 1.4 Change in the module characteristics due to the change in temperature

Fig. 1.5 Block diagram of a typical MPPT system
1.2.4 How Maximum Power Point (MPP) is obtained.

The maximum power point is obtained by introducing a dc/dc converter in between the load and the solar PV module. The duty cycle of the converter is changed till the peak power point is obtained.

Considering a step up converter is used

\[V_o = \frac{1}{(1-D)} * V_i \ldots (1.3) \]

(Vo is output voltage and Vi is input voltage)

solving for the Impedance transfer ratio

\[R_o = \frac{1}{(1-D)^2} \cdot R_i \ldots (1.4) \]

(Ro is output impedance and Ri is input impedance as seen by the source.)

\[R_i = (1-D)^2 \cdot R_o \ldots (1.5) \]

Thus output resistance Ro remains constant and by changing the duty cycle the input resistance Ri seen by the source changes. So the resistance corresponding to the peak power point is obtained by changing the duty cycle. As shown in the fig.1.6.
Fig.1.6 DC/DC converter helps in tracking the peak power point

1.2.5 Methods of Peak Power Tracking

The peak power is reached with the help of a dc/dc converter by adjusting its duty cycle such that the resistance corresponding to the peak power is obtained. Now question arises how to vary the duty cycle and in which direction so that peak power is reached. Whether manual tracking or automatic tracking? Manual tracking is not possible so automatic tracking is preferred to manual tracking. An automatic tracking can be performed by utilizing various algorithms.

i. Perturb and observe [3],[4],[7].

ii. Incremental Conductance [5],[9].

iii. Parasitic Capacitance [9].

iv. Voltage Based Peak Power Tracking [9].
v. Current Based peak power Tracking [9].
vi. Computational Intelligent (e.g. fuzzy logic, neural network) [1],[2]

The algorithms are implemented in a microcontroller or a personal computer to implement maximum power tracking. The algorithm changes the duty cycle of the dc/dc converter to maximize the power output of the module and make it operate at the peak power point of the module. P&O and fuzzy logic algorithm are explained in detailed in the chapter 3.

1.3 Problem Statement

When a PV module is directly coupled to a load, the PV module’s operating point will be at the intersection of its I–V curve and the load line which is the I–V relationship of load.

![Diagram](image_url)

Fig. 1.7 PV module is directly connected to a (variable) resistive load.

In Fig. 1.7, a resistive load has a straight line with a slope of $1/R_{load}$ as shown in Fig. 1.8. In other words, the impedance of load dictates the operating condition of the PV module. In general, this operating point is seldom at the PV module’s MPP, thus it is not producing the maximum power.
To mitigate this problem, a maximum power point tracker (MPPT) can be used to maintain the PV module’s operating point at the MPP. MPPTs can extract more than 97% of the PV power when properly optimized [51].

1.4 Project Objectives

The objectives of this project are:-

i. To track the maximum power point (MPP) of PV module by using Fuzzy Logic MPPT controller.

ii. To simulate and analyses the performance of Fuzzy Logic MPPT controller with other conventional controller.
1.5 Project Scopes

The scopes of this project are:-

i. To develop a SIMULINK model of PV module that converts solar energy to electric one.

ii. To develop a SIMULINK model of DC-DC boost converter that converts produced DC voltage by the PV module to a load voltage demand.

iii. To develop a SIMULINK model of Fuzzy Logic Controller (FLC) that drives the converter operation with MPPT capability.
CHAPTER 2

LITERATURE REVIEW

The following literature survey for the current report consists of various papers published in the IEEE conferences and the journals.

[1]. Control of DC/DC Converters for Solar Energy System with Maximum Power Tracking. [4].

Chihchiang Hua and Chihming Shen.

The object of this paper is to analyze and design DC/DC converters of different types in a solar energy system to investigate the performance of the converters. A simple method which combines a discrete time control and a PI compensator is used to track the Maximum power points (MPP's) of the solar array. The system is kept to operate close to the MPPT's, thus the maximum possible power transfer from the solar array is achieved. The implementation of the proposed converter system was based on a digital signal processor (DSP). Experimental tests were carried out for buck, boost and buck-boost converters using a simple maximum power point tracking (MPPT) algorithm. The efficiencies for the system with different converters are compared. The paper is full in evaluating the response of step up, step down converter for the MPPT system.
Paper proposes that the Step up converter is the best option for the use in the MPPT systems as it gives higher efficiency.

[2]. Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions.[5]

K.H. Hussein, I. Muta, I. Hoshino & M. Osakada.

The authors have developed a new MPPT algorithm based on the fact that the MPOP (maximum peak operating point) of a PV generator can be tracked accurately by comparing the incremental and instantaneous conductance of the PV array. The work was carried out by both simulation and experiment, with results showing that the developed incremental conductance (IntCond) algorithm has successfully tracked the MPOP, even in cases of rapidly changing atmospheric conditions, and has higher efficiency than ordinary algorithms in terms of total PV energy transferred to the load.

B.K. Bose, P.M. Szczesny and R.L. Steigerwald,

The authors discuss a control system of a residential photovoltaic system. The paper explains perturb and observe (P&O) algorithm and how can it be implemented using a microprocessor. This paper is one of the basic papers which explain the Perturb and observe algorithm. Also controller design using PI scheme is obtained.
[4]. An Improved Perturbation and Observe Maximum Power Point Tracking Algorithm for PV Arrays. [8]

Xuejun Liu and A.C.Lopes,

The corresponding authors have proposed a new kind of maximum power point tracking algorithm based on perturb and observe algorithm. The algorithm is fast acting and eliminates the need of a large capacitor which is normally used in perturb and observe algorithm to eliminate the ripple in the module voltage. The module voltage and current that are taken for processing are not averaged but are instantaneous this speeds up the process of peak power tracking. Also the paper implements the new algorithm on the real-time platform. The software used was dSPACE®.

D. P. Hohm, M. E. Ropp.

The authors have compared all the different kinds of algorithm that are used for the maximum power point tracking. This helps in proper selection of the algorithm. Preliminary results indicate that perturb and observe compares favorably with incremental conductance and constant voltage. Although incremental conductance is able to provide marginally better performance in case of rapidly varying atmospheric conditions, the increased complexity of the algorithm will require more expensive hardware, and therefore may have an advantage over perturb and observe only in large PV arrays.

[6]. Theoretical and Experimental Analyses of Photovoltaic Systems With Voltage and Current-Based Maximum Power-Point Tracking. [10]

Mohammad A. S. Masoum, Hooman Dehbonei, and Ewald F. Fuchs.
Detailed theoretical and experimental analyses of two simple, fast and reliable maximum power-point tracking (MPPT) techniques for photovoltaic (PV) systems are presented. Voltage-based (VMPPT) and the Current-based (CMPPT) approaches. A microprocessor-controlled tracker capable of online voltage and current measurements and programmed with VMPPT and CMPPT algorithms is constructed. The load of the solar system is either a water pump or resistance. The paper has given a Simulink model of the DC/DC converter and a solar PV module.

Pongsakor Takun, Somyot Kaitwanidvilai and Chaiyan Jettnasen.

In this paper, a fuzzy logic control (FLC) is proposed to control the maximum power point tracking (MPPT) for a photovoltaic (PV) system. The proposed technique uses the fuzzy logic control to specify the size of incremental current in the current command of MPPT. As results indicated, the convergence time of maximum power point (MPP) of the proposed algorithm is better than that of the conventional Perturb and Observation (P&O) technique.

[8]. Advanced Fuzzy MPPT Control Algorithm for Photovoltaic Systems. [12]

Mayssa Farhat and Lassaad Sbita.

This paper presents an intelligent approach for the improvement and optimization of the PV control performances. A PV system topology incorporating maximum power point tracking controller (MPPT) is studied. In order to perform this goal a special interest was focused on the well known P&O algorithm and compared to a designed fuzzy logic controller (FLC). This paper presents a detailed study of the MPPT controller to insure a high PV system performance which can be selected for practical implementation issue. A simulation work dealing with MPPT controller, a DC/DC Boost converter feeding a
load is achieved. Significant extracted results are given to prove the validity of the proposed overall PV system control scheme. The result show that the FLC has better performance and closed to the P&O ideal and FLC has better response time, less oscillation and much more accurate tracking.

The literature review consists of vast survey of papers from the various conferences. The literatures give sufficient idea about the basics of the MPPT algorithm and how the MPP tracking is takes place. Details of various algorithms that are used for the MPPT technique are discussed in the paper [9]. Also dc/dc converter design and various control aspects for the dc/dc converter are discussed. Which type of dc/dc converter can give maximum efficiency and which is the best choice for a given algorithm is discussed in the paper [4]. As discussed in [12] a dc/dc step up (boost) converter with Fuzzy Logic MPPT control algorithm gives higher efficiency than P&O algorithm. This algorithm is selected for the present work and is implemented in using a real time interface through microcontroller circuits.
CHAPTER 3

METHODOLOGY

3.1 Modeling PV Devices

The PV panel model is based on the recombination mechanism of p-n junctions. The I-V characteristic of the PV modules is extremely nonlinear and varies significantly with temperature and solar irradiation. These disturbances affect the normal operation of the PV panels and may lead to a tracking of incorrect maximum power point which gives the necessity for the development of an accurate mathematical model. The equivalent circuit of a PV cell is shown in Fig.3.0.

![Fig.3.0](image.png)

Fig.3.0 The equivalent circuit of the Practical photovoltaic cell.
Fig. 3.0 shows the equivalent circuit of the ideal PV cell. The basic equation from the theory of semiconductors that mathematically describes the I–V characteristic of the ideal PV cell is

$$I = I_{\text{pv, cell}} - I_{0, \text{cell}} \left[\exp \left(\frac{qV}{akT} \right) - 1 \right]$$

$$\text{---------}(3.0)$$

where $I_{\text{pv, cell}}$ is the current generated by the incident light (it is directly proportional to the Sun irradiation), I_d is the Shockley diode equation, $I_{0, \text{cell}}$ is the reverse saturation or leakage current of the diode, q is the electron charge ($1.60217646 \times 10^{-19} \text{ C}$), k is the Boltzmann constant ($1.3806503 \times 10^{-23} \text{ J/K}$), T (in Kelvin) is the temperature of the p–n junction, and a is the diode ideality constant. Fig. 3.1 shows the I–V curve originated from (3.0).

Fig. 3.1. Characteristic I–V curve of the PV cell. The net cell current I is composed of the light-generated current I_{pv} and the diode current I_d.

The basic equation (3.0) of the elementary PV cell does not represent the I–V characteristic of a practical PV array. Practical arrays are composed of several connected
PV cells and the observation of the characteristics at the terminals of the PV array requires the inclusion of additional parameters to the basic equation

\[I = I_{pv} - I_0 \left[\exp \left(\frac{V + R_s I}{V_t} \right) - 1 \right] - \frac{V + R_s I}{R_p} \] \quad \text{(3.1)}

Where \(I_{pv} \) and \(I_0 \) are the photovoltaic (PV) and saturation currents, respectively, of the array and \(V_t = NskT/q \) is the thermal voltage of the array with \(N_s \) cells connected in series. Cells connected in parallel increase the current and cells connected in series provide greater output voltages. If the array is composed of \(N_p \) parallel connections of cells the PV and saturation currents may be expressed as \(I_{pv} = I_{pv, cell} N_p \), \(I_0 = I_{0, cell} V_p \). In (3.1), \(R_s \) is the equivalent series resistance of the array and \(R_p \) is the equivalent parallel resistance. This equation originates the \(I-V \) curve in Fig. 3.2, where three remarkable points are highlighted: short circuit (0, \(I_{sc} \)), MPP (\(V_{mp}, I_{mp} \)), and open circuit (\(V_{oc}, 0 \)).

Equation (3.1) describes the single-diode model presented in Fig. 3.0. Some authors have proposed more sophisticated models that present better accuracy and serve for different purposes. For example, in [14]–[18] an extra diode is used to represent the effect of the recombination of carriers. A three-diode model is proposed in [19] to include the influence of effects that are not considered by the previous models.

For simplicity, the single diode model of Fig. 3.0 is proposed in this research. This model offers a good compromise between simplicity and accuracy [20], and has been used by several authors in previous works, sometimes with simplifications but always with the basic structure composed of a current source and a parallel diode [21]–[34].

Manufacturers of PV arrays, instead of the \(I-V \) equation, provide only a few experimental data about electrical and thermal characteristics. Unfortunately, some of the parameters required for adjusting PV array models cannot be found in the manufacturer’s datasheets, such as the light-generated or PV current, the series and shunt resistances, the diode ideality constant, the diode reverse saturation current, and
the band-gap energy of the semiconductor. All PV array datasheets bring basically the following information: the nominal open-circuit voltage \(V_{oc,n} \), the nominal short-circuit current \(I_{sc,n} \), the voltage at the MPP \(V_{mp} \), the current at the MPP \(I_{mp} \), the open-circuit voltage/temperature coefficient \(K_V \), the short-circuit current/temperature coefficient \(K_I \), and the maximum experimental peak output power \(P_{max,e} \). This information is always provided with reference to the nominal condition or standard test conditions (STCs) of temperature and solar irradiation. Some manufacturers provide \(I-V \) curves for several irradiation and temperature conditions. These curves make easier the adjustment and the validation of the desired mathematical \(I-V \) equation. Basically, this is all the information one can get from datasheets of PV arrays.

Electric generators are generally classified as current or voltage sources. The practical PV device presents hybrid behavior, which may be of current or voltage source depending on the operating point, as shown in Fig. 3.2. The practical PV device has a series resistance \(R_s \) whose influence is stronger when the device operates in the voltage source region and a parallel resistance \(R_p \) with stronger influence in the current source region of operation. The \(R_s \) resistance is the sum of several structural resistances of the device. Fig. 3.3 shows the structure of a PV cell. \(R_s \) basically depends on the contact resistance of the metal base with the \(p \) semiconductor layer, the resistances of the \(p \) and \(n \) bodies, the contact resistance of the \(n \) layer with the top metal grid, and the resistance of the grid. The \(R_p \) resistance exists mainly due to the leakage current of the \(p-n \) junction and depends on the fabrication method of the PV cell. The value of \(R_p \) is generally high and some authors [23]–[26], [29], [35]–[38] neglect this resistance to simplify the model. The value of \(R_s \) is very low, and sometimes this parameter is neglected too [36], [39]–[41].
Fig. 3.2. Characteristic I–V curve of a practical PV device and the three remarkable points: short circuit ($0, I_{sc}$), MPP (V_{mp}, I_{mp}), and open circuit ($V_{oc}, 0$).

Fig. 3.3. Physical structure of a PV cell.

The I–V characteristic of the PV device shown in Fig. 3.2 depends on the internal characteristics of the device (R_s, R_p) and on external influences such as irradiation level and temperature. The amount of incident light directly affects the generation of charge carriers, and consequently, the current generated by the device. The light-generated current (I_{pv}) of the elementary cells, without the influence of the series and parallel
resistances, is difficult to determine.Datasheets only inform the nominal short-circuit current ($I_{sc,n}$), which is the maximum current available at the terminals of the practical device. The assumption $I_{sc} \approx I_{pv}$ is generally used in the modeling of PV devices because in practical devices the series resistance is low and the parallel resistance is high. The light-generated current of the PV cell depends linearly on the solar irradiation and is also influenced by the temperature according to the following equation [30], [42]–[44]:

$$I_{pv} = (I_{pv,n} + K_I \Delta T) \frac{G}{G_n}$$ \hspace{1cm} (3.2)

Where $I_{pv,n}$ (in amperes) is the light-generated current at the nominal condition (usually 25 °C and 1000 W/m²), $\Delta T = T - T_n$ (T and T_n being the actual and nominal temperatures [in Kelvin], respectively), G (watts per square meters) is the irradiation on the device surface, and G_n is the nominal irradiation.

The diode saturation current I_0 and its dependence on the temperature may be expressed by as shown [42], [43], [45]–[48]:

$$I_0 = I_{0,n} \left(\frac{T_n}{T} \right)^{3/2} \exp \left[\frac{qE_g}{aK} \left(\frac{1}{T_n} - \frac{1}{T} \right) \right]$$ \hspace{1cm} (3.3)

where E_g is the band-gap energy of the semiconductor ($E_g = 1.12$ eV for the polycrystalline Si at 25 °C [23], [42]), and $I_{0,n}$ is the nominal saturation current:

$$I_{0,n} = \frac{I_{so,n}}{\exp(V_{oc,n}/aV_{t,n}) - 1}$$ \hspace{1cm} (3.4)
With $V_{t,n}$ being the thermal voltage of N_s series-connected cells at the nominal temperature T_n.

The value of the diode constant a may be arbitrarily chosen. Many authors discuss ways to estimate the correct value of this constant [20], [23]. Usually, $1 \leq a \leq 1.5$ and the choice depend on other parameters of the I–V model. Some values for a are found in [42] based on empirical analyses. As is given in [20], there are different opinions about the best way to choose a. Because a expresses the degree of ideality of the diode and it is totally empirical, any initial value of a can be chosen in order to adjust the model. The value of a can be later modified in order to improve the model fitting, if necessary. This constant affects the curvature of the I–V curve and varying a can slightly improves the model accuracy.

Modeling accurate Photovoltaic Arrays has been discussed in many papers. For the purposes of this research we will be using the method describer in [13]. This modeling algorithm includes only R_s and R_p, is assumed a very large value and it takes into consideration the effect of an array of solar modules and a panel of solar arrays. The PV datasheets always provide the following information:

i. Standard Operating Conditions: 25°C and 1000W/m²
ii. I_{sc} at standard operating conditions.
iii. V_{oc} at standard operating conditions.
iv. I_{mp}: I at the maximum power point at standard operating conditions.
v. V_{mpp}: at the maximum power point at standard operating conditions.
vi. K_v: the open-circuit voltage/temperature coefficient.
viii. P_{maxe}: the maximum experimental peak output power at standard test conditions
REFERENCES

Current-Based Maximum Power-Point Tracking”, IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 17, NO. 4, DECEMBER 2002.

