BIOPATTERN: A BIOMIMETIC DESIGN FRAMEWORK FOR GENERATING
BIO-INSPIRED DESIGN (BIOMIMICRY)

FOO CHIN TOONG

A thesis submitted in
fulfillment of the requirement for the award of the
Doctor of Philosophy

Faculty of Mechanical and Manufacturing Engineering
Universiti Tun Hussein Onn Malaysia

NOVEMBER 2020
To the Creator of the heavens and the earth.
ALL GLORY BE TO THE LORD OF HOST, THE INTELLIGENT DESIGNER OF THIS WORLD, FOR FROM HIM, THROUGH HIM, AND TO HIM ARE ALL THINGS. THIS THESIS WILL NOT BE COMPLETED WITHOUT THE GRACE OF MY LORD JESUS CHRIST. HE HAD BEEN FAITHFUL TO ME FOR HE DID NOT LEAVE NOR FORSAKE ME THROUGHOUT THIS JOURNEY. AS A LOVING FATHER, HIS GRACE SUSTAINS ME.

I am grateful for my parents for giving me the opportunity to pursue my own dreams and support me in all areas. They had helped me to be a better person by standing on top of their shoulder to reach greater heights which was impossible for them to reach in the past. Though they were not perfect, they are beautifully imperfect to me.

I’m grateful for Jong Oi Ka for being my supporter, cheerleader, helper, and friend. She’s been there with me all the time, despite the distances between us. She has always been supportive with my decisions and cheers me on in everything I do.

I wanted to express my gratitude to my supervisor, Prof. Ts. Dr. Badrul Bin Omar for being more of a friend and a father instead of a supervisor when he is guiding me throughout this research, giving me valuable advices, and directing me to proper sources of help.

I am also grateful for Ts. Dr. Mohd Azlis Sani Bin Md Jalil for being my co-supervisor. In spite of me changing my research topic to one that is foreign to him, he is still willing to guide me and pointed out some blindspots that I have missed out in this research.

Last but not least, I wanted to thank my family-in-Christ for keeping me in their prayer, especially when I am lost and didn’t know how to continue on. They have been giving me love, care, and encouragement all the time to help sustain me until the end.
ABSTRACT

Some of the best inventions are inspired by nature because nature had been adapting to environmental changes as an algorithm improving itself to solve engineering problems in the most efficient ways. However, there is a huge knowledge gap between engineering and biology where engineers are unable to crossover. The objective of this research is to develop a biomimetic design framework, BioPattern, which bridges this knowledge gap. BioPattern constitutes of TRIZ, SAPPhIRE, and pattern language. It has a pattern-based ontology and a sustainability evaluation, known as Ideal Chart. The method to assess BioPattern is by case study where two different groups of students (controlled group and experimental group) are asked to generate inventive ideas where the experimental group employed BioPattern as the ideation tool. BioPattern is then applied in two industrial problems; centrifugal blower and plastic extruder, conceptually. BioPattern is found to be better in generating ideas with higher novelty. 71% of the ideas generated by the controlled group are of no novelty, 11% low novelty, 7% medium novelty, 11% high novelty, and no new invention. While there are only 8% of the ideas generated the controlled group are of no novelty, 33.5% low novelty, 33.5% medium novelty, 25% high novelty, and no new invention. BioPattern is also able to generate strategies that are practical as the experimental groups are able to fabricate functional machines that are suggested by BioPattern. As for industrial applications, BioPattern suggested the strategy of composite layer to reduce the weight of the impeller of the centrifugal blower, while the strategy of insulation with ceramic for extruder insulation. It can be concluded that BioPattern is able to bridge the biology-engineering gap and it is holistic model which will ease ideation by providing sustainable inspiration from nature.
ABSTRAK

CONTENTS

TITLE i
DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xiv
LIST OF SYMBOLS AND ABBREVIATIONS xx
LIST OF APPENDICES xxii

CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Research background 1
1.3 Problem statement 6
1.4 Aim and objective of the research 8
1.5 Significance of research 8
1.6 Scope of research 9
1.7 Limitations 10
1.8 Structure of thesis 10
1.9 Summary 11

CHAPTER 2 LITERATURE REVIEW 12
2.1 Introduction 12
2.2 Biomimetic Design Process 12
2.2.1 Problem-driven biomimetic design approach 13
2.2.2 Solution-based biomimetic design approach 16

2.3 Biomimetic Core Stages: Search, Abstract, Transfer 18
2.3.1 Search 18
2.3.2 Abstract 20
2.3.3 Transfer 22

2.4 Theory of Inventive Problem Solving (TRIZ) 23
2.4.1 Algorithm for Inventive Problem Solving 24
2.4.2 Technical system 26
2.4.3 The Law of Ideality 27
2.4.4 Contradictions 28
2.4.5 Substance-Field Modelling and the Law of System Completeness 32
2.4.6 Levels of Innovation 34

2.5 Function, Behaviour, and Structure (FBS) 35
2.5.1 FBS models 38
2.5.2 SAPPPhIRE model of causality 40

2.6 Pattern Language 42

2.7 Assessment of Biomimetic Design Framework 45

2.8 Related Studies 47

2.9 Summary 52

CHAPTER 3 RESEARCH METHODOLOGY 55

3.1 Introduction 55

3.2 Phase 1: (Re)creation 57
3.2.1 Problem-driven BioPattern design process 57
3.2.2 Solution-based BioPattern design process 61

3.3 Phase 2: Generation 64
3.3.1 Pattern-Based Ontology 64
3.3.2 Ideal Chart 68

3.4 Phase 3: Evaluation 69

3.5 Phase 4: Application 71
LIST OF TABLES

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Similarities of biology and engineering systems (Bar-Cohen, 2006).</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Comparison of problem-driven biomimetic design approach models.</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of solution-based biomimetic design approach models.</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Ideality strategies (Helfman & Reich, 2016).</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Creative process of TRIZ (Altshuller, 2007).</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of reviewed FBS models.</td>
<td>39</td>
</tr>
<tr>
<td>2.6</td>
<td>Relevant situations for different research strategies (Yin, 2014).</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Comparison of novelty assessment criteria from TRIZ and SAPPhIRE.</td>
<td>46</td>
</tr>
<tr>
<td>2.8</td>
<td>Ideality Patterns Table (Helfman Cohen & Reich, 2015).</td>
<td>48</td>
</tr>
<tr>
<td>2.9</td>
<td>Pattern Table: list of structure-function pattern (Helfman Cohen et al., 2014).</td>
<td>50</td>
</tr>
<tr>
<td>2.10</td>
<td>Comparison of BioPattern with other biomimetic tools.</td>
<td>52</td>
</tr>
<tr>
<td>3.1</td>
<td>Problem definition and abstraction of BioPattern.</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Biological problem definition and abstraction of BioPattern.</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Biological system abstraction and pattern identification of BioPattern.</td>
<td>60</td>
</tr>
</tbody>
</table>
3.4 Solution transfer of BioPattern.
3.5 Biological system abstraction and pattern identification in solution-based BioPattern design process.
3.6 Problem definition and abstraction in solution-based BioPattern design process.
3.7 Solution transfer in solution-based BioPattern design process.
3.8 Categorization of ideality strategies according to its space of influence.
3.9 Assessment tool for Levels of Innovation.
3.10 Problem definition of blower impeller.
3.11 Problem definition of extruder insulation.
4.1 Solving packaging problem with problem-driven BioPattern design approach.
4.2 Solving packaging problem with solution-based BioPattern design approach.
4.3 Strategy description of “stretchy material” from pattern-based ontology.
4.4 Strategies suggested for the problem of “extendable / retractable surface” from pattern-based ontology.
4.5 Description of 28 project titles in C&I class.
4.6 Description of 12 project titles in IED class.
4.7 SAPPhIRE breakdown of 28 project titles in C&I class.
4.8 SAPPhIRE breakdown of 12 project titles in IED class.
4.9 Strategy description of “guide tunnel” and “drip tip” from pattern-based ontology.
4.10 Ideal Chart for waste chute system.
4.11 Strategy description of “downsizing” from pattern-based ontology.
4.12 Ideal Chart for air condition compressor unit relocation device.
4.13 Strategy description of “vibration” from pattern-based ontology.

4.14 Ideal Chart for multipurpose winnower.

4.15 Strategy description of “shape – spiral” from pattern-based ontology.

4.16 Ideal Chart for tornado mixer.

4.17 Problem definition of fan blade dust cleaner.

4.18 Strategy description of “ridges” from pattern-based ontology.

4.19 Ideal Chart for fan blade dust cleaner.

4.20 Strategy description of “box-shaped” from pattern-based ontology.

4.21 Ideal Chart for delivery drone attachment.

4.22 Strategy description of “serrated edge” from pattern-based ontology.

4.23 Ideal Chart for effortless chain cutter.

4.24 Strategy description of “spring” from pattern-based ontology.

4.25 Ideal Chart for ping pong ball launcher.

4.26 Strategy description of “spikes” from pattern-based ontology.

4.27 Ideal Chart for shuttlecock collector.

4.28 Problem definition of semi-automatic seed planter.

4.29 Strategy description of “hydrostatic pressure” from pattern-based ontology.

4.30 Ideal Chart for semi-automatic seed planter.

4.31 Problem definition of candlenut cracker.

4.32 Strategy description of “air pockets” from pattern-based ontology.

4.33 Ideal Chart for candlenut cracker.

4.34 Problem definition of floating garbage collector.
4.35 Strategy description of “tangential flow filter” and “undulating fin” from pattern-based ontology. 129
4.36 Ideal Chart for floating garbage collector. 131
4.37 Strategy description of “water surface tension” from pattern-based ontology. 136
4.38 Strategy description of “layered composite” from pattern-based ontology. 137
4.39 Ideal Chart for blower impeller. 138
4.40 Strategy description of “high specific heat capacity”, “cooling ribs”, and “increase exposure” from pattern-based ontology. 142
4.41 Ideal Chart for extruder insulation 144
4.42 Summary of outcomes for industrial applications. 149
LIST OF FIGURES

1.1 Da Vinci index 2.0 of biomimicry growth (PLNU, 2019).
2.1 Simplified biomimetic design process by VDI6220 (VDI6220, 2011).
2.2 TRIZ double cycle for problem-driven biomimetic design process by (P. Fayemi, Marazana, & Bersano, 2014)
2.3 The unified problem-driven process of biomimetics (P. E. Fayemi et al., 2017).
2.4 Summary of TRIZ process of problem solving (P. Fayemi et al., 2014).
2.6 TRIZ 39×39 contradiction matrix (Altshuller, 2007).
2.7 S-Field thermal field acting on S2 to interact with S1 (left) and general form of S-Field without arrows (right) (Altshuller, 2004; Salamatov, 2005).
2.8 Law of System Completeness (Altshuller, 1984).
2.9 System, environment, and interactions (V Srinivasan & Chakrabarti, 2009).
2.10 SAPPhIRE model of causality (V Srinivasan & Chakrabarti, 2009).
2.11 (a) Fracture surface of red abalone nacre showing the brick-and-mortar architecture separated by a mesolayer, or growth band. (b) Partially demineralized nacre
exposing the tent-like organic membrane. (c) Mesolayers and nanolayers (collapsed) within a partially demineralized nacreous structure consisting of a thick layer of organic material with an embedment of minerals (Lopez et al., 2014).

2.12 (a) Distal view of tail cross-section; (b) dorsal view of tail section (Porter et al., 2013).

2.13 The Complete Viable System Model (dashed line represents elements of S-Field, solid line represents elements from the Law of System Completeness) (Helfman Cohen et al., 2014).

3.1 Research methodology flow chart.

3.2 General biomimetic design approach for problem-driven and solution-based approach.

3.3 TRIZ double cycle of problem-driven BioPattern design process.

3.4 Solution-based BioPattern design process.

3.5 Abstraction of Florida manatee with SAPPhIRE.

3.6 Sorting of functional principles according to tags: adhesion and aerodynamics.

3.7 Sorting of abstracted patterns (structure, change of state, and physical effect) based on function.

3.8 Sorting of pattern-based ontology based on function-solution pair.

3.9 Design flow for industrial case studies.

3.10 Sample (a, b) blower impeller and (c, d) housing.

3.11 Details and constraints of the impeller design given by Industry A.

3.12 Extrusion barrel layout (Mechanicalinventions, 2019).

3.13 (a) Non-insulated thermal study modelling. (Black – grey cast iron, grey – HDPE), and (b) insulated heat
study modelling. (Black – grey cast iron, white – ceramic porcelain, grey – HDPE).

4.1 Summary of BioPattern design process.

4.2 Sample pattern-based ontology.

4.3 Role of pattern-based ontology in BioPattern design process (M = Manual, IC = Ideal Chart).

4.4 Ideal Chart.

4.5 Ideal Chart for problem-driven BioPattern packaging example.

4.6 Ideal Chart for solution-based BioPattern python example.

4.7 Concept yielded by BioPattern, the python bag.

4.8 Level of innovation for 28 concepts generated in C&I class.

4.9 Design process approach of 12 case studies in IED class.

4.10 Level of innovation for 12 concepts generated in IED class.

4.11 Peepul tree leaves, Ficus religiosa, with drip tip (Guinter, 2003) (left), and guide tunnel by darkling beetle, *Lepidochora discoidalis*, to collect dew at Namib Desert (Chiu, 2007) (right).

4.12 Waste chute system for apartment sketch (left) and prototype (right).

4.15 Red harvester ants, Pogonomyrmex barbatus, major worker carrying seed (Wahl, 2019) (left) and leaf-cutter ants, Atta cephalotes, carrying leaf piece (Hillewaert, 2009) (right).

4.16 Air condition unit relocation device sketch (left) and prototype (right).

4.17 Jay Harman, inventor of Lilly impeller (DaSilva, 2008).

4.18 Tornado mixer sketch (left) and prototype (right).

4.19 *Nepenthes bicalcarata* intermediate pitcher (Sucianto, 2006).

4.20 Fan blade dust cleaner sketch (left) and prototype (right).

4.21 Yellow boxfish (González, 2006).

4.22 Delivery drone attachment sketch (left) and prototype (right).

4.23 Pristis pectinate sawfish (Robertson, 2010).

4.24 Effortless chain cutter sketch (top) and prototype (bottom).

4.25 Baby chameleon shooting his tongue to catch a cricket (Keifer, 2019).

4.26 Ping pong ball launcher sketch (left) and prototype (right).

4.28 Bristles of Florida manatee, Trichechus manatus (Colson, 2008).

4.29 Shuttlecock collector sketch (left) and prototype (right).

4.30 Shuttlecock collection robot (Tian et al., 2019).

4.31 ProSort CC-60 (Barrington et al., 2015).

4.32 Earthworm (Linnenbach, 2005).
4.33 Semi-automatic seed planter sketch (left) and prototype (right).

4.34 (a) Common toucan, Ramphastos toco (Abbott, 2019), (b) cross-section of toucan beak (Seki et al., 2006), (c) scanning electron micrograph of exterior of toucan beak (keratin surface) and (d) scanning electron micrograph of interior of toucan beak (Seki et al., 2005).

4.35 Candlenut cracker sketch (left) and prototype (right).

4.36 Basking shark spotted at Cornwall (Winter, 2016), (a) vortex (Vo) generated directly downstream (red marker) of the branchial arch (BA), (b) vortex concentrated Artemia cysts (Ar) on the mesh (Me) (Sanderson, Roberts, Lineburg, & Brooks, 2016).

4.37 Black ghost knifefish, Apteronotus albifrons (Ramsey, 2005).

4.38 Floating garbage collector sketch (top) and prototype (bottom).

4.40 BionicFinWanve by Festo Bionics (Festo, 2018).

4.41 Percentage distribution of Level of Innovation achieved by C&I and IED projects.

4.42 Scally-foot snail, Crysomallon squamiferum (Warén, 2010).

4.43 Young’s modulus versus density material chart (Ashby, 2005). Red lines intersect at the region of steel. Blue lines intersect at the region of polymer.

4.44 Wear-rate constant versus hardness material chart (Ashby, 2005). Red lines intersect at the region of steel. Blue lines intersect at the region of polymer.

4.45 Young’s modulus versus relative cost per unit volume material chart (Ashby, 2005). Red line intersects at the
region of carbon steel. Blue line intersects at the region of PP and PE. Green line intersects at the region of CFRP.

4.46 Malleefowl incubating mound (Halasz, 2007).

4.47 Ridges on barrel cactus (left) (Leitch, 2017) and infrared image of barrel cactus (right) (Benford, 2017).

4.48 Thermal study simulation result for non-insulated model.

4.49 Thermal study simulation result for insulated model.

4.50 Thermal conductivity versus thermal diffusivity material chart (Ashby, 2005). Blue region represents ceramic region, green region represents glass region.

4.51 Young’s modulus versus relative cost per unit volume material chart (Ashby, 2005). Blue region represents ceramic region, green region represents glass region.
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>ARIZ</td>
<td>Algorithm for Solving Inventive Problems</td>
</tr>
<tr>
<td>BDA10602</td>
<td>Course code of C&I</td>
</tr>
<tr>
<td>BDA40804</td>
<td>Course code of IED</td>
</tr>
<tr>
<td>BID</td>
<td>Bio-Inspired Design</td>
</tr>
<tr>
<td>BMO</td>
<td>BioMimetic Ontology</td>
</tr>
<tr>
<td>C&I</td>
<td>Creative and Innovation</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>Calcium Carbonate</td>
</tr>
<tr>
<td>CFRP</td>
<td>Carbon fibre reinforced polymer</td>
</tr>
<tr>
<td>DANE</td>
<td>Design by Analogy to Nature Engine</td>
</tr>
<tr>
<td>E2B</td>
<td>Engineering-to-Biology Thesaurus</td>
</tr>
<tr>
<td>E2BMO</td>
<td>Hybrid tool of E2B and BMO</td>
</tr>
<tr>
<td>F</td>
<td>Field</td>
</tr>
<tr>
<td>F_E</td>
<td>Electrical field</td>
</tr>
<tr>
<td>F_{GR}</td>
<td>Gravitational field</td>
</tr>
<tr>
<td>F_M</td>
<td>Mechanical field</td>
</tr>
<tr>
<td>F_{MG}</td>
<td>Magnetic field</td>
</tr>
<tr>
<td>F_{NS}</td>
<td>Nuclear field of strong interaction</td>
</tr>
<tr>
<td>F_{NW}</td>
<td>Nuclear field of weak interaction</td>
</tr>
<tr>
<td>F_T</td>
<td>Thermal field</td>
</tr>
<tr>
<td>FBS</td>
<td>Function-Behaviour-Structure</td>
</tr>
<tr>
<td>FM</td>
<td>Flowthing Model</td>
</tr>
<tr>
<td>FR</td>
<td>Functional Representation</td>
</tr>
<tr>
<td>GF</td>
<td>Generic function</td>
</tr>
<tr>
<td>HDPE</td>
<td>High density polyethylene</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/output</td>
</tr>
<tr>
<td>IED</td>
<td>Integrated Engineering Design</td>
</tr>
<tr>
<td>IFR</td>
<td>Ideal final result</td>
</tr>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>MMD</td>
<td>Model with Miniature Dwarfs</td>
</tr>
<tr>
<td>N/A</td>
<td>Not applicable</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene terephthalate</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>RFBS</td>
<td>Requirement-Function-Behaviour-Structure</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>S</td>
<td>Substance</td>
</tr>
<tr>
<td>S_1</td>
<td>Substance 1</td>
</tr>
<tr>
<td>S_2</td>
<td>Substance 2</td>
</tr>
<tr>
<td>SAPPhIRE</td>
<td>State-Action-Part-Phenomenon-Input-oRgan-Effect</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SFM</td>
<td>S-Field model</td>
</tr>
<tr>
<td>SME</td>
<td>Small and medium enterprise</td>
</tr>
<tr>
<td>SSBID</td>
<td>Scalable systematic biologically-inspired design</td>
</tr>
<tr>
<td>STC</td>
<td>Size, time, cost</td>
</tr>
<tr>
<td>TRIZ</td>
<td>Teoriya Resheniya Izobretatelskikh Zadach</td>
</tr>
<tr>
<td>UTHM</td>
<td>Universiti Tun Hussein Onn Malaysia</td>
</tr>
<tr>
<td>VDI6220</td>
<td>Verein Deutscher Ingenieure 6220</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pattern-based Ontology</td>
<td>176</td>
</tr>
<tr>
<td>B</td>
<td>Industry appointment letter</td>
<td>186</td>
</tr>
<tr>
<td>C</td>
<td>Evaluation form of research validation</td>
<td>189</td>
</tr>
<tr>
<td>D</td>
<td>Thermal study simulation result comparison for non-insulated (left) and insulated (right) extruder</td>
<td>192</td>
</tr>
<tr>
<td>E</td>
<td>Research Gantt Chart</td>
<td>199</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter will discuss about engineering design, specifically bio-inspired design (BID), where technologies are inspired by nature. The problem statement, research objectives, and research scope will also be discussed in detailed in the following subchapters.

1.2 Research background

Engineering design is an algorithm used by engineers to create functional products and processes. It is something that affects all areas in our daily lives where scientific laws are used to realize physical solution to address technical problems, especially product development. In just 11 years, from 2008 until 2019, the number of world human population had increased by 1 billion. To date, the world population is 7.7 billion (Worldometers, 2019). As the demand of human’s basic need increases with the global human population, technology advancement for higher rate of goods supplies and bringing new products to market is required to catch up with the pace of the growing human population (Kennedy, 2017). This is what Stuart Pugh called ‘market-pull’ and ‘technology-push’ (Pugh, 1990). In the modern product development, engineering design are faced with challenges of attracting and retaining consumers, competing with other competitors, and satisfying the diverse requirements within global supply chains. This is
why research on engineering design had been done extensively over the past decades (Liu & Boyle, 2009). As a result various engineering design approaches were developed, such as user centred design (Norman & Draper, 1986), total design (Pugh, 1990), kansei engineering (Nagamachi, 1995), axiomatic design (Suh, 1998), decision-based engineering design (Hazelrigg, 1998), robust design method or Taguchi methods (Taguchi, Chowdhury, & Taguchi, 2000), systematic engineering design (Pahl & Beitz, 2003), TRIZ (Altshuller, 2007), and bio-inspired design.

Bio-inspired designs, or biomimicry, are functional innovative technologies, products, and processes inspired by nature, through a process called biomimetic. The term “bio” means life and “mimicry” means an aptitude of copying. Biomimetic is used specifically to assist the conceptual design stage where the main problems are identified via abstraction, searching for appropriate working principles, and so determines the principle of a solution (Pahl & Beitz, 2003). Biomimicry is not a new design concept because the term “biomimetic” was first introduced by Otto Herbert Schmitt in 1969 (Schmitt, 1969). However, only in recent years that it is gaining popularity. According to Figure 1.1, the Da Vinci Index shows that the number of scholarly articles, number of patents, number of grants, and dollar value of grants for biomimicry had increased exponentially.

![Figure 1.1: Da Vinci index 2.0 of biomimicry growth (PLNU, 2019).](image)
Nature has been on an ongoing research and development process in finding solutions to counter challenges be it with the principles of physics, mechanics, chemistry, material science, transportation, or sensors, from the range of nano to macro, a single cell to an entire ecosystem. It is a rich source of knowledge and inspiration of inventions as nature itself is an enormous collection of inventions that overcame the test of practicality and durability (Bar-Cohen, 2006; Nkandu & Alibaba, 2018). For example, before the first heat exchanger is being invented, the penguins, and tunas already had counter-current heat exchanger built in them to adapt in sub-zero environment (Stevens, Kanwisher, & Carey, 2000; Stevens & Kendall, 1974; Thomas, Ksepka, & Fordyce, 2011). Before Daniel Bernoulli introduces the Bernoulli’s principle, nature had already been applying this principle for air ventilation in ant nests, termite mounds, and prairie dog’s tunnels (Kleineidam, Ernst, & Roces, 2001; Ocko et al., 2017; Vogel, Ellington, & Kilgore, 1973). However, unless the gap between biology and engineering is bridged, the strategies from nature will not flow over into the engineering world. There are actually eight common errors that Helms identified that most designers made in practicing biomimicry, which are vaguely defined problems, poor problem-solution pairing, oversimplification of complex functions, using the biological solutions literally without proper understanding, simplification of optimization problems, solution fixation, misapplied analogy, and improper analogical transfer (Helms, Vattam, & Goel, 2009). Even so, various strategies from nature had been successfully transferred yielding bio-inspired designs such as Velcro® (Pugno, 2007), autonomous self-healing concrete (Elia, Eslava, Miranda, Georgiou, & Saiz, 2016), self-reinforced composites (Mencattelli, Tang, Swolfs, Gorbatikh, & Pinho, 2019), oil repellent coating (Y. Chen et al., 2018), acid resistance surface (Wu et al., 2019), water distribution and power grid networks (Dave & Layton, 2019; Panyam, Huang, Davis, & Layton, 2019), and underwater adhesive (Zhao et al., 2017).

Biomimicry is expected to be able to overcome major global challenges, which are sustainable development, water, population and resources, democratization, long-term perspectives, information technology, the rich–poor gap, health, capacity to decide, peace and conflict, status of women, transnational crime, energy, science and technology, and global ethics (Gebeshuber, Gruber, & Drack, 2009). According to Elena Lurie-Luke’s

Benford, P. (2017). Infrared image of a cactus shows the rib with different temperatures.

3(53867$.$$1 781.8 781 $0,1$+377$
3(53867$.$$1 781.8 781 $0,1$+

Mcinerney, S. J., Khakipoor, B., Garner, A. M., Houette, T., Unsworth, C. K., Rupp,

42(2), 213–227.

66. https://doi.org/10.1680/jbibn.16.00010

