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ABSTRACT 

 
 
 

Wind energy technology represented in wind turbines is one of the fastest growing 

alternative energy technologies, especially horizontal axis wind turbine (HAWT) type 

which is more efficient, compared to other conventional wind turbines. However, it is 

less utilized in urban areas due to the relatively low wind velocity in these areas. In the 

this work, a technique of augmenting wind by the concept of diffuser augmented wind 

turbine (DAWT) has been presented to improve the efficiency of small scale of HAWT 

by enclosing it with a suitable diffuser. The study included two stages for performance 

improvement; first, developing the diffuser design in three configurations, and second, 

developing the design of HAWT rotor blades based on the maximum increase of wind 

velocity in the modified diffuser; at the rotor position, a Modified Theory was used. 

Two models of DAWT were obtained; one of them was installed with the preliminary 

rotor, while the other one was installed with the modified rotor where aerodynamic 

performance predictions of the diffuser, bare HAWT, and DAWTs models have been 

studied through experimental and simulation approaches. The simulation study was 

performed using 3-D CFD models based on the SST k-ω turbulence model using 

ANSYS 19.1, while the experimental study was conducted in an open-loop wind 

tunnel. The performance evaluations of the models were established in terms of power, 

torque and aerodynamics coefficient which were power coefficient and torque 

coefficient. The systematic analysis of these quantities showed that DAWT with a 

flanged diffuser achieved a significant increase in performance compared to bare 

HAWT. The results also demonstrated that DAWT with flange angle of 0˚, at both 

rotors models, achieved the best augmented in power, compared to other flange 

configurations. On the other hand, the average power was augmented in the DAWT at 

0˚flange angle (ϴf) with the preliminary rotor (FDAWT-PR) by around 256%, 

compared to bare HAWT, while the augmentation reached up to 291% in DAWT with 

the modified rotor (FDAWT-MR) at same flange angle. In addition, FDAWT (ϴf =0˚)-

MR has a simple shape, economic, and compact size. Furthermore, the simulation was 

conducted to visualize the fluid flowing around the chosen models, as well as giving 

precise details that difficult to obtaining them practically. 
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ABSTRAK 
 
 
 

Teknologi tenaga angin yang digunapakai dalam turbin angin merupakan salah satu 

teknologi tenaga alternatif yang paling pesat berkembang terutama turbin angin paksi 

(HAWT) yang lebih efisien berbanding turbin angin konvensional yang lain. 

Walaubagaimanapun, ia kurang digunakan sepenuhnya di kawasan berpendudukan 

padat kerana kebiasaanya angin di situ adalah berkelajuan rendah. Dalam kerja-kerja 

ini, satu teknik penambahan angin melalui konsep turbin penyebar angin tambahan 

(DAWT) telah dipersembahkan dengan melengkapkannya dengan penyebar yang 

sesuai untuk meningkatkan kecekapan skala kecil HAWT. Kajian ini merangkumi dua 

peringkat penambahbaikan prestasi; pertama, membangunkan reka bentuk penyebar 

dalam tiga konfigurasi, dan yang kedua, mengembangkan reka bentuk bilah pemutar 

HAWT berdasarkan kenaikan maksimum kelajuan angin di peresap yang diubahsuai 

pada kedudukan pemutar dengan menggunakan bilah yang diubah suai berdasarkan 

teori momentum unsur. Dua model DAWT diperolehi, salah satunya adalah dengan 

menggunakan pemutar awal, manakala yang kedua adalah dengan pemutar yang 

diubah suai, yang mana ramalan prestasi aerodinamik penyebar, model HAWT dan 

DAWT terdedah telah dikaji melalui pendekatan percubaan dan simulasi. Kajian 

simulasi dilakukan menggunakan model 3-D CFD berdasarkan model pergolakan SST 

k-ω menggunakan ANSYS 19.1, sementara kajian percubaan dijalankan dalam 

terowong angin gelung terbuka. Kecekapan penilaian model di perkukuhkan dalam 

terma kuasa, tork dan pemalar aerodimik iaitu pemalar kuasa dan pemalar tork. 

Analisis sistematik kuantiti ini memperlihatkan bahawa DAWT dengan peresap 

bebibir mencapai peningkatan yang signifikan dalam prestasi berbanding HAWT yang 

terdedah. Hasilnya juga menunjukkan bahawa DAWT dengan sudut flens 0˚ pada 

kedua-dua model rotor mencapai kuasa tambahan yang terbaik berbanding dengan 

konfigurasi bebibir yang lain. Selain itu, purata kuasa diperkuatkan di DAWT pada 

sudut bebibir 0˚ dengan pemutar awal adalah sebanyak 256% berbanding dengan 

HAWT yang terdedah, manakala pembesarannya mencapai 291% dalam DAWT 

dengan rotor yang diubahsuai pada sudut bebibir yang sama. Selain itu, simulasi telah 

dijalankan untuk menggambarkan aliran di sekitar model yang dipilih; serta 

memberikan butiran yang tepat yang sukar untuk mendapatkannya secara praktikal.  



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

vii 
 

 
 

 
 

CONTENTS 
 

 
TITLE i 

DECLARATION ii 

DEDICATION iii 

ACKNOWLEDGMENT iv 

ABSTRACT v 

ABSTRAK vi 

CONTENTS vii 

LIST OF TABLES xii 

LIST OF FIGURES xiv 

LIST OF SYMBOLS AND ABBREVIATIONS xix 

LIST OF APPENDICES                                                                       xxii 

 

CHAPTER 1 INTRODUCTION 1 

1.1     Research background on wind turbines 1 

1.2     Development of wind turbines 2 

1.3     Classification of wind turbines 2 

1.3.1  Vertical Axis Wind Turbines (VAWTs) 3 

1.3.2  Horizontal Axis Wind Turbines (HAWTs) 3 

1.4     Performance parameters of HAWT rotor 5 

1.5     Power augmentation of wind turbines 6 

1.6     Research background on DAWTs 8 

1.7     Problem statement 10 

1.8     Objectives of study 10 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

viii 
 

1.9     Scopes of study 11 

1.10   Significance of study 12 

1.11   Thesis outline 12 

CHAPTER 2 LITERATURE REVIEW 14 

2.1    Introduction 14 

2.2    Background on improvement aerodynamic performance           

of HAWTs 16 

2.3    Diffuser Augmented Wind Turbine (DAWT) 21 

2.3.1 Historical development of DAWTs 21 

2.4    Shape Design and Mechanisms Investigation of DAWT 27 

2.4.1 Shape Design 27 

2.4.2 Mechanisms investigation of DAWT 35 

2.5    Important geometrical parameters for augmentation by 

DAWT 39 

2.5.1 The effect of diffuser length and angle of diffuser on          

power   augmentation. 39 

2.5.2 Effect of brim (flange) on power augmentation 43 

2.6    Scaling-down of wind turbine for the performance tests 48 

2.7    Summery 50 

CHAPTER 3 RESEARCH METHODOLOGY 55 

3.1    Introduction 55 

3.2    K-Chart 57 

3.3    Methodology of simulation work 58 

3.4    The diffuser model 58 

3.4.1 Grid independence of previous diffuser model 58 

3.4.2 Develop the geometrical parameters of diffuser 59 

3.4.3 Simulation description of current diffuser domain 61 

3.4.4 Meshing and grid independence of current diffuser domain 62 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

ix 
 

3.4.5 Boundary conditions of diffuser domain in ANSYS solver 64 

3.5     HAWT rotor design 66 

3.5.1  Conventional design of HAWT rotor 66 

3.5.2  Modified HAWT rotor for DAWT 69 

3.5.3  Power and performance calculation of Wind Turbine 73 

3.6     Geometrical modeling of HAWT rotor 74 

3.6.1  Geometric model of preliminary HAWT rotor 74 

3.6.2  Geometric model of modified HAWT rotor 75 

3.7     Simulation description of Bare HAWT and DAWT 77 

3.8     Mathematical computational model 77 

3.9     Computational domain of preliminary BHAWT and DAWT 78 

3.10   Meshing of preliminary BHAWT and DAWT domains 79 

3.10.1 Grid Independence Test of BHAWT and DAWT 81 

3.10.2 Mesh quality recommended 82 

3.11    Boundary and operation conditions 83 

3.12    Solution solver and convergence criteria in ANSYS CFX 84 

3.13    Model verification of BHAWT 85 

3.14    Experimental work 88 

3.15    Flow field of experiments tests 88 

3.16    Models fabrication 90 

3.16.1 Diffuser model fabrication 90 

3.16.2 HAWT rotor models fabrication 91 

3.16.3 Fabrication of structure to install the diffuser and HAWT 92 

3.17    Tools and testing equipment 94 

3.17.1 Digital air flow meter (FLUKE 922) 94 

3.17.2 Non-contact Digital Tachometer 95 

3.17.3 Alternator (Generator) 96 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

x 
 

3.17.4 Load control board 96 

3.18    Experimental set up 98 

3.18.1 Experimental set up for diffuser model 98 

3.18.2 Experimental set up for BHAWT and DAWT models 99 

3.19    Summary 100 

CHAPTER 4 RESULTS AND DISCUSSION 101 

4.1     Introduction 101 

4.2     Simulation analysis of diffuser model 101 

4.2.1  Comparing previous and modified diffuser geometry  101 

4.2.2  Flow structure of the modified diffuser in current             

domain 102 

4.2.2.1 Results of flow in 2D axisymmetric diffuser domain 103 

4.2.2.2 Results of flow structure in 3-D domain 103 

4.2.3  Comparison of turbulence models for flow structure in     

diffuser 105 

4.2.4  Determination maximum wind velocity to modified             

rotor   design 106 

4.3     Experimental work results 107 

4.3.1  Diffuser model validation 107 

4.3.2  Performance analysis of DAWT with Preliminary                

Rotor (PR) 109 

4.3.2.1 Evaluation of power 109 

4.3.2.2 Evaluation of mechanical torque 111 

4.3.2.3 Evaluation of aerodynamic coefficients 112 

4.3.3 Performance analysis of DAWT with the Modified              

Rotor (MR) 116 

4.3.3.1 Evaluation of output power 116 

4.3.3.2 Evaluation of output torque 117 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xi 
 

4.3.3.3 Evaluate of aerodynamic coefficients 118 

4.3.4   Comparison of DAWT performance with preliminary           

and modified rotor 122 

4.4      Simulation analysis of DAWT 123 

4.4.1   Model validation 123 

4.4.2   Estimation the output power and power coefficient 125 

4.4.3   Estimation the torque and torque coefficient 127 

4.4.4   Qualitative visualization analysis for models 128 

4.4.4.1 Visualization of diffuser model simulation 128 

4.4.4.2 Visualization of BHAWT and DAWT models simulation 132 

                        4.5     Summary 139 

CHAPTER 5 CONCLUSION AND RECOMENDATIONS 140 

5.1     Introduction 140 

5.2     Conclusion 140 

5.3     Contribution of the research 142 

5.4     Recommendation for future work 143 

REFERENCES                                                                                                            144 

APPENDIX A                                                                                                            154 

APPENDIX B                                                                                                          155 

APPENDIX C                                                                                                          161 

APPENDIX D                                                                                                          164 

APPENDIX E                                                                                                          168 

APPENDIX F                                                                                                          171 

VITA                                                                                                           176 

 

 
 

 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xii 
 

 
 

LIST OF TABLES 

2.1      Primary and modified models of tubular divergent-truncated cone 31 

2.2      Literature Review Summary for the shape design and Mechanisms 

investigation of DAWT 51 
 

2.3      Literature Review Summary for the effect of diffuser length and angle            

of diffuser on power augmentation of DAWT 53 
 

2.4      Literature Review Summary for the effect of flange on power         

augmentation of DAWT. 53 
 

2.5      Optimum parameters for selected studies achieved the highest              

augmented in velocity 54 
  

3.1      The statistic of grid independence for verified domain                                   58 

3.2      The values of 𝜖 as a function of parameters of an empty flanged             

diffuser 60 
 

3.3     Statistics of grid independence for 2-D axisymmetric diffuser domain 63 

3.4      The number of elements and nodes for the three diffuser models 64 

3.5      Statistic grid independence for 3-D diffuser domain 64 

3.6     The boundary and initial conditions of ANSYS solver in 2D and 3D          

models 65 

3.7      The main parameters of a small-scale rotor design 74 

3.8      The geometry design parameters of preliminary rotor blade in scale           

1:6.5 74 

3.9      The geometry design parameters of modified rotor blade in 1:6.5 scale 76 

3.10    The total number of elements and nods for BHAWT and DAWT 80 

3.11    The statistic grid independence for 3-D BHAWT-(PR) domain 82 

3.12:   The statistic grid independence for 3-D FDAWT-(MR) domain 82 

3.13    The boundary and operating conditions of 3D simulation for BHAWT         

and DAWT models 83 
 

3.14    Solver setting for BHAWT and DAWT models 85 

3.15    Performance-matched turbine design criteria 86 

3.16    Specifications of wind tunnel OLWT-400 88 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xiii 
 

3.17    Specification of generator 96 

4.1      The value of ϵ along of elements radial position                                    106 

4.2      The measured wind velocity values for diffuser configurations 108 

4.3      Experimental power results of BHAWT and DAWT with PR                      109 

4.4      The measured values of power output at the mean values of rpm 110 

4.5      Experimental power results of DAWT with modified rotor (MR) 116 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xiv 
 

 

LIST OF FIGURES 

1.1      Global cumulative installed wind capacity from year 2001 to 2017 2 

1.2      Schematic of two common HAWT configurations 4 

1.3      Various concepts of Horizontal axis wind turbine: (a) Single-bladed, (b) 

Double-bladed, (c) Three- bladed, and (d) Multi-bladed (US windmill) 5 

1.4      Typical plot of rotor power coefficient vs. tip-speed ratio for HAWT          

with a fixed blade pitch angle 6 

1.5       Conventional wind energy extraction process 7 

1.6       Diffuser process of augmentation 7 

1.7       Schematic of a DAWT concept 8 

1.8       Typical shroud designs for HAWT, (a) nozzle-diffuser and                           

(b) diffuser-brim shroud 9 

2.1      Annual Additions of Renewable Power Capacity, by Technology                  

and Total, 2012-2018                                                                                      14 

2.2       Optimal values of 1/λ and 𝐶𝑃 as function CD/CL 17 

2.3      Models of (a) straight-edge blade and (b) swept-edge blade 18 

2.4      HAWT blade models; (a) slotted blade section, and (b) Trailing Edge 

Tubercle Blade 19 

2.5      Baseline and modified turbine blades with sinusoidal leading-edge 20 

2.6       Layout of the first generation shroud 22 

2.7       Layout of the short shroud Model A 23 

2.8       The annular wing shrouds of models B, C(i), C(ii), and C(iii) 24 

2.9       Wind turbine at maximum power 25 

2.10     Small experimental unit, consists of a collector, diffuser and turbine 27 

2.11     Wind Turbine set-up in wind tunnel (a) diffuser augmented turbine,             

and (b)  nozzle-diffuser augmented wind turbine 28 

2.12     Model of HAWT with shroud 29 

2.13     Schematic section view of multi-element DAWT 30 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xv 
 

2.14     The ejector assisted diffuser geometry 31 

2.15     Different concepts of diffusers for DAWT 32 

2.16     Model of (a) Multi-blade bare turbine, (b) Ducted Multi-blade turbine 32 

2.17     Different arrangements of the rotor in the stepped duct (the flow from       

right to left) 33 

2.18     Three types of bladed rotors at the throat of duct(a) WB, (b) CW,(c)WP 34 

2.19     Schematics of two side-by-side brimmed DAWTs (top view) 34 

2.20     Total drag force as computed via CFD for diffuser models in a                         

function of Reynolds number 36 

2.21    Variation of U/U∞ at TSR=4.5, dotted lines denote the entry and                  

exit of the diffuser  37 

2.22     MWT (a) Bare wind turbine, and (b) shrouded turbine 38 

2.23     CFD computational domain with turbulence grid for MWT 39 

2.24     The effects of L/Dr on performance of diffuser shrouded micro DAWT 40 

2.25     An initial design of diffuser modelled using CFD [ 41 

2.26     The Dimensions of simple frustum diffuser 41 

2.27     Schematic view of flow mechanism around a flanged diffuser 43 

2.28     Velocity contour plot of flow through DAWT 45 

2.29    Streamlines for some flange height (PIV measurement): (a) H/D= 0.05,        

(b) H/D= 0.2, and (c) H/D= 0.3  46 

2.30     Compact Wind-Lens turbine  47 

2.31     Schematic of diffuser models at center of test section domain  48 

2.32     The flow velocity stream lines  at flange angle = +15 ̊ 48 

3.1      The flowchart of study processes                                                              56 

3.2      Research K-Chart 57 

3.3      Verification curve for 2-D simulation result of ϵ for maximum                

velocity at the diffuser inlet 59 

3.4      The 2-D axisymmetric simulation domain for the flanged diffuser 61 

3.5      The 3-D CFX simulation domain for the diffuser 62 

3.6      The mesh of current diffuser domain at 2-D axisymmetric 62 

3.7      Mesh of diffuser with ϴf =0,(a) section front view, (b) section side view 63 

3.8      Mesh of diffuser with ϴf =5,(a) section front view, (b) section side view 63 

3.9      Mesh of diffuser without flange,(a) section front view (b)section side  64 

3.10    Suggested place of HAWT rotor with radial positions along of blade 65 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xvi 
 

3.11    Classical momentum control volume 67 

3.12    Blade section geometry definition based on conventional BEM Theory 67 

3.13    Schematic of blade elements 68 

3.14    The disc actuator control volume enclosing by diffuser 69 

3.15    Axial velocity profile of a diffuser without turbine 70 

3.16    Blade section geometry definition based on modified BEM Theory 71 

3.17    Model of preliminary HAWT rotor 75 

3.18    Model of modified HAWT rotor 76 

3.19    The 3-D simulation domain of preliminary BHAWT rotor 78 

3.20    The 3-D simulation domain of DAWT 79 

3.21    Mesh of BHAWT-(PR),(a) whole domains,(b) rotating domain,(c)     

horizontal section of rotating ,(d) vertical section of rotating domain 80 

3.22    Mesh of DAWT, (a) whole domains, (b) FDAWT- (MR),(c)horizontal  

section of rotating domain, (d) vertical section of rotating domain 81 

3.23    Skewness and orthogonal mesh spectrum  82 

3.24    Boundary conditions in DAWT 84 

3.25    Verification curves for 3-D simulation results of previous turbine            

design       by (M.-H. Lee) in scale (1:1)   at wind velocity of 8m/sec 86 

3.26    NREL 5MW model in a scale of 1:50 as tested MARIN, 𝐶𝑃  vs λ 87 

3.27    CFD comparison of power coefficient for the scale1:6.5 of BHAWT       

model to original model 87 

3.28    Wind tunnel OLWT-400: (a) schematic diagram ,(b) actual diagram 89 

3.29    Diffuser model fabrication (a)The base of the diffuser (b)The endings 90 

3.30    The configurations of diffuser models, (a)Assembly method,(b) Flanged 

diffuser (ϴf = 0), (c) Flanged diffuser (ϴf = 5), (d) Non-flanged diffuser 91 

3.31    The fabrication of rotor models,(a) Preliminary rotor,(b) Modified rotor 91 

3.32    The rotor and diffuser models installation 93 

3.33    Digital air flow meter connecting to Pitot tube 94 

3.34    FLUKE 922 digital air flow meter and its function 95 

3.35    Non-contact digital tachometer -DT-2234B, (RS 445-9557) 95 

3.36    Three-phase AC alternator 96 

3.37    The load control board for turbine power calculation 97 

3.38    The actual experimental setup of diffuser model 98 

3.39    The schematic diagram of experimental setup of BHAWT and DAWT 99 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xvii 
 

3.40    The actual experimental setup of BHAWT and DAWT 100 

4.1      The maximum increase of flow velocity at suggested place of rotor            102 

install based on a 2-D axisymmetric domain (previous domain)               

4. 2      The average increase of inlet velocity at suggested install place for a       

turbine rotor based on 2-D simulation model by Fluent solver 103 

4. 3     The wind velocity increase in the three diffuser configurations,                     

(a) average increase, (b) Maximum increase 104 

4.4      A compression of ϵ value different turbulence model in ANSYS solver 105 

4. 5     Comparison of pitch angle for the modified and preliminary rotor blade 107 

4.6      Validation model of experimental and simulation results of the diffuser 108 

4.7      Maximum power output for DAWT - PR with and without flange         

compare to BHAWT 110 

4.8      Maximum torque for DAWT - PR with and without flange compare to 

BHAWT 111 

4.9      Power coefficient as a function of tip speed ratio at a wind speed of           

7m/s for DAWT - PR with and without flange compare to BHAWT 112 

4.10    Power coefficient as a function of tip speed ratio at a wind speed of                 

8 m/s for DAWT - PR with and without flange compare to BHAWT 113 

4.11    Maximum power coefficient as a function of wind velocity for                

DAWT - PR with and without flange compare to BHAWT 114 

4.12    Torque coefficient as a function of tip speed ratio at a wind speed of           

7m/s for DAWT - PR with and without flange compare to BHAWT 114 

4.13    Torque coefficient as a function of tip speed ratio at a wind speed of               

8 m/s for DAWT - PR with and without flange compare to BHAWT 115 

4.14    Maximum torque coefficient as a function of wind velocity for               

DAWT - PR with and without flange compare to BHAWT 115 

4.15    Maximum power output for DAWT-MR with and without flange 117 

4.16    Maximum torque output for DAWT-MR with and without flange 118 

4.17    Power coefficient as a function of tip speed ratio at a wind speed of                 

7 m/s for DAWT - MR with and without flange 119 

4.18    Power coefficient as a function of tip speed ratio at a wind speed of                 

8 m/s for DAWT - MR with and without flange 119 

4.19    Torque coefficient as a function of tip speed ratio at a wind speed of               

7 m/s for DAWT - MR with and without flange 120 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xviii 
 

4.20    Torque coefficient as a function of tip speed ratio at a wind speed of               

8 m/s for DAWT - MR with and without flange 120 

4.21    Maximum power coefficient as a function of wind velocity for               

DAWT - MR with and without flange 121 

4.22    Maximum torque coefficient as a function of wind velocity for               

DAWT - MR with and without flange 121 

4.23    Comparison between FDAWT-MR, FDAWT-PR relative to BHAWT 122 

4.24    Validation of power coefficient as a function of tip speed at v= 7m/s 124 

4.25    Validation of maximum power of FDAWT-MR (ϴf =0˚) 124 

4.26    Validation of maximum torque of FDAWT-MR (ϴf =0˚) 125 

4.27    Simulation of maximum power variation respect to wind velocity                 

for the best models of DAWT 126 

4.28    Simulation of power coefficient against to wind velocity for                           

the best models of DAWT 126 

4.29    Simulation of maximum torque variation respect to wind velocity                 

for the best models of DAWT 127 

4.30    Simulation of torque coefficient against to wind velocity for                         

the best models of DAWT 127 

4.31    Velocity contours at upstream wind flow of 7 m/s for (a) NFD,                     

(b) FD- (ϴf =5˚), and (c) FD – (ϴf =0˚) 129 

4.32    Pressure contours at upstream wind flow of 7 m/s for (a) NFD,                     

(b) FD- (ϴf =5˚), and (c) FD – (ϴf =0˚) 130 

4.33    Velocity streamlines at upstream wind flow of 7 m/s for (a) NFD,                  

(b) FD- (ϴf =5˚), and (c) FD – (ϴf =0˚) 131 

4.34    Velocity contours at upstream wind flow of 7 m/s for (a) BHAWT,                     

(b) FDAWT (ϴf =0˚) - PR, and (c) FDAWT (ϴf =0˚) - MR 133 

4.35    Pressure contours at upstream wind flow of 7 m/s for (a) BHAWT,                 

(b) FDAWT (ϴf =0˚) - PR, and (c) FDAWT (ϴf =0˚) - MR 134 

4.36    Pressure distribution on front and back of turbine at wind velocity 7m/s        

for (a) BHAWT,(b) FDAWT (ϴf =0˚) - PR, (c) FDAWT (ϴf =0˚)-MR 135 

4.37    Velocity streamlined at upstream wind flow of 7 m/s for (a) BHAWT,           

(b) FDAWT (ϴf =0˚) - PR, and (c) FDAWT (ϴf =0˚) - MR 137 

4.38   Turbulence kinetic energy at upstream wind flow of 7 m/s for                         

(a) BHAWT, (b) FDAWT (ϴf =0˚) - PR, (c) FDAWT (ϴf =0˚) - MR 138 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xix 
 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

𝑎 - Axial induction factor for bare turbine 

𝑎∗ - Axial induction factor for DAWT 

𝑎𝑜𝑝𝑡  - Optimum axial induction factor for bare turbine 

𝑎𝑎𝑝𝑡
∗  - Optimum axial induction factor for DAWT 

𝑎𝑡 - Tangential induction factor for bare turbine 

𝑎𝑡
∗ - Tangential induction factor for DAWT 

𝐴 - Rotor swept area (m2) 

𝐴3 - Diffuser exit area (m2) 

𝐵 - Number of turbine blades 

𝑐 - Chord length (m) 

𝐶𝐷  - Drag coefficient 

𝐶𝑙  - Lift coefficient 

𝐶𝑛  - Normal force coefficient 

𝐶𝑃  - Power coefficient for bare turbine 

𝐶𝑃,𝑑  - Power coefficient for DAWT 

𝐶𝑃𝑚𝑎𝑥
 - Maximum power coefficient for bare turbine 

𝐶𝑃,𝑑 𝑚𝑎𝑥
 - Maximum power coefficient for DAWT 

𝐶𝑄  - Torque coefficient for bare turbine 

𝐶𝑄,𝑑  - Torque coefficient for DAWT 

𝐶𝑡  - Tangential force coefficient 

𝐶𝑇  - Thrust coefficient for bare turbine 

𝐶𝑇,𝑑  - Thrust coefficient for DAWT 

𝑑𝐹𝑛 - Normal force per blade section (N) 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xx 
 

𝑑𝐹𝑡 - Tangential force per blade section (N) 

𝑑𝑄 - Torque per blade section for the bare turbine (N.m) 

𝑑𝑄𝑑  - Torque per blade section for DAWT (N.m) 

𝑑𝑇 - Thrust force per blade section for the bare turbine (N) 

𝑑𝑇𝑑 - Thrust force per blade section for DAWT (N) 

𝐹 - Correction losses factor 

𝐹𝑡𝑖𝑝  - Tip losses factor 

𝑃 - Output power for the bare turbine (W) 

𝑃𝑑 - Output power for DAWT (W) 

𝑄          -            Rotor torque (N.m) 

𝑟 - Radial position (m) 

𝑅 - Radius of the turbine (m) 

𝑅𝑒       -           Reynolds number  

𝑇 - Thrust force for the bare turbine (N)  

𝑇𝑑 - Thrust force for DAWT (N) 

𝑉1, 𝑉2 - Wind velocity at rotor plane (m/s) 

𝑉1
∗ - Maximum axial wind velocity in the diffuser (m/s) 

𝑉3          -             Wind velocity at diffuser exit (m/s) 

𝑉𝑑  - Downstream wind velocity (m/s) 

𝑉∞ - Upstream wind velocity (m/s) 

𝑊 - Relative wind velocity (m/s) 

𝛼 - Angle of attack (deg) 

𝛽 - Blade twist angle (deg) 

𝜖 - Ratio of maximum axial to upstream wind velocity in the diffuser  

𝛿 - Velocity speed up ratio 

𝜂𝑐 , 𝜂𝑔   -          Conversion and generator efficiency  

𝜃𝑓         -           Flange angle 

λ - Tip speed ratio (TSR) 

𝜇          -          Dynamic viscosity of air (kg /m.s) 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xxi 
 

𝜌 - Air density (m3/s) 

𝜎 - Solidity ratio 

𝜑 - Angle of relative wind velocity (deg) 

Ω - Angular velocity of the rotor (rad / s) 

Acronyms 

 

ADM - Actuator Disk Model 

ALM - Actuator Line Model 

BEM - Blade element momentum theory 

BHAWT   - Bare horizontal axis wind turbine 

BVAWT - Bare vertical axis wind turbine 

CAWT    - Concentrators Augmented Wind Turbine 

CDAWT - Collector - Diffuser Augmented Wind Turbine 

CFD      - Computational fluid dynamic 

DAWT -  Diffuser augmented wind turbine 

ESAWT - Ejector Shroud Augmented Wind Turbine 

FD - Flanged diffuser 

FDAWT -  Flanged diffuser augmented wind turbine 

FRM - Fully Rotor Model 

HAWT - Horizontal axis wind turbine 

MR - Modified rotor 

NACA - National Advisory Committee for Aeronautics  

NFD - Non-flanged diffuser 

NFDAWT -  Non-flanged diffuser augmented wind turbine 

PR   - Preliminary rotor 

RANS   - Reynolds- Averaged Navier-Stokes  

rpm   - Revolution per minute  

SHAWT - Shrouded horizontal axis wind turbine 

SST - Shear stress transport 

SVAWT - Shrouded vertical axis wind turbine 

VAWT - Vertical axis wind turbine 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

xxii 
 

 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

A List of publications 154 

B Velocity contour of geometrical diffuser parameters 155 

C Classical Momentum Theory and the Betz Limit 161 

D Technical drawings of diffusers and rotors models 164 

E Data validation tables of models of DAWT and BHAWT 168 

F Visualization of diffuser, DAWT and BHAWT models  171 



PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH

1 
 

 

CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Research background on wind turbines 

 

The need for energy in societies is increasing as technologies are advancing in certain 

areas. Thus, the capability to produce energy must keep pace with those increasing 

demands. Due to the rapid depletion of fossil energy sources, there is a necessary 

obligation to seek alternative and sustainable sources of energy [1], [2], [3]. As such, 

wind energy as a renewable and inexhaustible source of energy is now the fastest 

growing energy technology worldwide. Compared to conventional energy sources, 

wind power has many advantages. Unlike fossil fuels that emit harmful gases, or 

nuclear power that generates radioactive wastes, wind power on the other hand is a 

clean and environmentally friendly energy source. As an inexhaustible and free energy 

source, it is available plentiful in most regions of the earth. In addition, more extensive 

use of wind power would help reducing the demands for fossil fuels, which may run 

out within some times in this century according to present levels of consumption [1], 

[2], [4], [5], [6]. Wind power systems, represented by wind turbines, have been the 

focus of interest by scientists and researchers in the past decades. Flowing of wind 

through the turbine rotor leads to production of mechanical energy which can be 

utilized in many applications especially when it comes to producing electricity. 

However, power produced by a wind turbine is dependent on the Betz limit; an ideal 

type can extract only 59.3% of incoming energy in stream-tube by turbine blades [7], 

[8]. 
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1.2 Development of wind turbines 

 

Wind energy is abundant, clean, cheap, and has been made the most of by mankind for 

centuries in agriculture for water pumping, crop irrigation and grain grinding [9]. Wind 

turbine is a rotary machine that extracts energy from the wind. Rotor blade is a key 

element in a wind turbine generator system which converts wind energy into 

mechanical energy [1]. These days, wind energy is acknowledged as a mainstream 

form of energy in electrical power generation and is has been an increasing trend. 

According to the global wind energy outlook, global cumulative installed wind 

capacity has increased significantly since the year 2001, and reached 539,581 MW in 

the year 2017 as shown in Figure 1.1 [10]. 

 
 

Figure 1.1: Global cumulative installed wind capacity from year 2001 to 2017 [10]. 

 

1.3 Classification of wind turbines 
 

There are various types of wind turbines currently have made use of; they are grouped 

into different classes based on diverse factors. Wind turbine types can be classified 

either as drag and lift. For drag turbines, rotor moves slowly but at high force, hence, 

this type of wind turbines is suitable to be used for irrigation and pumping. Contrarily, 

lift turbines have high rotational speeds, thus, they are used in electricity production 

process [6]. The blades of this type of turbine work similarly as wings of a plane. They 

are designed with a cambered airfoil, in order to create a pressure difference between 

the lower and upper surfaces. High pressure is created in the lower surface of the blade, 

while the upper surface is exposed to low pressure. This is because of the fact that air 

has to travel a longer distance on the upper side of the airfoil, but shorter distance on 
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the lower surface airfoil from the top surface, as well as bottom surface has to meet at 

the same instant at the trailing edge of airfoil to have a circulation which results in lift 

generation [6]. Typical classifications of wind turbines include Horizontal Axis Wind 

Turbines (HAWTs) and Vertical Axis Wind Turbines (VAWTs). The following 

section discussed these two significant types of wind turbines which depended on the 

orientation of the shaft and rotor axis of rotation; upwind or downwind turbines 

depended on rotor position in relation to oncoming wind, while small or large wind 

turbines depended on wind turbine power output [2], [11], [12], [13]. 

 

1.3.1 Vertical Axis Wind Turbines (VAWTs) 

 

Vertical axis wind turbine is a turbine type that rotates perpendicularly axis to wind 

direction. The center axis of the tower in modern VAWTs is connected to a speed 

escalating gearbox. This shaft drives a generator that converts the mechanical power 

of the rotor to electrical power. There are several innovations of VAWTs in which the 

power is generated in such a design either drag (Savonius) or lift (Darrieus) [14]. 

Moreover, VAWT can be operated in two configurations namely bare VAWT 

(BVAWT) and shrouded VAWT (SVAWT). 

 

1.3.2 Horizontal Axis Wind Turbines (HAWTs) 

 

The most common design of wind turbines is HAWT, generally classified according 

to the rotor orientation (upwind or downwind of the tower). Figure 1.2 shows a blade 

articulation (rigid or teetering), number of blades (generally two or three blades), rotor 

control (pitch stall) and how they are aligned with wind (free yaw or active yaw). 

HAWT is one of the most common design for electricity production, particularly the 

three- bladed rotor. Most of the commercial wind turbine fall under this category [14], 

[15] . Currently, most of manufactures are HAWT that is due to their relatively high 

efficiency, low cut-in speed, easy furling, self-start and aerodynamic stability. The 

HAWT consist of three major components, namely rotor, nacelle, and tower. The 

major components of a HAWT are the rotor consisting of blades and a supporting hub. 

The power-train includes the rotating parts of the wind turbine (exclusive of the rotor); 

it usually consists of shafts, gearbox, coupling, a mechanical brake and generator. The 

nacelle structure and main frame include wind turbine housing and yaw system [14]. 
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