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5.1 INTRODUCTION 

This is an era of rapid production and fast growth. Reliable and fast analytical 

testing techniques are an essential part of manufacturing industries and testing and 

certifying authorities. Laser-Induced Breakdown Spectroscopy (LIBS) is one of the 

highly potential techniques to compete in this competitive arena for rapid elemental 

analysis which can be further used for real-time composition monitoring in the 

production line, post-production inspection, scrap sorting and even for classification of 

biological samples. In addition, remote and stand-off modes of operation increase the 

application potential of LIBS by many folds. It can be deployed in physically 

inaccessible or potentially unsafe areas. Compact LIBS systems have made its 

portability possible which implies ease of in-situ deployment. 

LIBS can be used for qualitative and quantitative investigations. However, in 

general, quantitative analysis is not a strong point of LIBS as of now. It has been 

improved over the years for certain applications and still getting better as the 

researchers develop and refine the procedures for data collection and analysis. 

To enhance an analytical technique, the understanding of underlying principles 

is crucial. Therefore, the continuity of research on fundamental aspects of a scientific 

method is significant unless fully understood. The research is ongoing, and innovative 

ways of utilising LIBS is of paramount importance for innovative applications with 

better reliability.  

As experimental scientists working on LIBS technique, our task is to utilise 

experimental methodologies to understand the underlying principles governing LIBS 

and unlock its enormous potential.  
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There are two types of most common LIBS configurations which are Single-

Pulse (SP) and Double-Pulse (DP) configurations [1] whereas double-pulse 

configuration has further variants. Also, there are two modes of quantitative 

measurements, i.e., Calibration and Calibration-Free (CF-LIBS). The ideal setup for 

LIBS would be a Single-Pulse Calibration Free LIBS. There have been significant 

achievements with CF-LIBS in recent years which lift our expectations to see it applied 

for real-world applications in near future. 

Following sections provide a brief overview and compilation of some of the LIBS 

investigations performed by the author. It includes fundamental studies and application-

based investigations.  

 

5.2 Basic LIBS Setup 

Basic LIBS setup is very simple; it only requires a laser, a spectrometer and 

some optical components to focus the laser beam onto the sample and collect radiation 

emissions from plasma. However, for experimental investigations in laboratory, we 

tend to include more paraphernalia to increase no. of aspects for exploratory 

investigations from various aspects. A typical laboratory LIBS setup is schematically 

illustrated in Fig. 5.1. It consists of a sample chamber to control the environment 

around the sample. Laser enters the sample chamber through a laser port (usually 

Quartz) and converges on to the sample surface by a focusing lens. For continuous 

monitoring, the energy delivered by the laser pulses, a beam splitter is placed in the 

beam path to reflect a fraction of laser beam to the energy meter. Emissions from laser-

induced plasma are collected through collection port of the chamber and focussed into 

a fibre optic cable (FOC) which delivers these optical radiations to a spectrometer with 

minimal loss. The spectrometer splits these radiations into a spectrum of wavelengths 

and intensities and transfers the spectral data to a computer where it is conveniently 

stored and analysed. 

 

Fig. 5.1   Schematic illustration of a typical laboratory LIBS setup [2] 



Optical Fiber Laser Technology: Series 2                                                2019                                                            ISBN No.: 9789672389378     

________________________________________________________________________________________ 
 

51 
 

The alignment of FOC is crucial; its distance and orientation to the plasma 

plume is optimised for the best signal and kept constant for the whole set of 

measurements. As the distance between FOC and plasma varies, radiation intensity 

collected by the FOC also varies. Therefore, the distance of the FOC from the target 

(plasma plume) can be optimised by observing the intensity of a spectral line of 

interest. In Fig. 5.2(a) the intensity of Mg II (279.55 nm) line is plotted against the 

distance between FOC and target sample. With increasing distance, the emission 

intensity decreases exponentially. Here, the optimum distance is considered as the one 

at which maximum intensity of the Mg II line is obtained without saturating the 

detector response. 

 

 

 
(a) 

 
(b) 

Fig. 5.2   Intensity variation of Mg II line (279.55 nm) with distance and orientation 

of FOC with reference to the target 

At the optimised distance from the ablation spot (target), the orientation angle of 

the FOC is optimised in the range 25-65° with respect to the sample surface. An 

optimised angle is considered to be the one at which the maximum intensity of Mg II 

(279.55 nm) line is recorded. From Fig. 2(b), the angle 45° w.r.to the sample surface 

is the optimised angle since the intensity of the emission line clearly decreases before 

and after 45° because of reduction in the radiation collection. 

 

5.3 Plasma Characterizations  
 

5.3.1 Spectral Emissions and Self Absorption 
 

Laser-induced plasma is transient in nature. It evolves and decays during its 

very short lifetime. After ignition, the excited plume expands and then decays within 

a few 10s of microseconds at atmospheric pressure. Plasma emissions vary during this 

time, and it is very important to know which time window, i.e. gate delay, would be 

the best for intended measurements. 
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(a) 

 
(b) 

Fig. 5.3   Variation in spectral intensity with change in (a) gate-delay of 

measurements, and (b) laser energy [3] 

 

 Fig. 5.3 shows variation in spectral intensity with change in gate delay from 0 

to 23.75 μs and change in laser energy from ~5 to 650 mJ. After plasma ignition, both 

continuum (resulting from free-free and free-bound interactions) and line emissions 

(resulting from electronic transitions) are prominent. During the first 3 μs, continuum 

emissions are considerably strong which are deemed undesired in common 

circumstances. 

 Line emissions are the most important spectral features in the LIBS spectrum 

which dominate the spectrum only after a certain delay after the plasma ignition. The 

background signal in Fig. 5.3(a) diminishes with the increase in gate delay. As the 

plasma expands, a reduction in continuum emission occurs because of the decrease in 

electron-ion recombination and bremsstrahlung processes. As the plasma decays, 

atomic spectral lines and, later, molecular lines/bands can be observed due 

recombination of electrons and ions into atoms and molecules. 



Optical Fiber Laser Technology: Series 2                                                2019                                                            ISBN No.: 9789672389378     

________________________________________________________________________________________ 
 

53 
 

 Understanding the change in spectral intensity with change in laser energy is 

straight forward. It implies that the higher energy laser pulse energises plasma more 

than a weaker laser pulse and results in a higher degree of excitation and hence intense 

radiations, as seen in Fig. 5.3(b). 

 

5.3.2 Self-Absorption Measurements in Spectral Lines 

 Resonant lines, i.e. spectral lines involving ground state, are most prone to self-

absorption (SA). If resonant lines are optically thin (free of SA), it is safe to rule out 

SA in non-resonant lines. Therefore, we considered emission lines Al I 308.2 nm and 

309.3 nm for investigating SA which include ground energy level (3s23p) in the 

radiative transition.  

 SA coefficient is used as an indicator of the self-absorption. We utilised one of 

the simplest ways of determining SA coefficient with the help of the following 

expression. 
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    (5.1) 

 

 Where Δλ, ωs, α and Ne are is the FWHM of the spectral line, Stark broadening 

parameter, absorption coefficient and electron density respectively. Details about it 

can be found in [3]. The closer the SA coefficient is to unity, the smaller is the self-

absorption. 

 The laser energy increased from 5 to 650 mJ has caused the SA coefficient to 

increase from 0.05 to 0.9 (Fig. 5.4(a)). As the atoms decay to the ground state, the 

emitted photons will have a high probability of being absorbed on their way out from 

the plasma. It is found that with an increase in the laser energy the influence of self-

absorption on the Al I 308.2 nm and Al I 309.3 nm continues to decrease and at 650 

mJ of laser energy SA coefficient for Al I 308.2 is close to unity which refers to 

negligible self-absorption. As higher laser energy irradiated onto the sample’s surface, 

more intense plasma radiation is observed because of the higher degree of dissociation 

and excitation of the species. Self-absorption often occurs due to the excitation 

gradient from the core to the peripheral region of the plasma. Hence, when the de-

excitation of atoms occurs in the central/core region of the plasma to produce resonant 

spectral lines, the photons get absorbed by the atoms/ions which are in the ground state 

in the peripheral region of the plasma.  

 As depicted in Fig. 5.4(b), the SA coefficient drops from 0.9 to 0.1 for an 

increase in the gate delay from 0 to 20 μs. At the initial stage of plasma generation, the 
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SA coefficient is near to unity, so, the plasma can be considered optically thin for the 

emission lines. This is because of the high degree of excitation of plasma species. 

However, as the plasma evolves, the SA starts to pronounce and gets stronger at larger 

gate delays. The decreasing trend in SA coefficient can also be explained based on its 

dependence on plasma temperature variation, the equilibrium between ions and atoms, 

and plasma expansion. As the gate delay increases, the plasma temperature and density 

are decreased because of plasma expansion, thereby increasing the possibility of self-

absorption. Therefore, one should capture emission of plasma at early delay settings if 

optically thin resonant lines are the utmost priority. 

 

  

Fig. 5.4   SA in response to the (a) Laser Energy and (b) Gate Delay for 

Aluminium spectral lines Al I 308.2nm and 309.3 nm. [3] 

 

5.4 Application of LIBS 

5.4.1 Determination of lead in Plant leaves and Soil Samples 

 Organic samples are complex materials, and LIBS is sensitive to the matrix. 

Therefore, matrix-matched calibration samples are a better choice to minimise sample-

induced effects in quantitative measurements. Laboratory prepared calibration samples 

of known composition (see Table 5.1 in [4]) were used to obtain calibration curves to 

determine Pb in Phaleria Macrocarpa leaves and soil samples. Representative spectra 

of Phaleria Macrocarpa (locally known as Mahkota Dewa) leaves, and soil are 

presented in Fig. 5.5. The intensities of lead lines are plotted against Pb concentration 

in calibration samples. The Pb I 363.95 nm was chosen for having the most linear 

correlation with Pb concentration. Analytical measurements at 500 mbar (optimised 

ambient for best signal-to-background ratio) of air are shown as calibration curves in 

Fig. 5.6. Each point in the calibration plot is an average of at least fifteen 

measurements. Error bars represent the standard deviation in the measurements. Black 

squares symbolise calibration samples while red squares represent prediction 

(unknown concentration) samples. Prediction samples were not utilized in the linear 

regression. The calibration curves are linear, with correlation coefficients better than 

0.98, as shown in Figs. 5.6(a) and (b) for Phaleria Macrocarpa and soil, respectively. 
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The slope of a calibration curve signifies the sensitivity of the measurement. The 

higher the slope, the better is the sensitivity.  

 

 
(a) 

 
(b) 

Fig. 5.5   LIBS spectrum of (a) Phaleria Macrocarpa and (b) Soil using 100 mJ of 

laser energy in air environment [4] 

 

 To evaluate the performance, root mean square error of prediction (RMSEP) 

and maximum relative error (MRE) were calculated using Eqs. 5.2 and 5.3 respectively 

and the values are listed in Table 5.1.  
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 Here Cpre,s and Cnom,s are the predicted, and nominal concentrations of a sample 

s and N is the total number of samples used in the estimation. The limit of detection is 

determined as 3.3*σ/m, where σ is the standard deviation of blank measurements and 

m is slope of the calibration curve. Lower error, a better limit of detection, and good 

precision are obtained for the analysis of soil. However, smaller values of maximum 

relative error (MRE) were obtained for the leaf samples. The varying concentrations 

in soil and leaves affect the accuracy and precision of the measurement. Another 

important factor is the sample heterogeneity that can influence the precision of the 

measurements. 

 

 
MRE: 10.7% 

 
MRE: 18.6% 

(a) (b) 

Fig. 5.6   Calibration Curves for estimation of Pb estimation in leaves and soil 

samples [4] 

 

 

Table 5.1, Analytical figures of merit for Phaleria Macrocarpa and soil by LIBS 

[4] 

Samples 

RMSEP 
(ppm) 

MRE 
(%) 

RSD 
(%) 

LOD 
(ppm) 

Leaves 1673.64 10.69 14.99 1017.71 
Soil 29.16 18.59 3.42 15.96 

 

 

5.4.2 Determining Ca/P Ratio in Hydroxyapatite 

 Hydroxyapatite (HA) is an important biomaterial for making bone cement 

which is used for repairing cracked bones. The value Ca/P ratio is an indicator of the 

composition of HA suggested for bone cement. LIBS can be a rapid and real-time 
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analytical technique to monitor the Ca/P ratio in HA in the procedure of bone cement 

preparation, as demonstrated below with preliminary investigations. We studied the 

Ca/P ratio in natural HA, extracted from Lamb, Fish and Bovine bones [5][6] and the 

synthetic HA, prepared in laboratory [7] using LIBS. 

 LIBS spectrum of HA is presented in Fig. 5.7. Lines of major constituents of 

HA, i.e. Ca, P, K and Br were identified in the spectrum using NIST atomic spectra 

database. The intensity of spectral lines in emission spectra is indicative of elemental 

concentration. However, different spectral lines of the same element do not respond 

equally to a similar change in the element’s concentration. Ca I 610.27 nm and P I 

550.72 nm were selected to calculate Ca/P ratio in the sample as it gave closest to the 

stoichiometric values (also verified by EDX). A comparison of Ca/P ratios obtained 

from LIBS and EDX is given in Table 5.2. 

 

 

Fig. 5.7   LIBS spectrum of HA extracted from bovine bone [5] 

 

 The average Ca/P ratio obtained from the LIBS analysis were compared with 

EDX measurements. Figures 8a & 8b show the graph Ca/P ratio for both techniques 

for each natural HA samples and synthetic HA samples, respectively. These values are 

within the accepted range (1.86-1.97) for natural HA and close to stoichiometric ratios 

in synthetic HA. 

It is evident from Fig. 5.8 that the values of Ca/P ratios obtained for different 

samples obtained with LIBS are fairly close to the values obtained from EDX 

technique which is an established technique for determining the elemental composition 

of a material. Therefore, it can be concluded that LIBS can be potentially used reliably 

for such type of investigations with added benefits of rapid, real-time and non-

destructive analysis. 
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Natural HA 
 

Synthetic HA 

Fig. 5.8   Comparison between Ca/P ratios determined from EDX and LIBS  [6], 

[7] 

 

 

 

Table 5.2   Comparison of Ca/P ratio measurements with EDX and LIBS in 

synthetic HA samples 

 

S
a

m
p

le
 Stoichiometric 

Ca/P ratio 

Ca/P ratio 

by EDX 

Ca/P ratio by 

LIBS 

 

 A 1.50 1.52 1.53  

 B 1.60 1.62 1.61  

 C 1.67 1.70 1.70  

 D 1.70 1.73 1.72  

 E 1.80 1.83 1.82  

  

 

5.4.3 Classification of Metallic Samples 

 Emission spectra are the optical signatures of material, and therefore, ideally, 

one should be able to identify and discriminate a material using its LIBS spectrum. It 

is easier when samples are far different in composition, i.e. metals & alloys and 

becomes difficult when they have nearly the same composition, e.g. biological 

samples. When we cannot differentiate with the naked eye, we can make use of 

discrimination tools. Principal Component Analysis (PCA) has proved very useful in 

this regard. PCA performs dimensional reduction on the data and generates PCs in 

descending order of variance in that data. It makes it easy to classify the data using the 

top few PCs, generally, PC1, PC2 and PC3.  
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Fig. 5.9   Classification of (a) meat samples and (b) metallic samples using PCA 

and LIBS 

 

 Fig. 5.9 shows the classification of Al, Brass and Zn using PCA on LIBS data 

comprising of 75 spectra (25 per sample). PCA was performed on the spectral data to 

generate PCs. The principal component scatter plot of PC1, PC2 and PC3 (Fig. 5.9) 

shows the difference between the three samples. Clear clustering shows three 

distinctive groups of data. Here, Al, Brass and Cu of different purifications are grouped 

into their family of the major element. It shows the possibility of discrimination of 

materials based on their LIBS spectra and the effectiveness of PCA technique in this 

application. 
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