On C Integral in the n-Dimensional Euclidean Space

Tutut Herawan

Faculty of Information Technology and Multimedia
Universiti Tun Hussein Onn Malaysia
Parit Raja, Batu Pahat 86400, Johor, Malaysia

*Corresponding email: tututherawan@yahoo.com

Abstract
In this paper, we generalize C integral on real line to the n-dimensional Euclidean space. Further, we present the Cauchy criterion for C integrability, the relation between C and Henstock integrals. Finally, we prove that monotone and dominated convergence theorems for the C integral are still valid in the n-dimensional Euclidean space.

Keywords: The n-dimensional Euclidean space; C integral; Cauchy criterion; Monotone and dominated convergence theorems.
1. INTRODUCTION

Bongiorno [1], Bongiorno et al. [2] and Di Piazza [3] gave a constructive minimal Riemann type integral which includes Lebesgue integrable functions and derivatives, so-called C integral on real line R. The problems of the theory of integration are not only on real line, but also in multi dimensions, particularly in the n-dimensional Euclidean space R^n. In general, the problems of multi dimensional integration are quite generalization of the same problems on real line. In this case, the real line is a special case of the n-dimensional Euclidean space. However, not all problems on real line can be automatically generalized to the n-dimensional Euclidean space. For example, if a, b ∈ R and a < c < b, then [a, b] is a union of two non-overlapping intervals [a, c] and [c, b]. However, for the n-dimensional Euclidean space (n ≥ 2) it is not true that if [a, b] ⊂ R^n and a < c < b, then [a, b] = [a, c] ∪ [c, b] [4]. In this paper, we generalize the works of [1-3] to the n-dimensional Euclidean space. Four contributions of this work are as follows: Firstly, the definition of C integral and its basic properties in the n-dimensional Euclidean space are presented. Secondly, Cauchy criterion for C integrability is presented. Thirdly, the relation between C and Henstock integrals is presented. Lastly, we prove that monotone and dominated convergence theorems for C integral are still valid in the n-dimensional Euclidean space.

The rest of this paper is organized as follows. Section 2 describes the fundamental concept of interval and partition in the n-dimensional Euclidean space. Section 3 describes C integral and its basic properties in the n-dimensional Euclidean space. Section 4 the relation between C and Henstock integrals. Section 5 describes monotone and dominated convergence theorems for the C integral in the n-dimensional Euclidean space. Finally, the conclusions of our works are described in section 6.

2. PRELIMINARIES

Let R denote the set of all real numbers. For n ∈ Z^+, the n-dimensional Euclidean space, R^n represents all ordered n-tuple of real number. Thus, R^n can be expressed as a Cartesian product

\[R^n = R \times R \times \ldots \times R = \{ x = x_1, x_2, \ldots, x_n : x_i \in \mathbb{R}, i = 1, 2, \ldots, n \}. \]

Obviously, R^n is a vector space under vectors scalar product and vectors addition operations and R^n is a Hilbert space under inner product operation.

Let [a, b] ⊂ R be a compact interval on the real line. A cell E in R^n is defined as a non-degenerate interval in R^n, i.e.,

\[E = \prod_{i=1}^{n} [a_i, b_i], \]
where \(a_i, b_i \in \mathbb{R} \). The volume of a cell \(E \subseteq \mathbb{R}^n \) is the real number \(|E|\) defined by

\[
|E| = \prod_{j=1}^{n} (b_j - a_j).
\]

Evidently, the volume of a cell \(E \) is the Lebesgue measure of \(E \).

Let \(x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n \), we can define some norms in \(\mathbb{R}^n \), i.e.,

\[
\|x\|_p = \left(\sum_{j=1}^{n} |x_j|^p \right)^{\frac{1}{p}}, \quad \text{for } 1 \leq p < \infty.
\]

\[
\|x\|_\infty = \max \{|x_j| \} , \quad \text{for } p = \infty.
\]

These norms are topologically equivalent.

In this paper, we consider \(\mathbb{R}^n \) as a Banach space endowed with the norm \(\| \cdot \|_\infty \).

Let \(E \) be a cell in \(\mathbb{R}^n \) and \(\delta \) be a gauge (or positive real-valued function) defined on \(E \). For \(x \in E \), an open ball with center at \(x \) and radius \(\delta(x) \) is defined by

\[
B(x, \delta(x)) = \{ y : \|x - y\|_\infty < \delta(x) \}.
\]

Given a cell \(E \in \mathbb{R}^n \). The cell \(E \) can be divided into non-overlapping subcells \(E_1, E_2, ..., E_n \). The division \(\wp = \{E_1, E_2, ..., E_n\} \) of \(E \) is then known as a partition of \(E \). This partition \(\wp \) may then equipped with tags \(\{x_1, x_2, ..., x_n\} \), where \(x_i \in E_i \), for \(i = 1, 2, ..., n \) called tag point of subinterval \(E_i \). The partition

\[
\wp = \{(E_1, x_1), (E_2, x_2) ..., (E_n, x_n)\}
\]

is called a tagged partition if \(x_i \in E_i \), for \(i = 1, 2, ..., n \). A tagged partition of \(E \) is called a McShane \(\delta \)-fine partition of \(E \) if the following conditions are satisfied,

\[
x_i \in E \text{ and } E_i \subseteq B(x_i, \delta(x_i)),
\]

A tagged partition of \(E \) is called a Perron \(\delta \)-fine partition of \(E \) if the following conditions are satisfied,

\[
x_i \in E_i \text{ and } E_i \subseteq B(x_i, \delta(x_i)),
\]

Lemma 2.1. Every Perron \(\delta \)-fine partition is a McShane \(\delta \)-fine partition on a cell \(E \).

Proof. It follows from the notions of Perron \(\delta \)-fine partition and McShane \(\delta \)-fine partition.

In Section 3, we present \(C \) integrals in the \(n \)-dimensional Euclidean space and its basic properties. All functions in this paper are real-valued functions defined on a cell \(E \).
3. **C INTEGRAL IN THE N-DIMENSIONAL EUCLIDEAN SPACE**

In this section, we present the notions of the C integral in the n-dimensional Euclidean space, its fundamental properties, Cauchy criterion for C integrability and the notion of C primitive of a C integrable function.

Definition 3.1. (C integral). A function f is said to be C integrable on a cell E, if there is a real number A such that for any $\varepsilon > 0$ there is a gauge on E such that for every McShane δ-fine partition $\wp = \{(E_1, x_1), (E_2, x_2), ... (E_n, x_n)\}$ of E satisfying the condition

$$
(\wp) \sum_{i=1}^{n} \text{dist}(x_i, E_i) < \frac{1}{\varepsilon},
$$

we have

$$
\left| (\wp) \sum_{i=1}^{n} f(x_i)|E_i| - A \right| < \varepsilon.
$$

Here, $(\wp) \sum_{i=1}^{n} f(x_i)|E_i|$ is taken to mean the sum over the McShane δ-fine partition of E.

Furthermore, the real number A is called the C integral value of f on E and will be written

$$
A = (C) \int_{E} f.
$$

The collection of C integrable functions on a cell E is denoted by $C(E)$.

Proposition 3.2. The following properties are hold in $C(E)$.

(a) Uniqueness, i.e., if a function f is C integrable on a cell E, then the C integral value of f on E is unique.

(b) $C(E)$ is a linear space, i.e. if k is a constant and f and g are C integrable on a cell E, then so are cf and $f + g$. Moreover

$$
(C) \int_{E} kf = (C)k \int_{E} f \text{ and } (C) \int_{E} f + g = (C) \int_{E} f + (C) \int_{E} g.
$$

(c) Dominated property, i.e. if $f, g \in C(E)$ and $f \leq g$ on a cell E, then

$$
(C) \int_{E} f \leq (C) \int_{E} g.
$$

(d) Interval additive property, i.e. if $f \in C(E)$, $f \in C(E)$ and $E = E_1 \cup E_2$ then

$$
f \in C(E) \text{ and } (C) \int_{E} f = (C) \int_{E_1} f + (C) \int_{E_2} f.
$$

If we only want to know whether a function f is C integrable on a cell E without using its C integral value, we may use the following Cauchy’s Criterion for C integrability.
4. CAUCHY CRITERION

Theorem 4.1. (Cauchy Criterion). A function \(f \) is \(C \)-integrable on a cell \(E \) if only if for every \(\varepsilon > 0 \), there is a gauge \(\delta \) on \(E \) such that for every two McShane \(\delta \)-fine partitions \(\varrho_1 = \{(E_1, x_1), (E_2, x_2), \ldots, (E_n, x_n)\} \) and \(\varrho_2 = \{(F_1, y_1), (F_2, y_2), \ldots, (F_n, y_n)\} \) on \(E \), we have

\[
\left| \left(\varrho_1 \sum_{i=1}^{n} f(x_i)|E_i \right) - \left(\varrho_2 \sum_{i=1}^{n} f(y_i)|F_i \right) \right| < \varepsilon.
\]

Proof. \((\Rightarrow)\) Since \(f \) is \(C \)-integrable on a cell \(E \subset \mathbb{R}^n \), then there exist a real number \(A \), such that for every \(\varepsilon > 0 \), there exist a gauge \(\delta \) on a cell \(E \) and for McShane \(\delta \)-fine partition \(\varrho_1 = \{(E_1, x_1), (E_2, x_2), \ldots, (E_n, x_n)\} \) on \(E \) with \((\varrho_1) \sum_{i=1}^{n} \text{dist}(x_i, E_i) < \frac{1}{\varepsilon} \), the following condition is hold,

\[
\left| \left(\varrho_1 \sum_{i=1}^{n} f(x_i)|E_i \right) - A \right| < \varepsilon.
\]

To this, for every two McShane \(\delta \)-fine partitions

\[
\varrho_1 = \{(E_1, x_1), (E_2, x_2), \ldots, (E_n, x_n)\} \quad \text{with} \quad (\varrho_1) \sum_{i=1}^{n} \text{dist}(x_i, E_i) < \frac{1}{\varepsilon}
\]

and

\[
\varrho_2 = \{(F_1, y_1), (F_2, y_2), \ldots, (F_n, y_n)\} \quad \text{with} \quad (\varrho_2) \sum_{i=1}^{n} \text{dist}(y_i, F_i) < \frac{1}{\varepsilon}
\]

on \(E \), we have

\[
\left| \left(\varrho_1 \sum_{i=1}^{n} f(x_i)|E_i \right) - A \right| < \frac{\varepsilon}{2} \quad \text{and} \quad \left| \left(\varrho_2 \sum_{i=1}^{n} f(y_i)|F_i \right) - A \right| < \frac{\varepsilon}{2}, \text{respectively}.
\]

Hence,

\[
\left| \left(\varrho_1 \sum_{i=1}^{n} f(x_i)|E_i \right) - \left(\varrho_2 \sum_{i=1}^{n} f(y_i)|F_i \right) \right| = \left| \left(\varrho_1 \sum_{i=1}^{n} f(x_i)|E_i \right) - A + A - \left(\varrho_2 \sum_{i=1}^{n} f(y_i)|F_i \right) \right|
\]

\[
\leq \left| \left(\varrho_1 \sum_{i=1}^{n} f(x_i)|E_i \right) - A \right| + \left| \left(\varrho_2 \sum_{i=1}^{n} f(y_i)|F_i \right) - A \right|
\]

\[
\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

\((\Leftarrow)\) Assumed that for every positive integer \(n \in \mathbb{Z}^* \), there exist a corresponding gauge \(\delta_n^* \) on \(E \), such that for any two McShane \(\delta_n^* \)-fine partitions
\[\varphi_1^* = \{(E_1, x_1), (E_2, x_2), \ldots, (E_n, x_n)\} \text{ dan } \varphi_2^* = \{(F_1, y_1), (F_2, y_2), \ldots, (F_m, y_m)\} \]
on E, with
\[
\left(\varphi_1^* \sum_{i=1}^n \text{dist}(x_i, E_i) \right) < \frac{1}{\varepsilon} \text{ and } \left(\varphi_2^* \sum_{i=1}^n \text{dist}(y_i, F_i) \right) < \frac{1}{\varepsilon}
\]
the following condition is hold
\[
\left| \left(\varphi_1^* \sum_{i=1}^n f(x) \right)_{|E_i} \right| < \left(\varphi_2^* \sum_{i=1}^n f(y) \right)_{|F_i} \frac{1}{n} \quad (1)
\]
For every positive integer \(n \in \mathbb{Z}^+ \), we set a positive gauge \(\delta_n \) on \(E \), as follows
\[
\delta_1(x) = \delta_1^*(x), \\
\delta_2(x) = \min\{\delta_1(x), \delta_2(x)\}, \\
\delta_3(x) = \min\{\delta_1(x), \delta_2(x), \delta_3(x)\}, \\
\vdots \\
\delta_n(x) = \min\{\delta_1(x), \delta_2(x), \ldots, \delta_{n-1}(x), \delta_n^*(x)\}.
\]
Thus, \(\delta_n(x) \geq \delta_1(x) \geq \ldots \geq \delta_n(x) \) for every \(x \in E \). Therefore, for two positive integers \(n, m \in \mathbb{Z}^+ \), where \(n > m \), every McShane \(\delta_n \)– fine partition
\[
\varphi_n = \{(E_1, x_1), (E_2, x_2), \ldots, (E_n, x_n)\} \text{ with } \left(\varphi_n \right) \sum_{i=1}^n \text{dist}(x_i, E_i) < \frac{1}{\varepsilon}
\]
is a McShane \(\delta_n \)– partition
\[
\varphi_m = \{(E_1, x_1), (E_2, x_2), \ldots, (E_m, x_m)\} \text{ with } \left(\varphi_m \right) \sum_{i=1}^m \text{dist}(x_i, E_i) < \frac{1}{\varepsilon}
\]
Then, for any \(n \in \mathbb{Z}^+ \), we can take a McShane\(\delta_n \)– fine partition
\[
\varphi_\infty = \{(E_1, x_1), (E_2, x_2), \ldots, (E_n, x_n)\} \text{ on } E \text{ with } \left(\varphi_\infty \right) \sum_{i=1}^n \text{dist}(x_i, E_i) < \frac{1}{\varepsilon}
\]
We construct
\[
A_n = \left(\varphi_\infty \right) \sum_{i=1}^n f(x)_{|E_i}.
\]
To this, we obtain a sequence of real numbers \(\{A_n\} \). Let a positive number \(\varepsilon > 0 \), according to Archimedean property, there exist a positive integer \(n_0 > \frac{2}{\varepsilon} \). Such that from \(m, n \in \mathbb{Z}^+ \)
where \(m, n \geq n_0 \), a gauge \(\delta_n \) on \(E \) and (1), we have

\[
|A_n - A_m| = \left| (\varphi_n \sum f(x_i)|E_i| - (\varphi_m \sum f(x_i)|E_i|) \right| < \frac{1}{m} n_0 < \frac{\varepsilon}{2}.
\]

(2)

Hence, \(\{A_n\} \) is a Cauchy sequence in \(R \). Since \(R \) is a complete Banach space, then \(\{A_n\} \) is a convergent sequence, say to a number \(A \in R \). Thus for every positive number \(\varepsilon > 0 \) as stated above, there exist a positive integer \(n_1 \in Z^+ \), where \(n \geq n_1 \). Such that for every

\[
|A_n - A| < \frac{\varepsilon}{2}
\]

(3)

From (2) and (3), we get

\[
\left| (\varphi \sum f(x_i)|E_i|) - A \right| = \left| (\varphi \sum f(x_i)|E_i|) - A_n + A_n - A \right|
\]

\leq \left| (\varphi \sum f(x_i)|E_i|) - A_n \right| + |A_n - A|

< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.

In previous paper [5], we presented the relation between \(C \) and Lebesgue integrals. In the next section, we present the relation between \(C \) and Henstock Integrals.

5. \(C \) VERSUS HENSTOCK INTEGRALS

In this section, the relation between \(C \) and Henstock integrals in the \(n \)-dimensional Euclidean space is presented. We firstly present the definition of Henstock integral.

Definition 5.1. (Henstock integral). A function \(f \) is said to be Henstock integrable on a cell \(E \), if there is a real number \(A^* \) such that for any \(\varepsilon > 0 \) there is a gauge on \(E \) such that for any Perron \(\delta \)-fine partition \(\varphi = \{(E_{i_1}, x_{i_1}), (E_{i_2}, x_{i_2}), ..., (E_{i_n}, x_{i_n})\} \) of \(E \), we have

\[
\left| (\varphi \sum f(x_i)|E_i|) - A^* \right| < \varepsilon
\]

Here, \((\varphi \sum f(x_i)|E_i|)\) is taken to mean the sum over the \(\delta \)-fine Perron partition \(D \) of \(E \). Furthermore, the number \(A^* \) is called the Henstock integral value of \(f \) on \(E \) and will be written

\[
A^* = (R^*) \int_E f.
\]

The collection of Henstock integrable functions on a cell \(E \) is denoted by \(R^*(E) \).
The following theorem states that the collection of all C-integrable functions is properly contained in the collection of all Henstock-Kurzweil integrable functions. This theorem is used to prove the monotone convergence theorem for the C-integrals in the n-dimensional Euclidean space.

Proposition 5.2. Every C integrable function is Henstock integrable on the same cell, with the same value.

Proof. From Lemma 2.1, since every δ-fine Perron partition is a δ-fine McShane partition on a cell E (See), then the proof is clear. \(\Box\)

To show that the converse of Proposition 5.2 is not true, we consider to the following example.

Example 5.3. Without lost generality, we present an example of a function defined on real line. Let $F : [0, 1] \to \mathbb{R}$ defined as

$$F(x) = \begin{cases} x \sin x^2 , & \text{for } 0 < x \leq 1 \\ 0 , & \text{for } x = 0 \end{cases}$$

We define a function $f : [0, 1] \to \mathbb{R}$ as $f = F'$ for every $x \in [0, 1]$. The plots of F and f are given in Figures 1 and 2, respectively. Obviously, that f is unbounded on $[0, 1]$, particularly near 0. Hence, f is not Riemann integrable on $[0, 1]$.

![Fig. 1, plot of F on [-0.4, 0.4].](image-url)
We will show that F is a primitive of R^*, i.e. $(R^*) \int f = F$. From the Cauchy extension of Henstock integral, we have

$$\int_{[0,x]} f(x) = \lim_{a \to 0} (x \sin x^2 - a \sin a^2)$$

$$= x \sin x^2 - 0$$

$$= x \sin x^2$$

$$= F(x). \quad (4)$$

Next, we show that f is not C integrable on $[0, 1]$. Here, we assume that f is C integrable on $[0, 1]$. It means that for every positive number $\varepsilon > 0$, there exist a gauge $\delta > 0$ on $[0, 1]$. Thus, if we take

$$a_h = (\pi + 2h\pi)^\frac{1}{2} \quad \text{and} \quad b_h = \left(\frac{\pi}{2} + 2hn\right)^\frac{1}{2}, \quad (5)$$

it is easy to understand that intervals $(a_h, b_h), h = 1, 2, 3, \ldots$ are disjoint and

$$\sum_{h=1}^{\infty} a_h = \infty \quad \text{as well} \quad \sum_{h=1}^{\infty} b_h = \infty.$$

From (4) and (5), we get

$$F(a_h) = a_h \sin a_h^2$$

$$= (\pi + 2h\pi)^\frac{1}{2} \sin(x + 2h\pi)$$

$$= (p + 2hp)^\frac{1}{2} \cdot 0$$

$$= 0,$$
and

\[F(b_h) = b_h \sin b_h^{-2} = \left(\frac{\pi}{2} + 2h\pi \right)^{\frac{3}{2}} \sin \left(\frac{\pi}{2} + 2h\pi \right) \]

\[= \left(\frac{\pi}{2} + 2h\pi \right)^{\frac{3}{2}} \cdot 1 \]

\[= \left(\frac{\pi}{2} + 2h\pi \right)^{\frac{3}{2}} \cdot 1. \]

For every \(m, n \in \mathbb{Z}^+ \) we have

\[(a_{m+i}, b_{m+i}) \subset (0, \delta(0)), (i = 1, 2, 3, \ldots, n), \text{ where } \varepsilon < \sum_{i=1}^{n} a_{m+i} < \frac{1}{\varepsilon}, \]

Hence, \(\sum_{i=1}^{n} b_{m+i} > \sum_{i=1}^{n} a_{m+i} > \varepsilon \). Let, we define intervals

\[E_1 = (a_{m+1}, b_{m+1}), E_2 = (a_{m+2}, b_{m+2}), \ldots, E_n = (a_{m+n}, b_{m+n}), \]

thus, a collection of \(\{E_1, 0\}, \{E_2, 0\}, \ldots, \{E_n, 0\} \) is a partial McShane \(\delta \)-fine partition in \([0, 1]\), where

\[\sum_{i=1}^{n} \text{dist}(0, E_i) = \sum_{i=1}^{n} a_i < \frac{1}{\varepsilon}. \]

Furthermore,

\[\sum_{i=1}^{n} \left| f(0)|E_i| - \mathcal{C} \int_{E_i} f \right| = \sum_{i=1}^{n} |F(b_{m+i}) - F(a_{m+i})| = b_{m+i} > \varepsilon, \]

This is a contradiction with the assumption that \(f \) is \(\mathcal{C} \) integrable on \([0, 1]\).

The relation of \(\mathcal{C} \) and Henstock integrals can be depicted in Figure 3 as follow.

\[
\begin{array}{c}
\{ \text{Collection of } \mathcal{C} \text{ integrable functions} \} \\
\subset \\
\neq \\
\{ \text{Collection of } \mathcal{R}^* \text{ integrable functions} \}
\end{array}
\]

Fig. 3, the relation between \(\mathcal{C} \) and Henstock integrals.

In the theory of integration, convergence theorems play an important role in deriving a sufficient condition for the limit of integral values of integrable functions in order to have the same value with the limit of sequence of the functions.
6. CONVERGENCE THEOREMS FOR C INTEGRAL

In this section, we present the monotone and dominated convergence theorems for the C integral in the \(n \)-dimensional Euclidean space as generalization of the same case on real line. We prove that such convergence theorems for the C integral are still valid in the \(n \)-dimensional Euclidean space.

Theorem 6.1. (Monotone convergence theorem). Let \(\{f_n\} \) be a sequence of real valued C integrable function on a cell \(E \subset \mathbb{R}^n \). If \(\{f_n\} \) are monotone and convergent to a real valued function \(f \) on \(E \) and \(\lim_{n \to \infty} \int_E f_n \) exists and finite, then \(f \) is C integrable on \(E \) and

\[
\left(\text{C} \right) \int_E f = \lim_{n \to \infty} \int_E f_n.
\]

Proof. Let \(f \) be any C integrable function on a cell \(E \), by Theorem 5.2, \(f \) is Henstock integrable on \(E \) with the same value of the integrals. Furthermore, if \(f \) is a non-negative, \(f \) is Lebesgue integrable on \(E \) with the same value of the integrals [6,7].

Let \(\{f_n\} \) be a sequence of real-valued C integrable functions on a cell \(E \subset \mathbb{R}^n \). First, we prove for the case \(\{f_n\} \) is monotone increasing and convergent to a real valued function \(f \) on \(E \).

Since \(\{f_n\} \) is monotone increasing, then we have

\[
f_1 \leq f_2 \leq f_3 \leq \ldots \leq f_n \leq f_{n+1} \leq \ldots
\]

Consequently,

\[
0 \leq f_2 - f_1 \leq f_3 - f_1 \leq \ldots \leq f_n - f_1 \leq \ldots
\]

By monotone convergence theorem for the Lebesgue integral [6,7], we have

\[
(L) \int_E (f_n - f_1) = \lim_{n \to \infty} (L) \int_E (f_n - f_1)
\]

By Theorem 3.1 in [5], for every \(n \in \mathbb{Z}^+ \), we have

\[
(L) \int_E (f_n - f_1) = (C) \int_E (f_n - f_1) = (C) \int_E f_n - (C) \int_E f_1.
\]

By the hypothesis, that \(\{f_n\} \) is convergent to a real valued function \(f \) on \(E \) and \(\lim_{n \to \infty} \int_E f_n \) exists and finite, then from (6), we have the function \(f - f_1 \) is Lebesgue integrable on \(E \). Therefore, if \(f = (f - f_1) + f_1 \) is Lebesgue integrable on \(E \), then \(f \) is C integrable on \(E \) with the same value of the integrals. Hence
Second, we prove for the case \(\{ f_n \} \) is monotone decreasing and convergent to a real valued function \(f \) on \(E \). Since \(\{ f_n \} \) is monotone decreasing, then
\[
f_1 \geq f_2 \geq f_3 \geq \ldots \geq f_n \geq \ldots
\]
Consequently,
\[
0 \leq f_1 - f_2 \leq f_1 - f_3 \leq \ldots \leq f_1 - f_n \leq \ldots
\]
By monotone convergence theorem for the Lebesgue integral \([6,7]\), we have
\[
(L) \int_E (f_1 - f_n) = \lim_{n \to \infty} (L) \int_E (f_1 - f_n) \quad (7)
\]
By Theorem 3.1 in [5], for every \(n \in \mathbb{N} \), we have
\[
(L) \int_E (f_1 - f_n) = (C) \int_E (f_1 - f_n)
= (C) \int_E f_1 - (C) \int_E f_n
\]
By the hypothesis, that \(\{ f_n \} \) is convergent to a real valued function \(f \) on \(E \) and \(\lim_{n \to \infty} (C) \int_E f_n \) exists and finite, then from (7), we have the function \(f_1 - f \) is Lebesgue integrable on \(E \). Therefore, if \(f = f_1 - (f_1 - f) \) is Lebesgue integrable on \(E \), then \(f \) is \(C \)-integrable on \(E \) with the same value of the integrals. Hence
\[
(C) \int_E f = (C) \int_E f_1 - (C) \int_E (f_1 - f)
= (C) \int_E f_1 - (C) \int_E f_1 + (C) \int_E f
= (C) \lim_{n \to \infty} \int_E f_n, \quad \square
\]

Theorema 6.2 (Dominated convergence theorem). Let a cell \(E \subset \mathbb{R}^n \), a sequence of measurable function \(\{ f_n \} \) are \(C \) integrable on \(E \). If

(a) \(\{ f_n \} \) converges to \(f \) almost every where on \(E \)
(b) for every $n \in \mathbb{N}$, $g \leq f_n \leq h$ almost every where on E then $f \mathcal{C}$ integrable on E, furthermore

$$(C) \int_E f = \lim_{n \to \infty} \int_E f_n.$$

Proof. For every $n \in \mathbb{Z}^+$, from the second hypothesis, if $g \leq f_n \leq h$ almost every where on E, then $0 \leq f_n - g \leq h - g$

Since g and h are C integrable on E, according to Proposition 3.2 part (b), $h - g$ is C integrable on E. According to Proposition 5.2, $h - g$ is Henstock integrable on E with the same value. Furthermore, from [5] if $h - g \geq 0$, then $h - g$ is Lebesgue integrable on E with the same value. From the first hypothesis, the collection of all C integrable functions is properly contained in the collection of all Henstock integrable functions on $E \subset \mathbb{R}^n$. We have proven that the monotone and dominated convergence theorems for the C integral are still valid in the n-dimensional Euclidean space. In addition, we propose a number of future research activities related to the C integral. First, we can generalize the C integral in the different domain, such as Banach and Sequence spaces. Second, the properties of Small Riemann Sum (SRS) is still an attract issue for the C integral.

7. CONCLUSIONS

In this paper, we have used a notion of a cell $E \subset \mathbb{R}^n$ in the n-dimensional Euclidean space. The C integral in the n-dimensional Euclidean space is successfully generalized from real line. Four basic properties of C integral in the n-dimensional Euclidean space, i.e., uniqueness, $C(E)$ is a linear space, monotone property and interval additive property are presented. The relation of C and Henstock integrals are presented. The result show that the collection of all C integrable functions is properly contained in the collection of all Henstock integrable functions on $E \subset \mathbb{R}^n$. We have proven that that monotone and dominated convergence theorems for the C integral are still valid in the n-dimensional Euclidean space. In addition, we propose a number of future research activities related to the C integral. First, we can generalize the C integral in the different domain, such as Banach and Sequence spaces. Second, the properties of Small Riemann Sum (SRS) is still an attract issue for the C integral.
REFERENCES

