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ABSTRACT 

Recently, in the direction of developing realistic mathematical models, there are a 

number of works that extended the ordinary differential equation to the fractional-

order equation. Fractional-order models are thought to provide better agreement with 

the real data compared with the integer-order models. The fractional logistic equation 

is one of the equations that has been getting the attention of researchers due to its 

nature in predicting population growth and studying growth trends, which assists in 

decision making and future planning. This research aims to propose the numerical 

solution for the fractional logistic equation. Two different solving methods, which are 

the Adam’s-type predictor-corrector method and the Q-modified Eulerian numbers, 

were successfully applied to two versions of the fractional-order logistic equation, 

which are the fractional modified logistic equation and the fractional logistic equation, 

respectively. The fractional modified logistic equation, which involved the extended 

Monod model, was solved by the Adam’s-type predictor-corrector method and was 

applied in estimating microalgae growth. The results show that the fractional modified 

logistic equation agreed with the real data of microalgae growth. Meanwhile, a closed-

form solution by the Q-modified Eulerian numbers was proposed for the fractional 

logistic equation. These modified Eulerian numbers were obtained by modifying the 

Eulerian polynomials in two variables. Interestingly, these modified polynomials 

corresponded to the polylogarithm 
pLi z( )  of the negative order and with a negative 

real argument, z . The proposed method via the modified Eulerian numbers can 

provide the generalised solution for an arbitrary value. The proposed method was 

shown to achieve numerical convergence. The numerical experiment shows that this 

method is highly efficient and accurate since the absolute error obtained from the 

subtraction of the exact and proposed solution is considerably small.  

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



vi 
 

 

ABSTRAK 

Baru-baru ini, ke arah pengembangan model matematik yang realistik, terdapat sejumlah 

penyelidikan yang memperluas persamaan pembezaan biasa ke persamaan pembezaan 

pecahan. Model pembezaan pecahan dianggap memberikan kesepakatan yang lebih baik 

dengan data sebenar dibandingkan dengan model pembezaan integer. Persamaan 

pembezaan logistik pecahan adalah salah satu persamaan yang mendapat perhatian 

penyelidik kerana sifatnya dalam meramalkan pertumbuhan populasi dan mengkaji 

corak pertumbuhan yang membantu dalam membuat keputusan dan perancangan masa 

depan. Penyelidikan ini bertujuan untuk mencadangkan penyelesaian untuk persamaan 

logistik pecahan. Dua kaedah penyelesaian yang berbeza berjaya diaplikasikan pada dua 

versi persamaan logistik pecahan iaitu kaedah peramal-pembetulan jenis Adam dan 

nombor Eulerian. Persamaan logistik pecahan yang diubah yang melibatkan model 

Monod lanjutan telah diaplikasikan dalam meramalkan pertumbuhan mikroalga. 

Hasilnya menunjukkan persamaan logistik pecahan sepadan dengan data eksperimen 

pertumbuhan mikroalga. Sementara itu, penyelesaian berbentuk tertutup dengan nombor 

Eulerian yang diubah suai Q dicadangkan untuk versi lain dari persamaan logistik 

pecahan. Nombor Eulerian yang diubah ini diperoleh dengan mengubah polinomial 

Euler kepada dua pemboleh ubah. Menariknya, polinomial yang diubah ini sesuai dengan 

polilogaritma 
pLi z( )  susunan negatif dan dengan argumen nyata negatif, z . Kaedah 

yang dicadangkan melalui nombor Eulerian yang diubah dapat memberikan 

penyelesaian umum untuk nilai arbitrari. Kaedah yang dicadangkan ini didapati 

mencapai penumpuan berangka. Eksperimen berangka menunjukkan bahawa kaedah ini 

sangat efisien dan tepat kerana ralat mutlak yang diperoleh daripada hasil tolak 

penyelesaian tepat dengan penyelesaian yang dicadangkan adalah sangat kecil. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research background 

Ecology is one of the branches in biology that concerns the relationship and the 

interactions between organisms and their environment. It is often studied together with 

other sciences, including mathematics, engineering and also social sciences. On that 

account, it can be said that mathematics has become an important tool in describing 

the physical system of ecology. Population ecology is the study of population size, 

density, distribution and changes over time. By performing the study, ecologists are 

able to gather the data, which can help them predict growth trends and manage the 

population size of a particular living things. This is essential in improving biodiversity 

conservation. Population size may increase or decrease, changes may occur quickly or 

slowly, and the effects on other populations may be marked or slight. Population 

dynamics refer to the changes in the number of organisms over time, and it is 

fundamental in ecology. Countless efforts have been made to develop a realistic 

mathematical model that can describe population dynamics. Among such models is 

the logistic equation, which was originally introduced by Pierre Francois Verhulst in 

1838 (Cushing, 1998). 

A population is a group of individuals of the same species that inhabit an area 

at the same time. The diagnostic features of living matter are growth and reproduction, 

and a population must be defined on the same basis. Just as living matter must exhibit 

growth and commonly undergo reproduction, organisms grow and usually bring an 

assemblage of descendants that together form a population (Pielou, 1974). 
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Indeed, there are many contexts in which it is important to understand 

population dynamics. For instance, in fisheries management, the manager is interested 

in being able to predict the density of fish population under different management 

plans. An agronomist may wish to know the yield of a population of maize plants when 

planted at a particular density, while an epidemiologist will want to know the density 

of disease-infected humans next month (Vandermeer & Goldberg, 2013). These 

examples clearly demonstrate the significance of modelling population growth. In 

view of that, the mathematical study of the population growth model has become an 

active research study among researchers in many fields, especially in the areas of 

mathematical modelling and ecology. Even though the original application of the 

logistic equation was in expressing population growth, the application of the equation, 

especially the fractional-order type, has recently broadened to many other fields, such 

as medicine, agriculture, economics, business and also physics. The research in the 

ordinary differential equation for population growth has also recently shifted to the 

fractional differential equation model. 

In the past few decades, the interest in applying the fractional-order equation 

to describe real-life phenomena has greatly developed. It has been shown that some 

fractional-order equations describe some complex physical phenomena in a better way 

(Atangana & Secer, 2013). One of the most important advantages of fractional-order 

models in comparison with the integer-order ones is that fractional integrals and 

derivatives are a powerful tool for the description of memory and hereditary properties 

of some materials (Area, Losada, & Nieto, 2016). In addition, many authors pointed 

out that fractional-order derivatives and integrals are very appropriate for application 

in various fields. The research work on this ground is undergoing a huge development 

in terms of the theoretical study of fractional calculus (Diethelm & Ford, 2002; Zhou, 

Wang, & Zhang, 2016), efficient numerical methods (Diethelm, Ford, & Freed, 2002; 

El-Sayed, El-Mesiry, & El-Saka, 2007) and also the application to physical phenomena 

(Caputo & Fabrizio, 2015; Das & Gupta, 2011). There were researchers who not only 

proposed the fractional derivative of various models but also provided the validation 

of the integer- and fractional-order models in comparison with the real data (Abobakr 

et al., 2017; Dzieli, Sarwas, & Sierociuk, 2011; Freeborn, 2013).  

The logistic equation can be considered as an important differential equation 

and has received attention from researchers around the world due to its ability to 

describe several biological and social phenomena. In predicting the population growth 
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of various types of living organisms, there are various parameters that may need to be 

considered. Hence, some researchers modified the logistic equation into population 

growth models that corresponded to specific living organisms, such as the predator-

prey model, initially proposed by Lotka (Lotka, 1925), and the logistic Allee effect 

model (Allee & Bowen, 1932). Another example of logistic equation modification was 

by Mohd Sadiq et al. (2018), where the study implemented the extended Monod model 

in the logistic equation for the prediction of microalgae growth. 

With the development in fractional calculus, the extension of the ordinary 

logistic differential equation to the fractional logistic differential equation model is 

also one of the attempts in developing appropriate population growth models (Area, 

Losada, & Nieto, 2016; El-Sayed, El-Mesiry, & El-Saka et al., 2007; Ortigueira & 

Bengochea, 2017; D’Ovidio & Loreti, 2018; West, 2015). A considerable amount of 

research works regarding the fractional-order logistic equation has been done to 

determine exact, analytical and approximation solutions. Among the research works 

are the variational iteration method by He (1999), the homotopy perturbation method 

by Sweilam et al. (2007), and the collocation method by Mohamed and Sherif (2013). 

There are also several research that successfully applied the fractional logistic equation 

to describe real-world problems, such as the study by Bas and Ozarslan (2018). 

Apart from all the successful research works in solving the fractional logistic 

equation, as far as it is known, the closed-form solution for the fractional logistic 

equation remains unsolved except for the order 1.   Also, research works have not 

been widely applying the fractional logistic equation to describe real phenomena. 

Hence, the present research aims to conduct a study that considers both aspects, which 

are the closed-form solution and the application of the fractional logistic equation. 

1.2 Problem statement 

In predicting the population growth of various types of the living organisms, there are 

different parameters may need to be considered. Hence, there were some researchers 

who modified the logistic equation to become a population growth models that 

correspond to the specific living organisms such as the model for microalgae growth 

by (Ummal Aisha Farhana et al., 2018) where the researchers implement the extended 

Monod model in the logistic equation for the prediction of the microalgae growth. 
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They modified the ordinary logistic differential equation by involving the extended 

Monod model and used it to predict the growth of Botryococcus sp. microalgae. 

However, the estimated results from the model seems to not adequately match the 

experimental data. It is undeniable that the integer-order version of the logistic 

equation has contributed much in modelling population growth. However, complex 

relationships, such as the interactions within the food webs or several behaviours that 

occur in most cases of nature dependencies, may give some errors in the population 

growth prediction by the integer-order logistic equation. These may be described better 

by the fractional-order version of the logistic equation, since some evidences show that 

fractional-order equation produces better real-data conclusions than the models that 

are structured to depend on the integer-order derivative (Du, Wang, & Hu, 2013; 

Sweilam, Nagy, & Elfahri 2019). The generalisation of the differential equation to the 

fractional-order derivative may help to reduce inaccuracies emerging from the ignored 

parameters in the modelling of real-life problems (Ul et al., 2018). The solution to the 

logistic equation where the derivative is of arbitrary order has received much attention 

from researchers in the area of fractional calculus. Several attempts were made to 

determine the exact, analytical or approximation solution. One of the most well-known 

numerical method in solving the fractional-order equation is the Adam’s-type predictor 

corrector method. In this study the Adam’s-type predictor corrector method is applied 

to solve the fractional modified logistic equation for microalgae growth. 

In solving the fractional differential equation, a closed-form solution is 

considered important, since there is a high computational cost associated in performing 

numerical differentiations, which necessitates the derivation of closed-form 

expressions for algorithm runtime. To the best of the author’s knowledge, the closed-

form solution for the fractional logistic equation remains unsolved. Hence, in this 

study, the integer-order logistic equation was extended to the fractional-order logistic 

equation in two versions, which were the fractional modified logistic equation and the 

fractional logistic equation. The numerical solution for the fractional modified logistic 

equation was obtained by applying a proper numerical method, while the closed-form 

solution for the fractional logistic equation needed to be proposed. 
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1.3 Research objectives 

This research consists of three main objectives, which are:  

1. To extend the ordinary logistic equation to the fractional logistic equation. 

2. To solve the fractional modified logistic equation for microalgae growth by using 

the Adam’s-type predictor-corrector method. 

3. To propose a closed-form solution for the fractional logistic equation by using Q-

modified Eulerian numbers.  

1.4 Research scope 

In this research, the logistic equation was extended to the fractional-order model by 

using the fractional differential equation in the sense of Caputo derivative of (0,1]. 

There were two versions of the fractional-order logistic equation involved in this 

research, addressed as the fractional modified logistic equation and the fractional 

logistic equation. For the modified logistic equation of microalgae growth, an 

investigation on the fractionalisation of the model was done by applying the 

optimisation approach to the obtained experiment data. The fractional modified 

logistic equation was then numerically solved by using the Adam’s-type predictor-

corrector method. The applied method was motivated by the research work by 

Diethelm et al. (2002). The proposed algorithm was rewritten in the form that fitted 

the fractional modified logistic equation. The obtained solutions with different orders 

of   were presented and observed.  

Whereas, for the fractional logistic equation, which was motivated by the study 

by D’Ovidio and Loreti (2018), a closed-form solution for the equation was proposed. 

The proposed solution was obtained by applying Q -modified Eulerian numbers, 

which is believed to be a more generalised solution that achieves numerical 

convergence. The convergency of the proposed solution by the Q -modified Eulerian 

numbers was also provided. In this research, Maple 18 was used as a computational 

platform for both types of equations.  
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1.5 Significance of research 

Previously, the integer-order logistic equation was used to describe population growth 

and other relevant physical problems. Recently, along with the advancements in 

calculus, it has been seen that some fractional-order equations explain certain complex 

physical phenomena in a better way. The development of the fractional-order equation 

provides opportunities to improve the application of the logistic equation, since the 

logistic equation serves as a method for forecasting population and studying growth 

patterns to aid in the decision making and future planning. 

 This research incorporated the application of the fractional modified logistic 

equation in predicting microalgae growth. In addition, a new approach for solving the 

logistic fractional equation was proposed. The approach provided a closed-form 

solution for the fractional logistic equation as the alternative for the unsolved exact 

solution for the fractional logistic equation. The closed-form solution is also important, 

as numerical computations may involve a high computational cost. Based on the 

conducted numerical experiment, the method was considered to be highly efficient and 

accurate, which would enable the method to be implemented in the future.  

1.6 Framework of research 

This research is organised into six chapters. The first chapter begins with an 

introduction to the research background. It then describes the problem statement, 

research objectives, research scope, significance of research and framework of 

research. 

 Chapter 2 discusses the literature on logistic equations, fractional calculus, the 

mathematical model in population dynamic and the numerical method in solving the 

mathematical model of fractional logistic equation . Chapter 2 also discusses the main 

research lines on logistic equations and fractional calculus, as well as describing both 

topics. 

  Chapter 3 describes the research methodology used to solve the fractional 

logistic equations involved in this research. It outlines the numerical approach used in 

solving each version of the fractional-order logistic equation. 
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 Chapter 4 presents the results obtained by applying the fractional modified 

logistic equation to the microalgae growth’s experiment data. The results obtained 

from different order of   were presented and observed. 

 Chapter 5 reports the results obtained from solving the fractional logistic 

equation by the proposed Q -modified Eulerian numbers. The connection of the 

proposed Eulerian numbers was described. This chapter also presents the convergency 

analysis results of the proposed solution. 

 Chapter 6 concludes the research by discussing the research results and 

provides recommendations to further the research in fractional calculus area 

especially. The framework of this research is summarised in Figure 1.1. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Fractional calculus  

The history of fractional calculus began when French mathematician L’Hopital wrote 

a letter to Leibniz, a fellow mathematician, on September 30th, 1695 (Podlubny, 

1999). In the letter, Leibniz was asked about a particular notation that he had used in 

his publications for the n -th derivative of the linear function. L’Hopital queried 

Leibniz on what would the result of the function be if 1 2n  . From this exchange, 

fractional calculus was born. Fractional calculus is the generalisation of the classical 

order calculus to the non-integer-order calculus.  

Just like the classical order calculus, the fractional calculus also consists of 

integrations and derivatives. Based on the meaning of the fractional calculus, the 

fractional integrals and derivatives refer to the generalisation of the classical order of 

one integral and derivatives to the non-integer order. Different from the classical order 

of one integral and derivatives, the fractional-order integrals and derivatives have their 

definition operators. Commonly, the fractional integral formulation can be directly 

derived from the classical expression of the repeated integration of a function, where 

this approach is called the Riemann-Liouville approach. This approach has contributed 

much to the theory of fractional derivatives. The derivation of the Riemann-Liouville 

fractional integral’s definition will be presented later in this research. There are many 

types of operators that can be used to describe fractional derivatives but the most 

commonly used operators are the Riemann-Liouville and Caputo fractional derivative 

operators. It can be said that fractional calculus is not really a new topic of interest in 

mathematics, since the theory of fractional-order derivatives was developed more than 

three centuries ago. However, the works in solving fractional-order equations and also 
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their applications in describing real phenomena are still undergoing massive 

development. 

In deriving the fractional-order derivative, the idea can be seen in a simple 

example from the standard derivative of the monomial. The notation begins with: 

( ) ky f x x   
1( ) kf x kx    

2( ) ( 1) kf x k k x     

 

. 

  . 

. 

Hence, it is concluded that 

 ( ) ( )!
( ) .

( )!
n k nk

f x x
k n




  (2.1) 

However, this function is only applicable to the classical integer order. Hence, 

in generalising the function to be applicable for all real numbers, a special function 

called the gamma function is needed. The description of the gamma function is 

presented in the following subsection. In the past few decades, the interest in applying 

the fractional-order equation to describe some real-life phenomena was greatly 

developed. It was shown that some fractional-order equations describe some complex 

physical phenomena in a better way (Atangana & Secer, 2013). One of the most 

important advantages of fractional-order models in comparison with the integer-order 

ones is that fractional integrals and derivatives are a powerful tool for the description 

of memory and hereditary properties of some materials (Area, Losada, & Nieto, 2016). 

Furthermore, many authors pointed out that fractional-order derivatives and integrals 

are very appropriate for applications in various fields. One of the applications of 

fractional calculus was to solve the problem regarding the ultrasonic wave propagation 

in the human cancellous bone for early clinical detection of the osteoporosis diseases 

(Sebaa et al., 2006). Fractional calculus was also applied to describe the viscous 

interactions between fluid and a solid structure. The other application of fractional 

calculus was in modelling the cardiac tissue electrode interface (Magin & Ovadia, 

3( ) ( 1)( 2) kf x k k k x    
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2008). The application of fractional calculus in modelling the cardiac tissue electrode 

interface managed to provide an improved description of the observed bioelectrode 

behaviour. Apart from that, fractional calculus was also applied in the differentiation 

of edge detection, where it was involved in the image processing procedure (Mathieu 

et al., 2003). The common integer-order differentiation operators of edge detection 

were changed to the fractional-order type. The researchers demonstrated that 

introducing an edge detector based on fractional differentiation improved image 

processing.  

Due to the greatly developing interests in the study of fractional-order equation, 

a considerable amount of research regarding the exact and numerical solutions of 

various kinds of fractional-order equations have been proposed. One of the equations 

is the logistic equation. The logistic equation was originally introduced by Pierre 

Francois Verhulst in 1838, who studied this equation in relation to population growth 

(Cushing, 1998). The fractional Schrödinger equation, which was discovered by 

Laskin (2000), is said to be a fundamental equation in fractional quantum mechanics. 

Other examples of the fractional-order equation are the fractional Riccati differential 

equation (Odibat & Momani, 2006), fractional-order Rössler equation (Li & Chen, 

2004a) and space fractional Fokker Planck equation (Liu, Anh, & Turner, 2004). 

2.1.1 Gamma function 

Essentially, the gamma function is tied to the fractional calculus. According to 

Podlubny (1999), the gamma function generalises the factorial function and also is 

allowed to be non-integers and even complex values. The description of the gamma 

function is given by 

 
1 1

0

( ) .
z x z x

z dx dxx e x e


        (2.2) 

By applying the integration by parts, the relationship between the gamma 

functions (2.3), (2.4) and (2.5) can be obtained 

 ( 1) ( )n n n      (2.3) 

 ( ) ( 1)!,n n      (2.4) 
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