DYNAMIC TUNABILITY ENHANCEMENT OF REFLECTARRAY ANTENNA USING NON-HOMOGENEOUS DIELECTRIC MATERIALS

MUHAMMAD HASHIM DAHRI

A thesis submitted in fulfillment of the requirement for the award of the Degree of Master of Electrical Engineering

Faculty of Electrical and Electronics Engineering
Universiti Tun Hussein Onn Malaysia

AUGUST 2014
The conventional antenna systems require the mechanical movement of beam scanning antenna to meet the demands of emerging field of communications. To overcome the flaw of the mechanical movement an electronically tunable reflectarray antenna based on non-homogeneous properties of substrate materials has been introduced. This research study provides a thorough investigation on the tunability performance of reflectarrays designed in X-band frequency range. The objective of this work is to demonstrate the functionality of an active reflectarray antenna with optimized loss performance and enhanced dynamic phase range. Different types of reflectarray resonant elements such as rectangular, dipole and ring are discussed here with different design configurations based on their ability of frequency tunability and dynamic phase range. Commercially available computer models of CST Microwave Studio and Ansoft HFSS have been used to investigate the phase agility characteristics of reflectarray resonant elements printed above various non-homogeneous materials \((0.17 \leq \Delta \varepsilon \leq 0.45)\). The analytical approach has been used to develop equations for progressive phase distribution and frequency tunability of individual reflectarray element which is validated by CST simulations. The results obtained from theoretical investigations have been further validated by experimental implementations. An optimized configuration of non-homogeneous Liquid Crystal (LC) material with \(0.5\) mm thickness below the resonant element has been designed and tested by waveguide scattering parameter measurements. An external bias voltage of \(0\)V to \(20\)V has been applied across the LC substrate of individual resonant elements in order to obtain the electronic tunability. The three resonant elements namely rectangular, dipole and ring offer a measured dynamic phase range of \(95^\circ\), \(153^\circ\) and \(197^\circ\) respectively at \(10\) GHz using the proposed design configuration. Moreover, the ring element attains a \(107\%\) higher dynamic tunability with a \(56\%\) reduction in the reflective area as compared to rectangular element.
TABLE OF CONTENTS

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES xi

LIST OF FIGURES xiv

LIST OF APPENDICES xx

LIST OF PUBLICATIONS xxi

LIST OF AWARDS xxiv

CHAPTER 1 INTRODUCTION

1.1 Problem statement 4
1.2 Objectives of the study 5
1.3 Scopes of the study 5
1.4 Introduction to reflectarray antenna 6
 1.4.1 Advantages and disadvantages of reflectarrays 8
 1.4.2 Potential applications of reflectarray antenna 10
1.5 Thesis statement 11

CHAPTER 2 THEORETICAL OVERVIEW

2.1 History and background of reflectarray antenna 13
2.2 Design and analysis of microstrip reflectarray antenna 15
2.2.1 Selection of the substrate material 16
2.2.2 Selection of the patch element 17
2.2.3 Reflection loss and bandwidth of reflectarray antenna 17
2.2.4 Reflection phase and FoM 21

2.3 Performance enhancement of reflectarray antenna using different optimization techniques 22
2.3.1 Optimization of loss and bandwidth performance by material properties 22
2.3.2 Stacked layer configuration for bandwidth improvement 27
2.3.3 Reflectarray patch elements for phase range enhancement 29

2.4 Dielectric properties of substrate materials 31
2.4.1 Dielectric linear, isotropic or homogeneous materials 31
2.4.2 Dielectric non-linear, anisotropic or non-homogeneous materials 32
2.4.3 Comparison between ferroelectrics and liquid crystals 35

2.5 Liquid crystal material characteristics 36
2.5.1 Types of LCs 36
2.5.2 Effect of varying electric charge on LC 38
2.5.3 Effect of varying temperature on LC 39
2.5.4 Effect of varying frequency on LC 40

2.6 Applications of dielectric non-linear materials 40
2.6.1 Phase shifters based on dielectric non-linear materials 41
2.6.2 Millimeter wave beam former based on LC 43
2.6.3 Microwave absorbers 44
2.6.4 Tunable reflectarray antennas 45

2.7 Conclusion 48
CHAPTER 3 MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Background literature studies</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Simulations based on CST MWS and Ansoft HFSS</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Numerical Analysis of tunable reflectarray antenna</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Fabrication of LC based reflectarray resonant elements</td>
<td>52</td>
</tr>
<tr>
<td>3.5</td>
<td>Measurements of active reflectarray resonant elements</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusion</td>
<td>53</td>
</tr>
</tbody>
</table>

CHAPTER 4 DESIGN ANALYSIS OF TUNABLE REFLECTARRAY ANTENNA

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Verification of results based on commercially available simulation tools</td>
<td>54</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Design of a square patch reflectarray element</td>
<td>55</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Design of a phase shifter element based on LC material</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Investigation of a rectangular patch reflectarray antenna based on homogeneous materials</td>
<td>66</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Reflection loss and static phase range performance</td>
<td>67</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Electrical behavior at resonant frequency</td>
<td>70</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Effect of dielectric properties on reflectarray performance</td>
<td>72</td>
</tr>
<tr>
<td>4.3</td>
<td>Analysis of a rectangular patch reflectarray antenna based on non-homogeneous materials</td>
<td>73</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Reflection loss performance</td>
<td>73</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Dynamic phase range and frequency tunability</td>
<td>75</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Electrical behavior at resonant frequency</td>
<td>77</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Effect of dielectric anisotropy on reflectarrays</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>Design of a rectangular patch reflectarray antenna based on a ferroelectric material</td>
<td>81</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Reflection loss and frequency tunability</td>
<td>81</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Reflection phase analysis</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Analysis of different reflectarray resonant elements based on various non-homogeneous LC materials</td>
<td>83</td>
</tr>
</tbody>
</table>
4.5.1 Reflection loss and frequency tunability 85
4.5.2 Dynamic phase range 87
4.6 Tunable microwave absorber based on LC material 89
4.6.1 Absorption rate and band-pass frequency 91
4.6.2 Phase agility 92
4.7 Performance improvement of tunable reflectarray antenna with various LC based design configurations 93
4.7.1 Design 1: LC material partially filled below the resonant element in a 1 mm thick substrate 94
4.7.2 Design 2: LC material fully filled in a 1 mm thick substrate 96
4.7.3 Design 3: LC material fully filled in a 0.5 mm thick substrate 99
4.7.4 Design 4: LC material partially filled below the resonant element in a 0.5 mm thick substrate 103
4.8 Performance analysis of tunable reflectarray antenna with variable LC layer thickness 106
4.8.1 Design based on Aluminium supporting structure 106
4.8.2 Design based on Rogers RT/d 5880 supporting structure 112
4.9 Numerical analysis 117
4.9.1 Relationship between surface current density and reflecting area of the resonant patch element 118
4.9.2 Relationship between guided wavelength and area of the resonant patch element 120
4.9.3 Prediction of dynamic phase range 122
4.9.4 Prediction of frequency tunability 124
4.10 Conclusion 125

CHAPTER 5 FABRICATION AND SCATTERING PARAMETER MEASUREMENTS OF REFLECTARRAY RESONANT ELEMENT
5.1 Waveguide simulator 127
5.2 Fabrication of different reflectarray antenna unit cells 129
5.3 Fabrication of LC based reflectarray antenna unit cells 131
 5.3.1 Design and fabrication of an encapsulator for LC based reflectarray unit cells 133
 5.3.2 LC filling technique 134
5.4 Measurement setup 134
5.5 Measurements and comparison of passive reflectarray antenna elements printed on Rogers RT/d 5880 substrate 135
 5.5.1 Reflection loss and surface currents 136
 5.5.2 Static phase range and FoM 137
5.6 Measurements and comparison of passive reflectarray antenna elements based on K-15 LC material 139
 5.6.1 Properties of K-15 nematic LC 139
 5.6.2 Comparison between simulated and measured results 141
5.7 Measurements of active reflectarray elements based on K-15 LC substrate 144
 5.7.1 Measured reflection loss and frequency tunability 145
 5.7.2 Measured dynamic phase range performance 147
 5.7.3 Tuning time and tunability 150
5.8 Conclusion 151

CHAPTER 6 CONCLUSION AND FUTURE RECOMMENDATIONS
6.1 Conclusions 153
6.2 Future recommendations 155

REFERENCES 157

APPENDIX 162
LIST OF TABLES

Table 1.1: Advantages and disadvantages of reflectarray antenna 9
Table 2.1: Different frequency bands and their applications 14
Table 2.2: Selected dielectric linear materials with their dielectric properties 32
Table 2.3: Selected dielectric non-linear materials with their dielectric anisotropies 33
Table 2.4: Comparison between required bias voltage between LC and Ferroelectric materials 35
Table 4.1: Comparison between reflection loss performance at different tangent loss values 58
Table 4.2: Comparison between reflection magnitudes at different substrate thicknesses 60
Table 4.3: Comparison between resonant frequencies at different substrate thicknesses 60
Table 4.4: Comparison between static phase range at different substrate thicknesses 62
Table 4.5: Reflection loss and bandwidth of different substrate materials 68
Table 4.6: Static phase range and FoM of different substrate materials 69
Table 4.7: Electric field intensity, current density and reflection loss of different homogeneous materials at 10 GHz 71
Table 4.8: Reflection loss of some non-homogeneous materials at 10 GHz 74
Table 4.9: Dynamic phase range and frequency tunability of some non-homogeneous materials 77
Table 4.10: Values of electric field intensity and flux density with dynamic phase range for non-homogeneous materials 79
Table 4.11: Reflection loss performance of reflectarray resonant elements 86
Table 4.12: Frequency tunability of different reflectarray resonant elements 87
Table 4.13: Surface currents and dynamic phase range of rectangular, dipole and ring elements 89
Table 4.14: Performance analysis of different resonant elements of tunable microwave absorber 91
Table 4.15: Comparison between CST and HFSS results of proposed design configuration 94
Table 4.16: Comparison between CST and HFSS results of proposed Design 2 98
Table 4.17: Comparison between CST and HFSS results of proposed Design 3 101
Table 4.18: Comparison between CST and HFSS results of proposed Design 4 104
Table 4.19: Comparison of E-field and surface currents with reflection loss performance of three different elements at variable LC thickness 110
Table 4.20: Dynamic phase range and frequency tunability performance of three different elements based on variable thickness of LC layer 111
Table 4.21: E-fields and reflection loss performance of different resonant patch elements based on variable LC substrate thickness 115
Table 4.22: Dynamic phase range and frequency tunability performance of three different elements based on variable thickness of LC layer 117
Table 4.23: Simulated and formulated dynamic phase ranges of rectangular, dipole and ring elements 123
Table 4.24: Simulated and formulated tunable frequency ranges of rectangular, dipole and ring elements 125
Table 5.1: Comparison between designed and fabricated dimensions of reflectarray resonant elements 130
Table 5.2: Reflection loss and surface currents of different resonant elements printed on Rogers RT/d 5880 137
Table 5.3: Reflection phase and FoM values of different resonant elements printed on Rogers RT/d 5880 138
Table 5.4: Reflection loss and resonant frequency of different resonant elements based on K-15 LC material 142
Table 5.5: Static phase range and FoM of different resonant elements based on K-15 LC material 144
Table 5.6: Comparison between simulated and measured results of different active reflectarray elements 147
Table 5.7: Comparison between simulated and measured dynamic phase range of different active reflectarray elements 150
Table 5.8: Tuning time and FoM of different active reflectarray resonant elements 151
LIST OF FIGURES

Figure 1.1: A parabolic reflector antenna with centre feed point 2
Figure 1.2: Operation of phased arrays 3
Figure 1.3: Operation of (a) parabolic reflector (b) reflectarray antenna 6
Figure 1.4: A 2 X 2 rectangular patch reflectarray antenna with proper element spacing 8
Figure 1.5: Applications of reflectarrays 10
Figure 2.1: A reflectarray element placed in an infinite array approach 15
Figure 2.2: Incident and reflected E-fields of a reflectarray element 16
Figure 2.3: Different types of reflectarray patch elements 17
Figure 2.4: (a) Surface current on the patch element (b) E-fields inside the substrate material 18
Figure 2.5: Reflection loss and bandwidth of reflectarray antenna 20
Figure 2.6: Reflection phase of reflectarray antenna 21
Figure 2.7: Paper results of different reflection magnitudes at various loss tangent values (Rajagopalan & Rahmat-Samii 2010) 24
Figure 2.8: Paper results of different reflection magnitudes at different substrate thicknesses (Rajagopalan & Rahmat-Samii 2010) 25
Figure 2.9: Paper results of different reflection phase curves at different substrate thicknesses (Rajagopalan & Rahmat-Samii 2010) 26
Figure 2.10: Multiple bounces of energy in different substrate thicknesses of reflectarray antenna 26
Figure 2.11: Unit cell for two layer reflectarray antenna (Encinar & Barba 2010) 28
Figure 2.12: Reflectarray antenna with two separate feeds to transmit and receive at different frequencies (Encinar & Barba 2010)

Figure 2.13: Multi-band reflectarray antenna with top and bottom stacked layer configuration (Huang et al. 2007)

Figure 2.14: The concentric split ring square reflectarray element (Yusop et al. 2009)

Figure 2.15: Alignment of molecules of dielectric anisotropic material with respect to an external electric field

Figure 2.16: Effect of temperature on three physical states of K-15 Nematic liquid crystal

Figure 2.17: The rod like molecular arrangement of (a) Nematic phase LC (b) Smectic phase LC (c) Cholesteric phase LC

Figure 2.18: Dipole moment P inside the dielectric non-linear material without and with an external electric charge

Figure 2.19: Side view of a phase shifter based on LC material (Moessinger et al. 2010)

Figure 2.20: Phase shift of phase shifter based on LC material (Moessinger et al. 2010)

Figure 2.21: Phase shift of BST phase shifter at different bias voltages (Velu et al. 2007)

Figure 2.22: Structure of millimetre wave beam former using LC (Kamoda et al. 2004)

Figure 2.23: Salisbury screen microwave absorber, without and with a tunable voltage (Seman et al. 2009)

Figure 2.24: Design configuration of unit cell rectangular patch tunable reflectarray antenna (Ismail et al. 2007)

Figure 2.25: Three finger design of cascaded dipole elements (Bildik et al. 2011)

Figure 3.1: Summary of the process of research work

Figure 3.2: Boundary conditions for an infinite reflectarray element in (a) CST MWS and (b) Ansoft HFSS

Figure 4.1: Design layout of square patch reflectarray element
Figure 4.2: Reflection loss curves based on CST and HFSS simulations for different loss tangent values 57
Figure 4.3: Reflection magnitude curves at different substrate thicknesses (t) 59
Figure 4.4: Reflection phase curves at different substrate thicknesses (t) 61
Figure 4.5: Built model of phase shifter element (a) Front view (b) Bottom view (Moessinger et al. 2010) 64
Figure 4.6: S11 and S21 parameters of phase shifter element 65
Figure 4.7: Phase shift analysis of phase shifter element 66
Figure 4.8: Reflection loss curves of some dielectric homogenous materials 67
Figure 4.9: Reflection phase curves of some dielectric homogenous materials 69
Figure 4.10: Electric field intensity and reflection loss with respect to frequency 70
Figure 4.11: Current density in logarithmic scale with respect to frequency 71
Figure 4.12: Current density and electric intensity vs reflection loss 72
Figure 4.13: Effect of dielectric constant over electric flux density and static phase range 72
Figure 4.14: Reflection loss curves of some non-homogeneous materials 74
Figure 4.15: Dynamic phase range of some non-homogeneous materials at 10 GHz 76
Figure 4.16: Dynamic phase and frequency tunability vs dielectric anisotropy of non-homogeneous materials 77
Figure 4.17: Current density vs frequency for different non-homogeneous materials 78
Figure 4.18: Electric field intensity and electric flux density vs dielectric anisotropy 80
Figure 4.19: Electric flux density range vs dynamic phase range of non-homogeneous materials 80
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.20</td>
<td>Reflection loss and frequency tunability of rectangular patch reflectarray unit cell based on BST substrate</td>
</tr>
<tr>
<td>4.21</td>
<td>Distorted reflection phase curves of rectangular patch reflectarray unit cell based on BST substrate</td>
</tr>
<tr>
<td>4.22</td>
<td>Design configuration of LC based reflectarray with different resonant elements</td>
</tr>
<tr>
<td>4.23</td>
<td>Reflection loss performance of different resonant elements printed on an LC material</td>
</tr>
<tr>
<td>4.24</td>
<td>Current distribution on the surface of resonant elements with reflecting areas printed on LC-B1 material</td>
</tr>
<tr>
<td>4.25</td>
<td>Dynamic phase ranges of different reflectarray resonant elements</td>
</tr>
<tr>
<td>4.26</td>
<td>Design configuration of proposed tunable microwave absorber</td>
</tr>
<tr>
<td>4.27</td>
<td>Reflection loss curves with band-pass and band-stop frequencies of microwave absorber</td>
</tr>
<tr>
<td>4.28</td>
<td>Reflection phase curves of tunable microwave absorber</td>
</tr>
<tr>
<td>4.29</td>
<td>Built model of tunable reflectarray antenna</td>
</tr>
<tr>
<td>4.30</td>
<td>(a) Reflection loss and (b) reflection phase curves, for different reflectarray elements of Design 1</td>
</tr>
<tr>
<td>4.31</td>
<td>(a) Surface current density and (b) E-field lines in LC substrate, for different reflectarray elements of Design 1</td>
</tr>
<tr>
<td>4.32</td>
<td>Design configuration of tunable reflectarray antenna</td>
</tr>
<tr>
<td>4.33</td>
<td>(a) Reflection loss and (b) reflection phase curves, for different reflectarray elements of Design 2</td>
</tr>
<tr>
<td>4.34</td>
<td>(a) Surface current density and (b) E-field lines in LC substrate, for different reflectarray elements of Design 2</td>
</tr>
<tr>
<td>4.35</td>
<td>Structural model of tunable reflectarray antenna</td>
</tr>
<tr>
<td>4.36</td>
<td>(a) Reflection loss and (b) reflection phase curves, for different reflectarray elements of Design 3</td>
</tr>
<tr>
<td>4.37</td>
<td>(a) Surface current density and (b) E-field lines in LC substrate, for different reflectarray elements of Design 3</td>
</tr>
<tr>
<td>4.38</td>
<td>Proposed design configuration of tunable reflectarray antenna</td>
</tr>
</tbody>
</table>
Figure 4.39: (a) Reflection loss and (b) reflection phase curves, for different reflectarray elements of Design 4

Figure 4.40: (a) Surface current density and (b) E-field lines in LC substrate, for different reflectarray elements of Design 4

Figure 4.41: LC based two patch unit cell element with Aluminium supporting structure

Figure 4.42: Effect of LC thickness on E-fields and surface currents of three different elements

Figure 4.43: Concentration of surface currents on Aluminium material used for rectangular LC cavity

Figure 4.44: Reflection loss versus substrate thickness for three different elements

Figure 4.45: LC based two patch unit cell element with Rogers supporting structure

Figure 4.46: Relationship between E-fields, surface currents and substrate thickness for different reflectarray elements

Figure 4.47: Concentration of surface currents on Rogers material used for rectangular LC cavity

Figure 4.48: Relationship between reflection loss and substrate thickness for different reflectarray elements

Figure 4.49: Relationship between frequency tunability and substrate thickness for different reflectarray elements

Figure 4.50: Relationship between dynamic phase range and substrate thickness for different reflectarray elements

Figure 4.51: Vector representation of surface currents on reflectarray patch element, in the presence of incident electric field

Figure 5.1: X-band waveguide simulator for scattering parameter measurements

Figure 5.2: Design layout of a two patch reflectarray unit cell element (a) front view (b) side view

Figure 5.3: Fabricated reflectarray unit cells printed on Rogers RT/d 5880

Figure 5.4: Design of the two patch unit cell active reflectarray element (a) side view (b) substrate view
Figure 5.6: Arrangement of fabricated unit cell along with encapsulator from top to bottom (1-4)

Figure 5.7: Process for filling of LC material inside the fabricated reflectarray unit cell (a) model of cavity based substrate (b) the LC filling process (c) the fully filled LC cavity

Figure 5.8: Measurement set-up for active reflectarray unit cells

Figure 5.9: Reflection loss performance of different reflectarray resonant elements based on a linear material

Figure 5.10: Reflection phase performance of passive reflectarray resonant elements based on linear material

Figure 5.11: Comparison between simulated and measured reflection loss curves of rectangular element based on K-15 nematic LC

Figure 5.12: Simulated and measured reflection loss curves of three different reflectarray elements based on LC material

Figure 5.13: Simulated and measured reflection phase curves of three different reflectarray elements based on LC material

Figure 5.14: Simulated and measured reflection loss curves of active reflectarray rectangular element

Figure 5.15: Simulated and measured reflection loss curves of active reflectarray dipole element

Figure 5.16: Simulated and measured reflection loss curves of active reflectarray ring element

Figure 5.17: Simulated and measured reflection phase curves of active reflectarray rectangular element

Figure 5.18: Simulated and measured reflection phase curves of active reflectarray dipole element

Figure 5.19: Simulated and measured reflection phase curves of active reflectarray ring element
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Flow Chart of the Project</td>
<td>162</td>
</tr>
<tr>
<td>B</td>
<td>Rogers 5880 and Rogers 5870 Data Sheet</td>
<td>163</td>
</tr>
<tr>
<td>C</td>
<td>Graphical comparison between CST and HFSS simulations based on different proposed configurations</td>
<td>165</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

Journals:

(v) M. Y. Ismail and M. Hashim Dahri, “Microwave Absorption Analysis of Passive and Active Reflectarray Resonant Elements”, accepted for publication in International Journal of Electrical Engineering and Informatics.
Proceedings:

(i) M. Y. Ismail and M. Hashim Dahri, “Tunable Reflectarray Resonant Elements based on Non-linear Liquid Crystals”, in International Conference on Material Science and Technology (ICMST 13), Hong Kong, 2013.

(viii) M.Y. Ismail, M. Inam and M. Hashim Dahri, “Reconfigurable Reflectarray

LIST OF AWARDS

(iii) Consolation Prize, “Non-Resonant Microwave Absorber for Mobile Radio Environment” Research and Innovation Compete, November 2011, UTHM.

CHAPTER 1

INTRODUCTION

Throughout the time, one thing that has distinguished humans from other creatures is their ability to exchange ideas and other information. That is, humans can communicate and share the information between each other. In ancient times, fire was first used as a communication tool by Chinese. Ancient Egyptians and Romans were able to use some sound making instruments to convey their messages at a distance. It is this capability that has played a big part in the development of human civilization. In fact, as our civilization continues to grow, the advancement in our communication capacity is required. The one of the first application of the new field of electricity was to extend our communication range. This was accomplished through the use of wires and telegraphy. Messages were sent by turning electrical currents on and off in accordance with a telegraph code. This system gradually evolved into the telephone system where the electrical currents are varied at audio rate. Thus the spoken word can be conveyed between two distant points. However, the telephone system still required wires, which limited its capabilities. Thus, the next development was to move towards “wireless” communications in the form of radio waves. This greatly extended the communication range, which was useful to communicate with ships at sea and remote areas of the world. Wireless or radio communications represented a significant advancement. The signals were brought to send into the free space without using any wired media with the help of a device called “Antenna”.

Antenna is a device which converts electrical signals into the radio waves and make them capable to propagate into the free space (Balanis 2005). The idea of an antenna was first introduced by Heinrich Hertz in 1886, during his work to prove the existence of electromagnetic field which was first predicted by James Clerk Maxwell in 1873 (Pozar 2005). But it was Guglielmo Marconi who was able to send
microwave signals across Atlantic by an antenna consisting of 50 vertical wires. Marconi’s inception led scientists to enter into the modern antenna technology during World War II. Some new elements such as waveguides, horns, reflectors along with microwave sources like Klystron and Magnetron, were invented in this period (Balanis 2005). The invention of parabolic reflector starts a new era of communication for radar, remote sensing and deep space communication.

According to the geometry of optics when a beam of parallel rays is incident upon a parabola, the reflection will converge at a spot which is called focal point. In the same way if a source is placed at the focal point, the reflected rays will appear as a parallel beam (planar wavefront) in front of the reflector, as shown in Figure 1.1. This is a form of reciprocity principle which demonstrates the functionality of a parabolic antenna. Parabolic antennas are widely used as large aperture ground based antennas with narrow beamwidth and high directivity. A pyramidal or a conical horn is widely used as a feed of parabolic reflector. Most common applications of parabolic reflector are in radio astronomy, satellite communications and radar systems (Skolnik 2008). The beam scanning capability is required in satellite and radar systems for tracking the path of the satellite or target during communications. In this regard mechanical motors were widely used to rotate a parabolic reflector up to 360° (Zhang et al. 2011; Xie et al. 2010). The bulky structure of parabolic reflector with mechanically rotating parts led a new technology called phased arrays, come into existence with much faster scanning rates by electronic beam steering (Fowler 1998).

![Figure 1.1: A parabolic reflector antenna with centre feed point](image)

Phased array antennas are formed by the combination of individual radiated elements such as slots, dipoles and patches. The antenna characteristics are defined
by the geometric position of the element, amplitude and phase of the excitation. Figure 1.2 shows the operation of phased arrays where RF input is applied to different phase shifter elements and amplifiers are used to boost up the outgoing signal for desired purpose. As shown in Figure 1.2, a large number of phase shifters are used to control the individual phase response of each element. Due to electronic beam steering it can move its beam to a new location within the fraction of time without using any mechanically rotating part (Skolnik 2008). Phased arrays are commonly used in radar systems to track multiple targets at a time. The beamwidth and operating frequency of phased arrays changed, depending on the direction of excitation of the signal. The direction of the excited wave depends on the phase and amplitude of the individual element used in phased array antenna. The individual elements are combined to form large aperture phased arrays for high gain applications. Apart from the advantages of phased arrays they are very expensive with complex design configurations. Furthermore a very large system is required to electronically control the amplitude and phase of all individual elements.

At the high microwave frequencies the parabolic reflector is also difficult to design due to its curved surface and large size. Therefore a planar reflectarray antenna was introduced by (Berry et al. 1963) to overcome the flaws of conventionally used antenna systems. Reflectarray antenna has been acknowledged as a potential alternative to the traditionally used high gain antennas (parabolic reflectors and phased arrays). The printed reflectarray combines some of the best features of microstrip array antenna and the traditional parabolic reflector antenna. It
can be designed to have a very high gain with relatively good efficiency, as well as to have its main beam tilted/scanned to large angles from its broadside direction (Huang et al. 2007). Such an antenna would be an attractive option for mobile communications, satellite communication and terrestrial systems (Huang & Encinar 2007).

This chapter provides the introduction about the research work that has been carried out throughout this thesis. Problem statement is defined based on some conventionally used systems to justify the purpose of this research work. Then the objectives of this work are discussed to solve the stated problems. Scope of the research provides a thoroughly described way of the work and steps that have been taken into account to achieve the stated objectives. Flow of this thesis report is stated at the end of the chapter which includes the brief introduction about each chapter of the thesis.

1.1 Problem statement

The limited bandwidth and high loss performance of reflectarray antenna are considered as its main performance limitations. The narrow bandwidth is generally due to the differential spatial phase delays, which are occurred due to the limited phase range of individual reflectarray element. The high loss performance of reflectarray antenna is associated with dissipation of incident microwave signals in the dielectric substrate region. Moreover, the conventional parabolic reflectors require mechanical movement of entire antenna structure for the beam scanning applications. In radar and satellite communication systems, the electric motors are used to turn the parabolic reflectors up to 360° of rotation for the detection of desired moving objects. Furthermore in phased array antennas the phase of individual element is electronically controlled by a number of complex phase shifter devices to produce a directive beam pattern. Therefore an electronically controlled reflectarray antenna based on non-homogeneous dielectric materials is proposed here with optimized loss performance to overcome the flaws of conventionally used antenna systems. The dielectric non-linear properties of non-homogeneous materials are used to control the phase and frequency of reflectarray antenna electronically. The effect of non-linear material properties on frequency tunability and dynamic phase range of
reflectarray antenna is investigated in X-band frequency range. Different design configurations for various reflectarray antenna elements are analyzed by numerical equations and computer simulations. Formulated and simulated results are then experimentally validated by scattering parameter measurements based on waveguide simulator technique.

1.2 Objectives of the study

This research work focuses on the tunability performance of reflectarray antenna based on non-linear material properties. The main objectives of this research work are defined here based on the problems that have been stated in the previous section. The objectives are;

(i) To investigate the feasibility of realizing an active reconfigurable reflectarray antenna system electronically with enhanced dynamic tunability.

(ii) To construct an analytical formulation for dynamic phase distribution of tunable reflectarray antenna.

(iii) To demonstrate the functionality of an active reflectarray antenna for beam scanning application.

1.3 Scopes of the study

The performance investigation of active reflectarray antenna elements printed on non-homogeneous dielectric materials is thoroughly discussed in this research work. The main scopes of this work are as follows;

(i) The non-homogeneous dielectric materials and their properties are utilized for the designing of an electronically tunable reflectarray antenna.

(ii) Different reflectarray resonant elements such as rectangular, dipole and ring printed on non-homogeneous substrates are designed to investigate their performance for different possible applications.

(iii) Computer Simulation Technology (CST) Microwave Studio2012 and Ansoft HFSS13 software are used to model infinite reflectarray unit cells.
(iv) The analytical technique has been introduced to generate a formulation for progressive phase distribution and frequency tunability of individual reflectarray element based on non-linear material properties.

(v) At the final stage reflectarray antenna elements are fabricated and scattering parameters measurements are carried out by Vector Network Analyzer (VNA) using waveguide simulator technique.

1.4 Introduction to reflectarray antenna

Reflectarray antenna consists of printed reflecting elements on a grounded flat dielectric surface, illuminated by a feed antenna (Huang & Encinar 2007). The overall operation of the reflectarray antenna is similar to the curved surface parabolic reflector. Figure 1.3 compares the function of reflectarray antenna with parabolic reflector, where offset feed horns are used to illuminate the antenna systems. As shown in Figure 1.3, the individual elements of the array are designed to scatter the incident field with a proper phase required to form a planar phase surface in front of the aperture (Pozar et al. 1997).

Figure 1.3: Operation of (a) parabolic reflector (b) reflectarray antenna

The phases of elements are associated with different path lengths covered by the incident signal. One of the key features of microstrip reflectarray implementation
is how the individual elements are made to scatter with the desired phases. There are two most commonly used techniques to achieve the planar wave front. One is to use identical patches with variable phase delay lines to compensate for the phase delays over the different paths of incident signal (Huang & Encinar 2007). Another technique is to use variable size patches to have different scattering impedances and different phases to compensate the different path delays (Pozar & Metzler 1993). A detailed discussion based on the selection of patch elements for optimized reflectarray antenna performance can be found in Chapter 2.

Since the microstrip reflectarray does not require any power divider therefore its efficiency in a large array system is much higher than a conventional array with the same aperture size. One possible drawback of reflectarray is that, in addition to the reradiated fields from the patches, there will also be scattered field from the patches, reflected field from the ground plane (especially away from the resonant frequency of the patch), scattered field from the phase delay lines, and diffracted field from the edge of the reflectarray. These backscattered fields may increase the side lobe level and possibly distort the main beam shape of antenna. But this backscattered energy is generally small relative to the desired main beam. In other words, the microstrip reflectarray can be an efficient antenna system if it has a large number of array elements (500 or more) (Huang 1995).

The patches of reflectarray that are located in front of main feed have both incident and reflected waves in the same direction. Whereas the patches that are located close to the edges of reflectarray have reflected wave directed away from the main beam. Therefore the spacing between the patches or elements, which is denoted by d, should be defined according to the position of elements on reflectarray surface (Huang & Encinar 2007) as given in Equation (1.1) and (1.2).

\[
d > 0.9\lambda \quad \text{(for center element)}
\]

\[
d \leq \frac{\lambda}{1 + \sin \theta} \quad \text{(for edge element)}
\]

Where, d is element spacing

λ is free space wavelength

θ is angle of feed or main beam tilt angle
Figure 1.4: A 2 X 2 rectangular patch reflectarray antenna with proper element spacing

It has been shown from Equation (1.1) and (1.2) that the spacing between the adjacent elements of reflectarray antenna depends on the position of the element and free space wavelength. Figure 1.4 depicts a four patch rectangular element reflectarray antenna, where d shows the proper element spacing measured from the center of the adjacent elements to avoid the mutual coupling effects. The mutual coupling can cause a distorted radiation from reflectarray antenna which leads to form grating lobes in radiation pattern of the antenna (Huang & Encinar 2007).

1.4.1 Advantages and disadvantages of reflectarrays

Reflectarray antennas are used with low surface profile, small in size and low manufacturing cost. Since the antenna's reflecting surface is a thin, flat structure, it can be mounted onto the surface of any planar structure. The flat panel folding technique has been commonly used in the deployment of solar panels and has shown excellent reliability. The flat structure of reflectarray antenna makes it more reliable and more flexible than parabolic reflectors. The antenna also can be cost effective due to low-cost etching process, especially when it is produced in large quantities. The main beam of the microstrip reflectarray can be designed to point at a large fixed angle (up to 60°) from the broadside direction, while a parabolic reflector can only have a very limited beam tilt. The reflectarray can achieve as good efficiency as a large array antenna system because no power divider mechanism is needed for the
excitation of signal from different patch elements (Huang & Encinar 2007; Huang 1995). Table 1.1 summarizes the main pros and cons of reflectarray antenna.

Table 1.1: Advantages and disadvantages of reflectarray antenna

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easily accumulate with the surface of structures</td>
<td>High loss performance</td>
</tr>
<tr>
<td>Flexible design</td>
<td>Limited bandwidth performance</td>
</tr>
<tr>
<td>Lower cost</td>
<td>Narrow phase range</td>
</tr>
<tr>
<td>Beam steering</td>
<td>Mutual coupling of adjacent elements</td>
</tr>
<tr>
<td>Integratable with solar panels</td>
<td>Differential spatial phase delays</td>
</tr>
<tr>
<td>Large array with high efficiency</td>
<td></td>
</tr>
</tbody>
</table>

Apart from these advantages there are some disadvantages of reflectarrays which have been mentioned in Table 1.1. The high loss performance of reflectarray antenna is due to the absorption of incident energy into the dielectric substrate. Additionally, the conducting material which is used for patch elements is also attributed for generating conductor losses in the reflectarray antenna. A printed microstrip reflectarray can only achieve a bandwidth of about 5% due to its relatively thin dielectric substrate. To achieve wider bandwidths, techniques such as using different thick substrates, stacking multiple patches and using sequentially rotated sub-array elements are employed. The limited phase range of reflectarray antenna causes to generate phase errors in the performance of antenna. The phase errors are defined as, the difference between the ideal (360°) and the actual phase range of reflectarray antenna. At higher frequencies, the element spacing becomes large relative to the frequency of operation, which leads to generate side lobes in the main antenna pattern. The proper inter element spacing is required for good pattern generation, as previously has been discussed in section 1.4. The differential special phase delays are also a main reason behind the limited frequency bandwidth of reflectarray antenna. This is due to the different path lengths of incident signal coming from feed horn antenna, which causes a non-planar wavefront and full energy cannot be reflected back to the desired direction (Huang & Encinar 2007). More details on the techniques to overcome the stated drawbacks of reflectarray antenna are discussed in Chapter 2.
1.4.2 Potential applications of reflectarray antenna

The recent developments in reflectarray antenna technology in past few decades make it prominent for present and future applications. Reflectarray antenna has been evolved as a possible alternative for some conventionally used antenna systems such as parabolic reflectors and phased arrays. The reconfigurable nature of reflectarray antenna makes it flexible to be used for the wide range of frequencies (Huang & Encinar 2007). Figure 1.5 depicts some common fields of applications for reflectarray antenna. It has been shown in Figure 1.5 that, reflectarray antennas covers the major areas of communication technology. The sector antennas used in mobile communication systems can be replaced by a flat surface reflectarray antenna. The high gain reflectarray antennas can also be used to communicate between BTS (Base Transceiver Station) and MSC (Mobile Switching Centre) in a very progressive manner. Direct broadcast satellite (DBS) services or home TV services can utilize a reflectarray antenna as an alternative of parabolic dish antenna, planar structure and small size of reflectarray antenna makes it more eminent for home use.

![Figure 1.5: Applications of reflectarrays](image)

The radar technology can count as a base-line for the military and defense purposes. The military vehicles are also using antenna technology to communicate from the remote areas. Reflectarray antennas can be used in radar communication
systems due to their scannable beam characteristic. The small size and planar structure of reflectarray antenna is useful to mount it over the roof of military vehicles. The satellite services with deep space communications play an important role in remote sensing technology. The planar solar panel of satellite system is a very good platform to hold a reflectarray antenna instead of an additional bulky structure antenna system. The enhanced deep space communication can only be possible with reduced size spacecraft systems, which can easily go beyond the limits of human reach. An efficient and smaller size reflectarray antenna can make it possible for the betterment of mankind and extends the boundaries of human space-research (Huang 1995).

1.5 Thesis statement

Chapter 1 contains the information about the conventionally used antenna systems and discusses the major problems in their operation. The objectives and scopes of the research work are explained here in conjunction with the introduction of reflectarray antennas.

The detailed theoretical studies regarding this research work are summarized in Chapter 2. The design analysis of reflectarray antenna with its dielectric material properties is thoroughly explained. The non-homogeneous materials and their variable dielectric properties are discussed based on their molecular composition. Furthermore some basic applications of non-homogeneous materials have also been discussed in this chapter.

Chapter 3 provides the materials and methods for the design and implementation of tunable reflectarray antenna. Three main stages based on simulations, numerical analyses and measurements have been mentioned here.

In Chapter 4, the detailed investigation of reconfigurable reflectarray antenna has been presented based on the reflection loss and reflection phase analysis. Some possible design configurations for tunable reflectarray antenna have been proposed and designed by commercially available simulation tools. CST Microwave studio and Ansoft HFSS are widely used here for the study of different factors affecting the tunability performance of reflectarrays. Finally numerical analysis has been provided
based on the prediction of various reflectarray parameter by using non-linear material properties.

The design and fabrication process of encapsulated LC based reflectarray unit cell elements is thoroughly explained in Chapter 5. The waveguide simulator measurements of passive and active reflectarray unit cell elements by vector network analyzer are provided. The detailed analysis and comparison between measured and simulated results is also provided in terms of dynamic phase range and frequency tunability.

Chapter 6 summarizes and concludes the overall findings and achievements of the research work. Finally some recommendations for expected future work are provided.
CHAPTER 2

THEORETICAL OVERVIEW

This chapter contains detailed literature studies regarding reflectarray antenna design. The historical background of reflectarray antenna is thoroughly discussed and some previous design techniques to improve the performance of reflectarray antenna are provided. Moreover, the design of a unit cell reflectarray element in an infinite array approach has been discussed in this chapter. Furthermore, the dielectric properties of substrate materials, containing homogeneous and non-homogeneous materials have been analyzed. Factors affecting on the dielectric non-linear properties of substrate materials have been thoroughly discussed. Finally some applications of non-homogeneous materials in tunable microwave devices are explained.

2.1 History and background of reflectarray antenna

Since the time of reflectarray introduction by (Berry et al. 1963), it has passed through different evolving periods. It started from the bulky size, large arrays of open-ended waveguide reflectors for low microwave frequencies, and now it has become a low profile antenna with printed microstrip patches, to operate until millimeter wavelength. Reflectarrays are manufactured on a flat substrate by printed circuit technology and attain the capability of beam steering (Huang & Encinar 2007). In early 90s some new tactics in reflectarray antenna design have been introduced to compensate the inconsistent phasing behavior of printed patches. This inconsistent phasing behavior of patches can cause different additional time delays in reflected signals, which considerably limits the bandwidth performance of reflectarrays. To solve this problem, the microstrip patches were proposed, either with different electrical lengths or with open-ended microstrip stubs (Huang 1991;
Huang & Encinar (2007). However the described techniques exhibit the cross-polarization problem due to the lack of leakage radiation which limits the radiation efficiency of reflectarray antenna. Recent studies in reflectarray antenna design provided some new tactics to improve its loss and bandwidth performance. These strategies have been discussed later in this chapter.

A microwave system can be analyzed by its frequency range of operation over which it is considered to provide acceptable performance characteristics. The frequency ranges are further divided into different frequency bands of operation. In recent years the applications of reflectarray antenna in X, K, Ka and Ku bands have been noticed (Huang et al. 2007; Encinar & Barba 2008). Table 2.1 summarizes the main possible applications of each frequency band that can be used for reflectarray antenna operation.

Table 2.1: Different frequency bands and their applications (Skolnik 2008; Rappaport 2003)

<table>
<thead>
<tr>
<th>Name of Frequency band</th>
<th>Range of Frequencies</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-band</td>
<td>2-4 GHz</td>
<td>Mobile Satellite Services (MSS), NASA and deep space research</td>
</tr>
<tr>
<td>C-band</td>
<td>4-8 GHz</td>
<td>Fixed Satellite Services (FSS), fixed service terrestrial microwave</td>
</tr>
<tr>
<td>X-band</td>
<td>8-12.4 GHz</td>
<td>FSS, military communications, Fixed service terrestrial microwave, earth exploration and meteorological satellites</td>
</tr>
<tr>
<td>Ku-band</td>
<td>12.4-18 GHz</td>
<td>FSS, Broadcast Satellite Service (BSS), Fixed service terrestrial microwave</td>
</tr>
<tr>
<td>K-band</td>
<td>18-26.5 GHz</td>
<td>FSS, BSS, Fixed service terrestrial microwave</td>
</tr>
<tr>
<td>Ka-band</td>
<td>26.5-31 GHz</td>
<td>FSS, Fixed service terrestrial microwave, Local multi-channel distribution service (LMDS)</td>
</tr>
</tbody>
</table>

It has been analyzed from Table 2.1 that, most of the applications of different frequency bands belong to satellite and terrestrial systems. Moreover the mobile communication systems are the most important feature of S-band frequency range. The applications of reflectarray antenna that have been described in section 1.4.2, can completely tally with those which are mentioned in Table 2.1 for different frequency bands.
2.2 Design and analysis of microstrip reflectarray antenna

The basic step of reflectarray antenna is to design and characterize the single microstrip element in an infinite array approach. Where a single element can be tested and analyzed as a part of entire reflectarray antenna. The commonly used method is H-wall waveguide where top and bottom surface of waveguide are electric conducting walls, while the right and left sides are magnetic walls.

![Diagram of H-Wall Waveguide](image)

Figure 2.1: A reflectarray element placed in an infinite array approach

In result of this step a vertically polarized wave is used to resonate the element which is placed at the end of the waveguide (Huang & Encinar 2007) as shown in the Figure 2.1. This technique is used to analyze a single reflectarray element in terms of reflection loss and reflection phase performance. Moreover the phase versus element change curve based on the element size can be derived which is essential in the design of microstrip reflectarray (Huang & Encinar 2007; Balanis 2005).

In order to fully analyze the performance of reflectarray antenna there are different methods which have been used by researchers, such as Finite Integral Method (FIM), Finite Element Method (FEM) and Method of Moment (MoM) (Huang & Encinar 2007). The single patch element can be analyzed as a reflective element printed on a grounded dielectric substrate. The patch element can be treated as a single isolated element or in an array environment. The overall radiated field from the reflectarray element is the sum of the two main components; the field scattered by the conductive patch element (E_s) and the field reflected (E_r) by the ground plane (Huang 1991), as shown in Figure 2.2. It can be observed from Figure 2.2 that, the total electric field of the system is the sum of E_i, E_s and E_r components.
Figure 2.2: Incident and reflected E-fields of a reflectarray element

The full wave analysis of reflectarray antenna is based on the complete investigation of the total E-field present in the system. The full wave analysis can be performed by either MoM, FIM or FEM techniques (Huang & Encinar 2007; Inam & Ismail 2011b). MoM technique is fully based on the spectral domain analysis of single or multi-layered periodic structures. On the other hand FIM and FEM techniques are used for a single reflectarray element with proper boundary conditions suitable for an infinite array analysis. Usually zero thickness is used for patch and ground conductors in MoM technique, whereas FIM and FEM allow the real thicknesses for the analysis. The analysis of reflectarray antenna by Maxwell’s equations in integral form is done by FIM technique, where E-field based integral equations are solved in either time or frequency domain. FEM is used to solve the partial differential equations by full wave analysis of total E-fields of single reflectarray element in an infinite array approach. MoM is a fast technique especially when it is used for the periodicity or mutual coupling effects between the adjacent elements of reflectarray antenna. On the other hand FIM and FEM have slower CPU timings for the calculations as compared to MoM technique (Huang & Encinar 2007; Pozar 2005).

2.2.1 Selection of the substrate material

Different types of dielectric substrates are used to design a reflectarray antenna, their dielectric constants are usually in the range of $2.2 \leq \varepsilon \leq 12$ (Balanis 2005). The thickness of substrate also plays an important role for reflectarray analysis. A thinner substrate causes multiple bounces of incident energy which affects the surface wave
excitation. Therefore more energy is dissipated the substrate region and reflection loss is increased (Inam & Ismail 2011a). The most desirable for good antenna performance are thicker substrates with low dielectric constant values because they provide better efficiency and wide bandwidth, but at the cost of larger element size (Balanis 2005). The effect of material properties on the performance of reflectarray antenna is described in details, later in this chapter.

2.2.2 Selection of the patch element

The radiating patch elements are printed by photoetching process on the surface of dielectric substrate. Different types of radiating patch element configurations like rectangular, square, circular, dipole, elliptical, triangular, ring etc can be used based on their performance characteristics (Balanis 2005). Some reflectarray patch elements are shown in Figure 2.3.

Figure 2.3: Different types of reflectarray patch elements

Rectangular and square elements occupy large bandwidth but on the account of larger element size and narrower phase range. Whereas elements having smaller sizes like dipole and ring occupy wider phase ranges but with the drawback of high reflection losses (Balanis 2005; Ismail et al. 2009). Selection of the patch element can affect the performance of reflectarray antenna, a detailed investigation is provided later in this chapter.

2.2.3 Reflection loss and bandwidth of reflectarray antenna

The amount of energy that is not fully reflected back from reflectarray antenna during the reflection process is called reflection loss. In addition to losses in directivity due to spillover, amplitude taper, and phase errors, reflectarrays also
suffer potentially significant loss due to dielectric loss, copper loss, and surface wave excitation. Dielectric loss is strongly dependent on the thickness and loss tangent of the reflectarray substrate (Balanis 2005). The maximum loss occurs at the resonant frequency because the surface current density on the patch element and concentration of electric fields inside the substrate are maximum at the point of resonance (Rajagopalan & Rahmat-Samii 2010). The maximum surface current density occurs at the center of the patch element whereas the maximum electric field occurs at the edges of the patch element inside the dielectric substrate (Ismail & Inam 2010b; Rajagopalan & Rahmat-Samii 2008b) as shown in Figure 2.4. It has been shown in Figure 2.4 (a) that current follows the path along the length of the patch element therefore it is maximum at the center of the patch element and minimum around the edges of the patch element.

![Figure 2.4: (a) Surface current on the patch element (b) E-fields inside the substrate material](image)

Surface current mainly depends on the conductivity of the electric conductor used for patch and ground plane whereas electric field corresponds to the dielectric constant of the substrate material as shown in Equation (2.1) and (2.2) respectively (Pozar 2005).
Where

\[J = \sigma E \] \hspace{1cm} (2.1)
\[D = \varepsilon E \] \hspace{1cm} (2.2)

\(\sigma \) is conductivity of patch element
\(\varepsilon \) is dielectric constant of substrate material

The surface current density \((J) \) of patch element is responsible for the high conductive dissipation of the incident energy. On the other hand, \((D) \) is the flux density and its value depends on the number of electric field lines inside the dielectric substrate, which corresponds to the dielectric dissipation of the incident energy. The reflection loss of the patch element can be categorized into conductor loss and dielectric loss (Ismail & Inam 2010a). The dielectric loss occurs due to the strong \(E \)-fields in the substrate region as shown in Figure 2.4 (b), whereas the conductor loss occurs due to the high currents on the top surface of the patch at resonance as shown in Figure 2.4 (a). These losses also depend on the thickness of the substrate material and decrease by increasing the substrate thickness. The ratio of conductor loss to dielectric loss is not same for different substrate thicknesses (Ismail & Inam 2010a; Rajagopalan & Rahmat-Samii 2008a). The conductor and dielectric losses (Pozar 2005; Ismail et al. 2010) of reflectarray antenna are given, as shown in Equation (2.3) and (2.4) respectively.

\[\alpha_c = \frac{8.68}{WZ_m} \sqrt{\frac{\omega \mu_0}{2 \sigma_c}} (dB/cm) \] \hspace{1cm} (Conductor Loss) \hspace{1cm} (2.3)

\[\alpha_d = \frac{\omega}{2} \sqrt{(\mu_0 \varepsilon_0 \varepsilon_r)} \tan \delta (dB/cm) \] \hspace{1cm} (Dielectric Loss) \hspace{1cm} (2.4)
\[R.L = \alpha_c + \alpha_d \] \hspace{1cm} \text{(Total Reflection Loss) (2.5)}

Where

- \(W \) is the width of patch element
- \(Z_m \) is the characteristic impedance
- \(\sigma_c \) is conductivity of patch element
- \(\tan \delta \) is Dissipation factor
- and \(\omega = 2\pi f_r \)

Equation (2.5) provides the total reflection loss of reflectarray antenna, which is the sum of the dissipated energies, occurred due to conductor and dielectric losses.

Bandwidth is defined as “the range of frequencies within which the performance of the antenna with respect to some characteristics conforms to a specified standard” (Balanis 2005). The bandwidth of a reflectarray antenna can be evaluated by its reflection loss curve and it can be defined in terms of 10% or 20% bandwidth (Ismail & Inam 2010a). The 20% bandwidth is calculated by moving 20% above the maximum reflection loss value and 10% bandwidth is calculated by moving 10% above the maximum reflection loss value, which is at the resonance frequency. Figure 2.5 shows the total reflection loss of a reflectarray element along with the 10% and 20% bandwidth performance where \(f_r \) is the resonant frequency of the reflectarray.

![Figure 2.5: Reflection loss and bandwidth of reflectarray antenna](image-url)
It has been shown in Figure 2.5 that, 20% bandwidth is wider than the 10% bandwidth of reflectarray antenna because it lies at a point where loss curve has a wide frequency range. The 20% and 10% bandwidths can be used for the characterization of performance of unit cell reflectarray elements.

2.2.4 Reflection phase and FoM

Another important parameter that can be used to analyze the reflectivity of reflectarrays is its reflection phase performance. Reflectarray patch element has an S shaped phase curve. The slope of the reflection phase versus reflection frequency curve is a measure of the bandwidth of reflectarrays (Inam & Ismail 2011a). As the slope of reflection phase increases the phase becomes steeper, as a results a rapid change in reflection phase occur at the resonant frequency, hence the bandwidth performance of reflectarray decreases (Pozar et al. 1995). For comparison of bandwidth performances in terms of reflection phase curves a Figure of Merit (FoM) has been defined as the ratio of the change in reflection phase ($\Delta \varphi$) to the change in the frequency (Δf) and can be expressed as given in Equation 2.6.

$$FoM = \frac{\Delta \varphi}{\Delta f} \ (°/MHz)$$ (2.6)

![Figure 2.6: Reflection phase of reflectarray antenna](image)
Figure 2.6 shows the reflection phase curve of a reflectarray antenna. As shown in Figure 2.6, the range of frequency (Δf) at which the reflection phase shows linearity is called static phase range ($\Delta \phi$) of the reflectarray element. Reflection phase also depends on the thickness of the substrate of reflectarray. For a thinner substrate the number of multiple bounces of incident energy inside substrate region increase hence more energy is dissipated in the substrate and as a result phase becomes steeper. Therefore low dielectric constant materials have smoother phase curves with low static phase range whereas high dielectric constant materials have steeper phase curves with wide static phase range (Ismail et al. 2010).

2.3 Performance enhancement of reflectarray antenna using different optimization techniques

It has been identified that, the narrow bandwidth and high reflection losses are the main performance limitations of reflectarray antenna. Limited bandwidth is mainly due to the differential spatial phase delays, which means that by controlling the phase of individual reflectarray patch element, the bandwidth performance can also be improved. On the other hand properties of substrate material and radiating patch element are equally responsible for the high loss performance of reflectarray antenna. This shows that the proper selection of substrate material and resonating patch element plays an important role in the optimized design of reflectarray antenna. A substrate material can be taken based on its dielectric properties and thickness, whereas a patch element can be selected based on its design configurations. Many researchers have been working on the design optimization of reflectarray antenna based on various dielectric materials with different resonant patch elements. In this section a thorough investigation has been performed on the studies that have been carried out for performance enhancement of reflectarray antenna.

2.3.1 Optimization of loss and bandwidth performance by material properties

The performance of reflectarray antenna based on dielectric material properties was investigated by (Ismail et al. 2010). The reflectivity of a rectangular reflectarray patch element was analyzed at 10 GHz printed on different dielectric substrates using
FIM technique. Capacitive losses occurred in dielectric substrates were thoroughly investigated. It was shown that the occurred capacitance is directly proportional to the area of the conducting plates (patch and ground plane) and inversely proportional to distance between them, as shown in Equation (2.7).

\[C = \varepsilon \frac{A}{d} \]

(2.7)

Where:
- \(C \) is the capacitance of a reflectarray antenna
- \(A \) is the area of the patch and ground plane
- \(\varepsilon \) is the dielectric constant of the substrate material
- \(d \) is the separation between patch and ground plane (substrate thickness)

This explanation shows that a thin substrate possesses high losses due to high capacitive dissipation inside the substrate region. It has been observed from Equation (2.7) that, the dielectric constant of substrate material also plays an important role in the loss performance of reflectarray antenna. The relationship between dielectric constant value and capacitance of different dielectric substrates was observed for different substrate material at a constant substrate thickness of 1 mm. It was analyzed that as the dielectric constant value increases from 2.08 to 13, the capacitance of reflectarray substrate was also increased from 160 pF to 310 pF. A high value of capacitance also boosts up the reflection loss performance of reflectarray antenna. It was shown that, dielectric material Teflon with a dielectric constant of 2.08 offers a lower reflection loss of 0.179 dB as compared to Gallium arsenide (\(\varepsilon=13 \)) which offers 4.326 dB. It was concluded from this work that, low dielectric constant materials are required for optimized loss performance of reflectarray antenna but on the cost of large sized reflectarray element.

Another important work based on the relationship between dielectric material properties and reflectarray bandwidth performance was done by (Ismail & Inam 2010a). A rectangular patch reflectarray antenna with different dielectric materials was analyzed with an infinite array approach. It was shown that the Teflon (\(\varepsilon=2.08 \), tan\(\delta=0.0004 \)) attains a maximum bandwidth performance of 540 MHz, whereas
Gallium Arsenide ($\varepsilon=13$, $\tan\delta=0.006$) which offers a minimum bandwidth of 126 MHz. Furthermore, different substrate thicknesses of 1, 1.4 and 2 mm were used to analyze the FoM performance of reflectarray antenna. It was observed from this work that, a thicker substrate attains a smoother reflection phase curve with wide bandwidth performance as compared to a thinner substrate which offers steeper reflection phase curves. It was concluded that, steeper the slope of the reflection phase curve the lesser will be the bandwidth of the reflectarrays which shows a drawback between bandwidth and static phase range performance of reflectarrays.

I. Reflectivity analysis of high loss and low loss substrates

The investigation of high loss and low loss substrate materials for the performance improvement of reflectarray antenna was carried out by (Rajagopalan & Rahmat-Samii 2010). A square patch reflectarray antenna was used to resonate in S-band frequency range for a substrate with dielectric constant of 2.2 with thickness ranging from 0.381 mm to 6.096 mm. The different loss tangent values of substrate material were selected from 0.0009 to 0.09 in order to characterize a lossy dielectric substrate. This work particularly described the effect of dielectric loss on the reflection magnitude and phase range performance of reflectarray antenna.

![Figure 2.7: Paper results of different reflection magnitudes at various loss tangent values (Rajagopalan & Rahmat-Samii 2010)](image_url)
REFERENCES

Huang, J. et al., 2007. Multiband reflectarray development.

