SYNERGISTIC ARTIFICIAL NEURAL NETWORK SCHEME FOR MONITORING AND DIAGNOSIS OF MULTIVARIATE PROCESS VARIATION IN MEAN SHIFTS

MOHD FAIRUZ BIN MARIAN

A dissertation submitted in partial fulfilment of the requirement for the award of the
Degree of Master of Mechanical Engineering

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING
UNIVERSITI TUN HUSSEIN ONN MALAYSIA

JULY 2014
ABSTRACT

In quality control, monitoring and diagnosis of multivariate out of control condition is essential in today’s manufacturing industries. The simplest case involves two correlated variables; for instance, monitoring value of temperature and pressure in our environment. Monitoring refers to the identification of process condition either it is running in control or out of control. Diagnosis refers to the identification of source variables (X₁ and X₂) for out of control. In this study, a synergistic artificial neural network scheme was investigated in quality control of process in plastic injection moulding part. This process was selected since it less reported in the literature. In the related point of view, this study should be useful in minimizing the cost of waste materials. The result of this study, suggested this scheme has a superior performance compared to the traditional control chart, namely Multivariate Exponentially Weighted Moving Average (MEWMA). In monitoring, it is effective in rapid detection of out of control without false alarm. In diagnosis, it is able to accurately identify for source of variables. Whereby, diagnosis cannot be performed by traditional control chart. This study is useful for quality control practitioner, particularly in plastic injection moulding industry.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Research Background 1
1.2 Problem Statement 2
1.3 Project Objectives 2
1.4 Project Scopes 3
1.5 Summary 3
1.6 Dissertation Outline 4
LITERATURE REVIEW

2.1 Introduction 5
2.2 Process Variation 7
2.3 Quality Engineering 8
2.4 Statistical Process Control (SPC) 9
2.5 Univariate Statistical Process Control 11
 2.5.1 Shewhart Control Chart 11
 2.5.2 Control Limits 12
 2.5.3 Average Run Length (ARL) 13
 2.5.4 Individual Control Charts 14
2.6 Multivariate Statistical Process Control Chart 15
 2.6.1 MEWMA Control Chart 17
2.7 Pattern Recognition (PR) 17
2.8 Artificial Neural Network (ANN) 19
 2.8.1 Generalized-ANN Model 20
 2.8.2 Synergistic-ANN Model 22
2.9 Modelling of Bivariate Samples and Patterns 22
 2.9.1 Data Generator 22
 2.9.2 Bivariate Patterns 24
2.10 ANN in Pattern Recognition 25
2.11 Research Gap 27
2.12 Summary 28

METHODOLOGY

3.1 Introduction 29
3.2 Project Methodology 31
3.3 Bivariate Mean Shift 33
3.4 Input Representation 34
3.5 Recognizer Design 36
 3.5.1 Generalizer-ANN Model 37
 3.5.2 Synergistic-ANN Model 39
3.6 Recognizer Training and Testing 39
 3.6.1 MATLAB R2011a Software 40
3.7 Problem Situation and Solution 38
3.8 Performance Validation Using Industrial Data
 3.8.1 Industrial Example
 3.8.2 Case Study
 3.8.3 Specimens
 3.8.4 Experiment Works
3.9 Result Analysis
3.10 Performance Evaluation
3.11 Summary

4 RESULTS AND DISCUSSIONS
 4.1 Introduction
 4.2 Industrial Result
 4.3 Variables Selection
 4.4 I-Chart Control Chart Interpretation
 4.5 MEWMA Control Chart Interpretation
 4.6 MEWMA-ANN SPC Chart
 4.7 Out of Control Recognition Performance Comparison
 4.8 I-Chart for Performance Reference
 4.9 Synergistic MEWMA-ANN Scheme Detection Performance
 4.10 MEWMA-ANN Scheme Diagnosis Accuracy
 4.11 Result Summary

5 CONCLUSION AND RECOMMENDATIONS
 5.1 Introduction
 5.2 Conclusions
 5.3 Project Contribution
 5.4 Future Work Recommendations

REFERENCES

APPENDICES

VITAE
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Dissertation outline</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Various control chart patterns</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Basic statistical process control tool specification</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>How the control charts works</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Individual chart</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Roller head functional features</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Generalized-ANN architectures on three layer MLP model</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Typical normal and abnormal patterns</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Advances in ANN-based CCPR schemes</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>General concept of pattern recognition application</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Conceptual diagram for a multivariate process pattern recognition scheme</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Overview of project methodology</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Research flow chart</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Shewhart control chart and its respective scatter diagram</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>Proposed generalized-ANN architectures on three layer MLP model</td>
<td>38</td>
</tr>
<tr>
<td>3.7</td>
<td>The conceptual design of synergistic ANN recognizer</td>
<td>38</td>
</tr>
<tr>
<td>3.8</td>
<td>The synergistic-ANN scheme model architecture</td>
<td>41</td>
</tr>
<tr>
<td>3.9</td>
<td>Functional features of panel deck</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>I-Chart for A, B and C in Pressure Increase Conditions</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>I-chart for A, B and C in speed increase conditions</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>I-chart for A, B and C in mixed 20% regrinds resin conditions</td>
<td>55</td>
</tr>
</tbody>
</table>
4.4 Scatter plot for variables at holding pressure increased
4.5 Scatter plot for variables at injection speed increased
4.6 Scatter plot for variables at mixed 20% regrinds resin
4.7 I-chart for variables AB for holding pressure increased
 (high correlation)
4.8 I-chart for variables AC for injection speed increased
 (moderate correlation)
4.9 I-chart for variables BC for mixed 20% regrinds resin
 (low correlation)
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pattern recognition applications</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Conditions of multivariate process mean shifts</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Source of variation in length and width dimension</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Part information</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Tooling information</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Recognition performance between I-chart and EWMA chart</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Correlation coefficient from various combinations</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Validation results based on ‘pressure up’ case (high correlation)</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>Output of the schemes for ‘pressure up’ case</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Validation results based on ‘speed up’ case (moderate correlation)</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Output of the schemes for ‘speed up’ case</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Validation results based on ‘mixed 20% regrinds resin’ case (low correlation)</td>
<td>64</td>
</tr>
<tr>
<td>4.8</td>
<td>Output of the schemes for ‘mixed 20% regrinds resin’ case</td>
<td>65</td>
</tr>
<tr>
<td>4.9</td>
<td>Diagnosis accuracy for variable ab in pressure up (0.919)</td>
<td>66</td>
</tr>
<tr>
<td>4.10</td>
<td>Diagnosis accuracy for variable ac in speed up (0.485)</td>
<td>66</td>
</tr>
<tr>
<td>4.11</td>
<td>Diagnosis accuracy for variable ac in mixed 20% regrinds resin (0.322)</td>
<td>66</td>
</tr>
<tr>
<td>4.12</td>
<td>Diagnose performance of MEWMA-ANN scheme for mean shifts condition and total process</td>
<td>67</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Factors used when constructing control charts</td>
<td>76</td>
</tr>
<tr>
<td>B</td>
<td>Raw data (injection parameter disturbance: holding pressure 2% increased)</td>
<td>77</td>
</tr>
<tr>
<td>C</td>
<td>Raw data (injection parameter disturbance: injection speed 2% increased)</td>
<td>78</td>
</tr>
<tr>
<td>D</td>
<td>Raw data (injection parameter disturbance: mixed 20% regrinds resin)</td>
<td>79</td>
</tr>
<tr>
<td>E</td>
<td>Gantt chart Master Project I</td>
<td>80</td>
</tr>
<tr>
<td>F</td>
<td>Gantt chart Master Project II</td>
<td>81</td>
</tr>
<tr>
<td>G</td>
<td>Part details drawing</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(\alpha \) - Type I error (\(\alpha \) risk)
\(\beta \) - Type II error (\(\beta \) risk)
\(\lambda \) - Constant parameter for EWMA control chart
\(\rho \) - Correlation coefficient for bivariate process
\(\mu \) - Mean
\(\sigma \) - Standard deviation
\(\mu_0 \) - Mean for in-control samples
\(\sigma_0 \) - Standard deviation for in-control samples
\(\sigma_{ij} \) - Covariance for bivariate samples
\(\Sigma \) - Covariance matrix for bivariate samples or basic summation
\(X_t \) - Original observation samples at time/point \(t \)
\(Z_t \) - Standardized observation samples at time/point \(t \)
\(N \) - Random normal variates
\(\bar{x} \) - Sample mean
\(H_0 \) - Null hypothesis
CHAPTER 1

INTRODUCTION

1.1 Research Background

Poor quality due to process variation is known as a major issue in manufacturing processes. Manufacturing process may involve two or more correlated variables and an appropriate procedure is required to monitor these variables simultaneously. These techniques are often referred as multivariate SPC (MSPC) procedures. The main problem of multivariate quality control charts is that they can detect an out of control event but do not directly determine which variable or group of variables has caused the out of control signal and how much is the magnitude of out of control. Incorporating pattern recognition in the control charting scheme can address this problem. With a certain control chart pattern (CCP), the diagnosis search can be shortened if one has knowledge of the CCP type (e.g., a shift or a trend) and corresponding knowledge of which process factors could cause these CCPs. Therefore, timely recognition of CCPs is a crucial task in SPC for determining the potential assignable causes.

Various artificial neural networks (ANN)-based pattern recognition schemes have been developed for monitoring and diagnosis of multivariate process variation in mean shifts. In literatures, since late 1980s, control chart pattern recognition (CCPR) has become an active area of research. However, there is a lack of updated critical review on such issues. Therefore, this paper proposed a synergistic ANN scheme for monitoring and diagnosis of multivariate process variance in mean shifts. To achieve ‘balanced monitoring and accurate diagnosis’, this study proposes a
synergistic multivariate exponentially weighted moving average (MEWMA)-ANN scheme for two-phases monitoring and diagnosis of some reference multivariate patterns.

1.2 Problem Statement

In manufacturing industries, process variation is known to be a major source of poor quality. As such, process monitoring and diagnosis is critical towards continuous quality improvement. This becomes more challenging when involving two or more correlated variables (multivariate). Process monitoring refers to the identification of process status either it is running within a statically in-control or out-of-control condition, whereas process diagnosis refers to the identification of the source variables of out-of-control process. The traditional statistic process control (SPC) charting schemes were known to be effective in monitoring aspect. Nevertheless, they are lack of diagnosis. In recent years, the artificial neural network (ANN) based pattern recognition schemes are mainly utilize either a generalized (single) model ANN pattern recognizer and/or raw data based input representation, which resulted in limited performance. In this study, an integrated ANN model that is called “Synergistic“ pattern recognizer involves utilization of raw data-based and statistical features input representations.

1.3 Project Objectives

The objectives of this project are:

i. To investigate the effectiveness of the synergistic ANN pattern recognition scheme in monitoring and diagnosing process variation in mean shifts.

ii. To evaluate the performance of the scheme in comparison with traditional control chart.
1.4 Project Scopes

This research proposal project scope is listed as below:

i. Multivariate quality control cases are limited to bivariate process, which is only two correlated variable being monitored and diagnosed.

ii. Bivariate process variables are dependent to each other based on linear cross correlation (ρ).

iii. In a statically out-of-control condition, predictable bivariate process patterns are limited to sudden shifts (upward shift and downward shift) in the source variables.

iv. Magnitudes of mean shifts in the source variables are limited within ± 3 standard deviations based on control limits of Shewhart control chart.

v. The foundation modeling and simulation for bivariate correlated samples are based on established model (Lehman, 1977), whereas the validation tests are performed using industrial data.

1.5 Summary

SPC Control chart have been known to be a good tool in quality control. However traditional SPC control chart was used only for process monitoring and identifying process variation. The drawback for conventional control charts was that they rely on currently observed data not on previous data sets. In addition, they cannot identify and indicate whether there is any special disturbance in process. Today, advance SPC charting demand for better statistical analysis capability especially for multivariate cases through control chart pattern identification. The development in statistical software technology has encouraged investigation on the application of artificial neural network (ANN) for automated pattern recognition of control chart patterns (CCPs). The namely synergistic ANN scheme developed should be capable to identify the source of multivariate process variation rapidly and correctly with minimum false alarm. The primary objective is to enable develop an ANN-based scheme for monitoring with minimum false alarm and high performance in recognition accuracy.
1.6 Dissertation Outline

This project was summarized in Figure 1.1. The first chapter describes the introduction of the project. This is followed by an extensive literature review in Chapter 2 that provided background information in the related fields and research trends leading to the current issue addressed in this project. Chapter 3 then presents the project methodology adopted for carry out the focused objectives. In Chapter 4 the proposed methodologies were then applied into, design development and testing for the synergistic scheme, performance results and evaluation later then discusses. The conclusions and recommendations are highlighted in the final chapter.

![Dissertation Outline Diagram]

Figure 1.1: Dissertation outline
CHAPTER 2

LITERATURE REVIEW

This chapter provided the reviews of the concept of SPC control chart monitoring and diagnosis. It were also review the investigation and development of previous multivariate statistical process control (MSPC) scheme in term of raw data-based input, statistical feature input representations and scheme improvement. In conclusion, explanation on why the design of synergistic ANN model recognizers was chosen to improve the monitoring-diagnostic capability was given.

2.1 Introduction

Nowadays, manufactures are on pressure to produce products that have high quality but with a low cost. Product cost and quality were influenced by many factors and one of the factors that strongly influence both was manufacturing process variation. These variations exist because no production process is perfect and usually controlling this variation was done by implementing process quality control especially by using SPC.

The main concern of process quality control is to achieve and maintain an acceptable level of the desired process quality characteristic consistently. In this connection, accurate monitoring and control of the manufacturing system is very important. Commonly, eight types of control chart patterns (CCPs), as shown in Figure 2.1 were encountered in different manufacturing environments (Masood & Hassan, 2010).
The patterns can be classified as natural/normal and unnatural/abnormal (Montgomery, 2013). The basic significance of a natural pattern is that it indicated a process under control. Unnatural patterns identified a process when it is out control. Natural causes are considered to be due to the inherent nature of normal process. Assignable causes are defined as unnatural shock to the processes, which should identify and eliminated as soon as possible in order to narrow down and shorten the length of diagnosis process (Yu & Xi, 2009). However, recognition of unnatural patterns found to be a critical task in SPC (Wenhai & Dwayne, 1992). Over the years, numerous numbers of studies have been study and suggesting the quality control practitioners to detect unnatural control chart patterns. Nevertheless, this suggestion is unworthy due to lack of experience, knowledge and skill to identify, interpret and analysis the unnatural patterns from the practitioners. Moreover this scenario results in excessive number of false alarm. This is happening most of the times on the shop floor people implement the control charts.

The usual practice has been to maintain a separate (univariate) chart for each characteristic. Unfortunately, this can give some misleading result when the quality characteristic is highly correlated. One of the solutions to overcome this issue is to extend the univariate analysis by plotting a statistic that measures the overall deviations of the multivariate observations from the target (Chen & Wang, 2004).
2.2 Process Variation

Process variation is known to be a major source of poor quality (Zainal Abidin & Masood, 2012). Traditionally, statistical process control (SPC) was used to monitor and identify process variation. Advances, variation reduction efforts as such process monitoring and diagnosis should be critically applied towards quality improvements (Masood & Hassan, 2009).

Variation may be defined as any unwanted condition or as the difference between a current and a desired end-state. Both product performance and manufacturing processes exhibit variation. Wear and tear, vibration, machine breakdown, inconsistent raw material and lack of human operators’ skills are the common sources of variation in manufacturing process. To manage and reduce variation, the variation must be traced back to its source. Variation occurs in all natural and man-made processes. If variation cannot be measured, it is only because the measurement systems are of insufficient precision and accuracy. Process variance reduces the capacity of the industries because processes become either under- or over-utilized. Process variance reduces the ability to detect potential problems and increases the difficulty of discovering the root cause of problems.

The causes of variation in product performance and manufacturing processes are varying by the type of technology, its maturity, and the experience of the organization and its suppliers. Variation in manufacturing processes causes significant expense in nearly every industry. Variation during production results in products that are not truly identical and thus do not perform identically in the marketplace. Some units were performing as expected, but others may fail early and incur additional costs. Some may even be unsafe and lead to recalls and lawsuit. To prevent these outcomes, manufacturers often expand large sums reworking products to address problems arising from process variation. Almost all of these costs can be eliminated by addressing the root cause; the focus of efforts should be on reducing variation in the process as opposed to reacting to the unfortunate outcomes of variation. Tools such as statistical experimental design, analysis, and statistical process control, can be used to improve process control and reduces variation, delivering impressive bottom line savings.
2.3 Quality Engineering

Quality may be defined in many ways. Quality has become one of the most important consumer decision factors in the selection among competing products and services (Haridy & Wu, 2009). Therefore, understanding and improvement quality are key factors leading to business success, growth and enhanced competitiveness. Quality engineering is the set of operational, managerial and engineering activities that a manufacturer uses to ensure that the quality characteristics of a product are the nominal or required levels that match customer expectations. Quality characteristics can be divided into several types as mentioned by Montgomery (2013).

1. **Physical**: depth, width, current, hardness
2. **Sensory**: colour, smell, taste
3. **Time orientation**: reliability, durability, serviceability

Most of manufacturers find it hard to provide the customer with high quality characteristics of a product that are always identical from unit to unit. This is called variability. No two products are identical. Since variability can only be described in statistical terms, statistical analysis methods play as a backbone in quality improvement methods. Among the others statistical method known, Statistical Process Control (SPC) is one of the most widely used tools for quality control and improvement in manufacturing industries (Chen et al., 2007). The origin of SPC dates back to the 1920s and 1930s at the Western Electric Company and Bell Telephone Laboratories. There are chart for variables data (measurement data) and charts for attributes data (count data). The diagram of basic SPC tools classification illustrates in Figure 2.2.
2.4 Statistical Process Control (SPC)

SPC is a technique used in a manufacturing environment to ensure quality parts are produced. Montgomery (2013) highlighted statistical process control is one of the most effective tools of total quality management whose main function is to monitor and minimize process variations. There are many ways to implement process control. Key monitoring and investigating tools include:

i. Histograms
ii. Check Sheets
iii. Pareto Charts
iv. Cause and Effect Diagrams
v. Defect Concentration Diagrams
vi. Scatter Diagrams
vii. Control Charts

A control chart is the primary tool of SPC and is basically used to monitor the process characteristics, e.g., the process mean and process variability (Duncan, 1988,
The most common types of variable control charts for variables include: (1) Average and Range (X bar and R) Charts (2) Average and Standard Deviation (X and S) Charts (3) Individual and Moving Range (X and MR) Charts. Among applied tools, Shewhart control chart are the most widely applied SPC tools used to reveal abnormal variations of monitored measurements (Yu & Xi, 2009). The uses of control charts are to plot measurements of part dimensions being produced. These charts are used to alert the operator to shifts in the mean of the measurement. The measurements are also used to compute process capability indexes such as C_{pk} and C_p. The definition of the C_p given in Equation (2.1) implicitly assumes that the process is centered at the nominal dimension.

$$C_p = \frac{USL-LSL}{6\sigma}$$ \hspace{1cm} (2.1)

If the process is running of center, its actual capability will be less than indicated by the C_p. It is convenient to think of C_p as a measure of potential capability, that is, capability with centered process. If process is not centered, a measure of actual capability is often used. This ratio is called C_{pk} as defined in Equation (2.2).

$$C_p = \min\left[\frac{USL-\mu}{3\sigma}, \frac{\mu-LSL}{3\sigma}\right]$$ \hspace{1cm} (2.2)

In effect, C_{pk} is a one-sided Process Capability Ratio (PCR) that is calculated relative to the specification limit nearest to the process mean. Montgomery (2013) provides guidelines on appropriate values of the PCR and relating fallout for a normally distributed process in statistical control to the value of C_p. Many big company use $C_p =1.33$ as a minimum acceptable target and $C_p =1.66$ as a minimum target for strength, safety or critical characteristic, some company require that internal processes and those at suppliers achieve a $C_{pk} =2.0$. The indexes indicate how good a process is at producing parts that meet specification. Upon the out-of-control is alarmed, the assignable causes for the abnormal process need to be identified and removed in order to bring the process back to normal. A stable
production process is the key element of quality improvement. Depending on the number of process characteristics to be monitored, there are two basic types of control charts, Univariate Control Chart and Multivariate Control Chart.

2.5 Univariate Statistical Process Control (USPC)

USPC is the monitoring and control of one quality necessary. In normal application this is usually practice by separating each quality characteristic and analysis their control chart independently (Masood & Hassan, 2010). This will take more time and give some misleading result when the characteristics are highly correlated (El-Midany et al., 2010).

There are few types of Control Charts that have been developed. Shewhart charts are sensitive to large process shifts and the probability of detecting small mean shifts fast is rather small. The CUSUM (Cumulative Sum) chart is very effective for small shifts but has disadvantages where CUSUM is relatively slow to respond to large shifts. Also, special patterns are hard to see and analyze. The Exponentially Weighted Moving Average (EWMA) is a statistic for monitoring the process that averages the data in a way that gives less and less weight to data as they are further removed in time. In contrast, attempting to monitor such variables separately using univariate SPC charting scheme would increase false alarms and leading to wrong decision making. However, monitoring each process variable with separate Shewhart control chart ignores the correlation between variables and does not fully reflect the real process situation. Nowadays, the process industry has become more complex than it was in the past and inevitably that number of process variables need to be monitored has increased dramatically. Thus only monitor a single parameter or output at a time. Therefore they cannot detect changes in the relationship between multiple parameters. Very often, these variables are multivariate in nature and using Shewhart control charts becomes insufficient. One approach to overcome these downsides is to extend the univariate analysis by plotting a statistic that measures the overall deviations of the multivariate observations from the target.
2.5.1 Shewhart Control Chart

The most common use method in current industries is control chart or Shewhart Charts. These control charts are constructed by plotting product’s quality variable over time in sequence plot as shown in Figure 2.3.

A control chart contains a center line, an upper control limit and a lower control limit. A point that plots within the control limits indicates the process is in control. In this condition no action is necessary. A point that plots outside the control limits is evidence that the process is out of control. In this condition, investigation and corrective action are required to find and eliminate assignable cause(s) (Umit and Cigdem, 2001). Let w be a sample statistic that measure some quality characteristic of interest and suppose that the mean of w is μ_w and the standard deviation of w is σ_w. Then the center line, upper control limit and lower control limit as shows in equation (2.3).

\[
\text{UCL} = \mu_w + L\sigma_w
\]
\[
\text{Center Line} = \mu_w
\]
\[
\text{LCL} = \mu_w - L\sigma_w
\]
2.5.2 Control Limits

A point falling within the control limits means it fails to reject the null hypothesis that the process is statistically in-control, and a point falling outside the control limits means it rejects the null hypothesis that the process is statistically in-control. Therefore, the statistical Type I error α (Rejecting the null hypothesis H_0 when it is true) applied in Shewhart control chart means the process is concluded as out-of-control when it is truly in-control. Same analog, the statistical Type II error β (failing to reject the null hypothesis when it is false) means the process is concluded as in-control when it is truly false.

2.5.3 Average Run Length

The performance of control charts can also be characterized by their average run length. Average run length is the average number of points that must be plotted before a point indicates an out-of-control condition (Montgomery, 1985). We can calculate the average run length for any Shewhart control chart according to:

$$ARL = \frac{1}{P}$$ \hspace{1cm} (2.4)

Where P or Type I error is the probability that an out-of-control event occurs. Therefore, a control chart with 3 sigma control limits, the average run length will be

$$ARL = \frac{1}{P} = \frac{1}{0.027} = 370$$ \hspace{1cm} (2.5)

This means that if the process remains in-control, in average, there will be one false alarm every 370 samples.
2.5.4 Individual Control Chart

The individuals control chart examines variation in individual sample results over time as shown in Figure 2.4. While rational subgrouping does not apply, thought must be given to when the results were measured. If the process is in statistical control, the average on the individuals chart is our estimate of the population average. The average range was used to estimate the population standard deviation. For individual measurement, e.g., the sample size = 1, use the moving range of two successive observations to measure the process variability. The moving range is defined as in equation (2.6).

\[MR_i = |x_i - x_{i-1}| \quad (2.6) \]

This is the absolute value of the first difference (e.g., the difference between two consecutive data points) of the data. Analogous to the Shewhart control chart, one can plot both the data (which are the individuals) and the moving range. For the control chart for individual measurements, the lines plotted are:

\[UCL = \bar{X} + 3 \frac{MR}{1.128} \]

\[Center \ Line = \bar{X} \quad (2.5) \]

\[LCL = \bar{X} - 3 \frac{MR}{1.128} \]

Keep in mind that either or both averages may be replaced by a standard or target, if available. (Note that 1.128 is the value of \(d_2 \) for \(n=2 \) in Appendix A.)
There are many situations in which the simultaneous monitoring and control of two or more related quality characteristics is necessary. Many process used two or more collated variable, process that used more than one variable, cannot used univariate process (Zainal Abidin & Masood, 2012). Multivariate statistical process control (MSPC) accounts for the fact that there can be correlation or joint effects between different variables in a process (Zorriassatine et al, 2003). For example found in Masood & Hassan (2013), suppose that a roller head has both an inner diameter (ID1) and inner diameter (ID2). These two dependent quality characteristics (multivariate) are needed for MSPC. Figure 2.5 shows illustration of the roller head.
The first original study in multivariate statistical process control (MSPC) was introduced by Hotelling’s T^2 control chart (Umit & Cigdem, 2001). The Hotelling’s T^2 control chart was applied for bombsight data during World War II. Masood & Hassan (2009) has indicated in their research, three most popular MSPC are the multivariate exponentially weighted moving average (MEWMA) and the multivariate cumulative sum (MCUSUM) that is known effective in detecting the process mean shifts. MSPC applies these powerful methods to process and manufacturing data and provide with a better understanding and control over your processes. Thus, will benefit the industry such as:

1. Prevent process failures
2. Improve and optimize product quality and process
3. Reduce process costs
4. Increase overall equipment efficiency

Unfortunately, current practices of MSPC, they do not directly provide diagnosis information to determine the source variable (s) that is responsible for the out-of control signal (Masood & Hassan, 2012). This is confirmed by Guh (2006), he added an addition of weakness MSPC chart is that they cannot provide more detailed shift information, for example the shift magnitude, which would be very useful to practitioners. Niaki & Abbasi (2005) said, although MSPC (T^2 control chart) is optimal for finding a general shift in mean vectors, it is not optimal for shifts in that occur for some subset of variables. They introduce more in their study that a persistent problem in MSPC, namely the interpretation of a signal that often discourages practitioners in applying them. Montgomery (2013), Wang et al. (1998), El-Midany et al. (2010), Chen & Wang (2004), Hwarng (2008) and Masood & Hassan (2009; 2010; 2012;2013) provide reviews and informative discussion on MSPC.
2.6.1 MEWMA Control Chart

The MEWMA control chart is very sensitive in detecting small shifts (≤1.00 standard deviation) as compared to the T^2 control chart. The MEWMA control chart developed by Lowry et al (1992) and it is a logical extension of the univariate EWMA control chart. In the bivariate case, the MEWMA statistics can be defined as follows:

\[
MEWMA_i = [\sigma_2^2 (EWMA_{1i} - \mu_1)^2 + \sigma_1^2 (EWMA_{2i} - \mu_2)^2 - 2\sigma_{12}^2 (EWMA_{1i} - \mu_1) (EWMA_{2i} - \mu_2)] n / (\sigma_1^2 \sigma_2^2 - \sigma_{12}^2) \\
EWMA_{1i} = \lambda Z_{1i} + (1 - \lambda) EWMA_{1i-1} \\
EWMA_{2i} = \lambda Z_{2i} + (1 - \lambda) EWMA_{2i-1}
\] (2.6)

Covariance matrix of MEWMA:

\[
\Sigma MEWMA = (\lambda / (1 - \lambda)) [(\sigma_1^2 \sigma_{12} - \sigma_{12} \sigma_2^2)]
\] (2.9)

2.7 Pattern Recognition in SPC

Pattern recognition is the science of making inferences from perceptual data, using tools from statistics, probability, computational geometry, machine learning, signal processing, and algorithm design (Masood & Hassan, 2010). The techniques of pattern recognition have been successfully used in many areas such as applications in engineering, science, medicine, and business. In particular, advances made during the last half century, now allow computers to interact more effectively with humans and the natural world examples such as speech recognition, word recognition and fingerprint identification (Wen & Dwayne 1994). Table 2.1 shows example of pattern recognition applications in real world.
Table 2.1: Pattern recognition applications

<table>
<thead>
<tr>
<th>Problem Domain</th>
<th>Application</th>
<th>Input Pattern</th>
<th>Pattern Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document image analysis</td>
<td>Optical character recognition</td>
<td>Document image</td>
<td>Characters, word</td>
</tr>
<tr>
<td>Document classification</td>
<td>Internet search</td>
<td>Text document</td>
<td>Semantic categories</td>
</tr>
<tr>
<td>Document classification</td>
<td>Junk email filtering</td>
<td>Email</td>
<td>Junk or non-junk</td>
</tr>
<tr>
<td>Speech recognition</td>
<td>Telephone directory assistance</td>
<td>Speech waveform</td>
<td>Spoken words</td>
</tr>
<tr>
<td>Medical</td>
<td>Computer aided diagnosis</td>
<td>Microscopic image</td>
<td>Cancerous or healthy cell</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>Sequence analysis</td>
<td>DNA analysis</td>
<td>Known type of genes</td>
</tr>
<tr>
<td>Industrial automation</td>
<td>Printed circuit board inspection</td>
<td>Intensity or range image</td>
<td>Defective or non-defective PCB</td>
</tr>
</tbody>
</table>

The effectiveness of the use of SPC control charts depends largely on recognizing out-of-control conditions in terms of patterns (Wang et al., 1998). Guh & Tannock (1999) stated, pattern recognition is an important issue in SPC, as unnatural patterns exhibited by control charts can be associated with specific assignable causes adversely affecting the process. Traditional Shewhart control charts signal only a simple decision, such as within or outside the control limits, based on the most recent observation (Wen & Dwayne, 1994).

Control chart pattern recognition (CCPR) has become an active area of research since late 1980s (Masood & Hassan, 2010). Today, control chart pattern recognition has become an active area of research. Zorriassatine, Tannock & O’Brien (2003) provided a useful review on the application for CCPR. However, it is still limited research and updated review on ANN-based CCPR schemes. There were several pattern recognition approaches done by several researchers. Swift (1987), done a research on SPC control chart pattern recognition using a dichotomous decision tree approach. Swift & Mize (1995) and Cheng (1995), used of expert
systems. Expert system also known as rule-based that contain information explicitly. If required, the rules can be modified and updated easily. While the performance of this system was promising, it was reported that the template-matching is currently computationally too expensive to implement in a real-time application scheme (Cheng, 1997).

2.8 Artificial Neural Network (ANN)

Artificial Neural Networks are relatively basic electronic models based on the neural structure of the brain. The brain basically learns from experience. ANN is a massively parallel-distributed processor that has the ability to learn, recall and generalize knowledge (Haykin, 1999). It is recognized as an important and emerging methodology in the area of classification. ANN has been widely implemented in pattern recognition applications such as hand-written characters, printed characters, bio-signals and speech signals (Masood & Hassan, 2009).

ANN is flexible, adaptive and can better handle noise and changes in the patterns (Susanta & Shankar, 2006). The advantage with an ANN-based pattern recognizer is that it does not require the provision of explicit rules or templates. Rather, it learns to recognize patterns from examples during the training phase. It has the ability to classify an arbitrary pattern not previously encountered. ANN offers useful properties and capabilities such as non-linearity, input and output mapping, adaptability and fault tolerance, among others (Masood & Hassan, 2010). Since then, several other researchers have proposed various ANN-based SPC control chart pattern recognition. In literatures, various artificial ANN-based frameworks found, Chen & Wang (2004), Yu & Xi. (2009) and Niaki & Abbasi (2005) used a MSPC-ANN. Zorriassatine (2003) implemented a Novelty Detector ANN. Guh (2007) suggested a Modular-ANN. Yu & Xi (2009) Ensemble-ANN and El-Midany et al (2010) applied a Multi-Module-Structure-ANN have been investigated for automatically recognizing multivariate process shift patterns. Further and details discussion on these schemes can be found in reference (Masood & Hassan, 2010).

Above highlighted advanced ANN MSPC frameworks have indicated faster shift detection, unfortunately most of them suffers in high false alarms. In general, univariate SPC frameworks average run length, $\text{ARL}_0 \geq 370$, but MSPC frameworks
indicated $\text{ARL}_0 \leq 200$ (Masood & Hassan, 2013). This is so called ‘imbalanced monitoring’ will be effecting to the practitioner to make unnecessary and corrective action due to wrong identification. On the diagnosis side, they are also having a lack of accuracy in identifying the source (causable) variables especially when dealing small shifts. This is so called ‘lack of diagnosis’ would be more difficult for practitioner in searching the root cause errors.

Ideally, sample patterns should be developed from a real process (Cheng & Cheng, 2009). A common approach adopted by previous researches was to generate training samples based on predefined mathematical model. An implicit assumption of this approach is that the groups of unnatural patterns are known in advance. In actual cases, sufficient training samples of unnatural patterns may not be readily available. In addition, the use of pre-defined models may create problems for patterns not previously encountered. Unsupervised neural networks can be used to cluster data into groups with similar features.

2.8.1 Generalized ANN Model

In early study, the development of CCPs recognizers was mainly based on individual/generalized-ANN. Generalized means that the architectures used in recognizer design is either raw data-based or features-based ANN. Most of the previous works used raw process data-based as the input vector for ANN-based CCPR (Cheng & Cheng, 2009). Figure 2.6 below shows the architecture generalized recognizers; raw data-based and generalized feature-based respectively.
Figure 2.6: Generalized-ANN architectures based on three layer MLP model
2.8.2 Synergistic ANN Model

Synergistic-ANN model consisted of a few specialized recognizers which were organized in parallel distribution (Masood & Hassan, 2009). The model aims is to solve complex problem through combination of the strengths offered by different recognizers and recognition technique. The specialized-ANN recognizer requires a smaller network size and easier training process than a generalized-ANN recognizer. In synergistic model, both generalized and specialized recognizer will be combined and final decision will be taken from the maximum output.

2.9 Modelling of Bivariate Samples and Patterns

A big number of bivariate samples are required to perform training and testing for raw data – ANN recognizer. Ideally, such samples should be selected from industry in real world. Unfortunately, they are not economically available or too limited. As such, there is a need for modeling of synthetic samples.

2.9.1 Data Generator

The synthetic samples of bivariate process were generated based on the following steps (Lehman, 1977):

Step 1: Generate random normal variates for process variable-1 \((n_1)\) and process variable-2 \((n_2)\), which is identically and independently distributed (i.i.d.) within \([-3, +3]\):

\[
 n_1 = b \times r_1
\]

\[
 n_2 = b \times r_2
\]

(4.1)

(4.2)

Parameters \((r_1, r_2)\) and \(b\) represent random normal variates (random data) and noise level respectively. Random normal variates are computerized generated data, whereby the noise level is used to rescale its variability. In this research, \(b = 1/3\) is
used to ensure that all random data are simulated within ± 3.00 standard deviations (not exceed the control limits of Shewhart control chart).

Step 2: Transform random normal variates for process variable-1 \((n_1)\) into random data series \((Y_1)\):

\[
Y_1 = \mu_1 + n_1 \sigma_1
\]

(4.3)

Parameters \(\mu_1\) and \(\sigma_1\) respectively represent the mean and the standard deviation for \(Y_1\).

Step 3: Transform random normal variates for process variable-2 \((n_2)\) into random data series \((Y_2)\) dependent to \((Y_1)\).

\[
Y_2 = \mu_2 + \left[n_1 \rho + n_2 \sqrt{(1 - \rho^2)} \right] \sigma_2
\]

(4.4)

Parameters \(\mu_2\) and \(\sigma_2\) respectively represent the mean and the standard deviation for \(Y_2\), whereas \(\rho\) represents the correlation coefficient between \((Y_1, Y_2)\).

Step 4: Compute mean and standard deviation from \((Y_1, Y_2)\). These values represent in-control process mean \((\mu_{01}, \mu_{02})\) and standard deviation \((\sigma_{01}, \sigma_{02})\) for part variables.

Step 5: Transform random data series \((Y_1, Y_2)\) into normal or shift (pattern) data streams to mimic real observation samples \((X_1, X_2)\):

\[
X_1 = h_1 \left(\frac{\sigma_{01}}{\sigma_1} \right) + Y_1
\]

(4.5)

\[
X_2 = h_2 \left(\frac{\sigma_{01}}{\sigma_2} \right) + Y_2
\]

(4.6)
The magnitudes of mean shift \((h_1, h_2)\) are expressed in terms of the standard deviation for the in-control process. A pair observation sample \((X_1, X_2)\) represents a bivariate vector measured at time \(t\) \((X_t)\) that follows the random normal bivariate distribution \(N(\mu_0, \Sigma_0)\). The notations \(\mu_0\) and \(\Sigma_0 = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}\) represent mean vector and covariance matrix for bivariate in-control process with variances \((\sigma_1^2, \sigma_2^2)\) and covariance \((\sigma_{12} = \sigma_{21})\).

Step 6: Rescale pattern data streams into a standardize range within \([-3, +3]\):

\[
Z_1 = \frac{(X_1 - \mu_{01})}{\sigma_{01}} \quad (4.7)
\]
\[
Z_2 = \frac{(X_2 - \mu_{02})}{\sigma_{02}} \quad (4.8)
\]

A pair standardized sample \((Z_1, Z_2)\) represents a standardized bivariate vector measured at time \(t\) \((Z_t)\) that follows the standardized normal bivariate distribution \(N(0, R)\). Zero value and \(R = \begin{pmatrix} (1 & \rho) \\ (\rho & 1) \end{pmatrix}\) represent mean vector and general correlation matrix for bivariate in-control process with unity variances \((\sigma_1^2 = \sigma_2^2 = 1)\) and covariance equal to cross correlation \((\sigma_{12} = \sigma_{21} = \rho)\).

2.9.2 Bivariate Patterns

Seven possible categories of bivariate patterns as follows were considered in representing the bivariate process variation in mean shifts:

1. Normal(0,0)/N(0,0): both variables \(X_{1i}\) and \(X_{2i}\) remain in-control
2. Up-Shift(1,0)/US(1,0): \(X_{1i}\) shifted upwards, while \(X_{2i}\) remains in-control
3. Up-Shift(0,1)/US(0,1): \(X_{2i}\) shifted upwards, while \(X_{1i}\) remains in-control
REFERENCES

