AIR BREAKDOWN UNDER LIGHTNING IMPULSE WITH

PLANE-PLANE ELECTRODE

NIK AZNAN BIN AB. HADI

A Project Report submitted in partial
fulfillment of the requirement for the award of the
Degree of Master of Electric Power

Faculty of Electrical and Electronics Engineering
Universiti Tun Hussein Onn Malaysia

JULY 2014
ABSTRACT

Breakdown voltage is a phenomenon where the quantity of an electrical force is required to transform the electrical properties of an object. In other words, breakdown voltage is also called the striking voltage. This breakdown voltage of an insulator is the minimum voltage that can cause some part of the insulator to become electrically conductive. The high voltage power equipment is mainly subjected to spark over voltage. Spark over can be useful in some cases (for example spark plug) and may give side effect or damage (sparking in switching devices) to machine. Therefore the research about the behavior of spark over and breakdown voltage is significant in electrical engineering designing process. The project is started with experimental setup to get the standard impulse voltage. This lightning impulse voltage is ensured to follow the standard of BS EN 60060-1:2010. The procedure of this experiment follows the TERCO catalogue documentation. In this project, the standard plane to plane gap is used to measure the peak value of DC impulse voltages. The gap length between the planes will be varied. Lightning-impulse voltage is an impulse voltage with a front time less than 20μs. In this project, the FEMM software is used for modeling and analysis of electric field distribution in plane to plane electrode. This software provides a wide range of simulation applications for controlling the complexity of both modeling and analysis of a system. The electrodes gap distances are being varied to 5 different gaps which are 10 mm, 15 mm, 20 mm, 25 mm and 30 mm. The simulation of electric field was done for plane to plane electrode arrangement with 5 different gaps and the result of analyzing using FEMM will be discussed here.
ABSTRAK

CONTENTS

TITLE i
DECLARATION ii
ABSTRACT iii
CONTENTS iv
LIST OF TABLE vii
LIST OF FIGURE viii

1 PROJECT OVERVIEW 1
1.1 Introduction 1
1.2 Problem Statement 2
1.3 Objective 2

2 LITERATURE REVIEW 3
2.1 Breakdown Voltage of Air 3
2.2 Lightning 4
2.3 Spark Over 5
2.4 Flashover 6
2.5 Finite Element Method Magnetic (FEMM) 7
2.6 Townsend Theory 8
2.7 Paschen’s Law Theory 9
2.8 Marx Generator

3 METHODOLOGY

3.1 Safety Regulations for High Voltage Experiments

3.2 Experiment Setup to Measure Air Breakdown under Lightning Impulse with Plane-Plane Electrode

3.3 Electrode Arrangement for Measurement of Breakdown Voltage

3.4 Standard Operation Procedure for Measuring Breakdown Voltage

3.5 British Standard

3.6 Up-and-down Method

4 RESULT DATA ANALYSIS AND DISCUSSION

4.1 Full Lightning-Impulse Voltages

4.2 Analyzing Result Using Up and Down Method

4.2.1 Plane to Plane 10 mm

4.2.2 Plane to Plane 15 mm

4.2.3 Plane to Plane 20 mm

4.2.4 Plane to Plane 25 mm

4.2.5 Plane to Plane 30 mm

4.3 Comparison of Gap and U50 (kV) Breakdown Voltage

4.4 Finite Element Method Magnetic (FEMM)

4.5 The Steps to Draw and Run the Simulation Using FEMM

4.6 Analyzing Result Using FEMM Software

4.6.1 Plane to plane 10 mm

4.6.2 Plane to Plane 15 mm

4.6.3 Plane to Plane 20 mm
4.6.4 Plane to Plane 25 mm ... 61
4.6.5 Plane to Plane 30 mm ... 66

4.7 Analyzing Result Using FEMM with u50, E max, Field Utilization Factor (F.U.F) and Gap ... 71

5 CONCLUSION AND RECOMMENDATION .. 76

5.1 Conclusion .. 76

5.2 Recommendation ... 78

REFERENCES .. 79
LIST OF TABLES

3.1 Equipment used .. 14
4.1 Breakdown result for 10 mm gap 32
4.2 Breakdown result for 15 mm gap 34
4.3 Breakdown result for 20 mm gap 36
4.4 Breakdown result for 25 mm gap 38
4.5 Breakdown result for 30 mm gap 40
4.6 Relation Gap (mm) with U50 (KV) plane to plane 42
4.7 Gap Distance with U50, E_{max}, E_{mean}, and F.U.F 71
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Lightning [6]</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Spark Over [8]</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Flashover [10]</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Plane to Plane</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Townsend [14]</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Paschen’s Law [16]</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Circuit Marx Generator</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>Marx Generator [18]</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic Diagram for experimental Setup for Generation of Lightning Impulse Voltages</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>Block diagram Generation of Lightning Impulse Voltages</td>
<td>16</td>
</tr>
<tr>
<td>3.3</td>
<td>HV 9103 Control Desk</td>
<td>17</td>
</tr>
<tr>
<td>3.4</td>
<td>Smoothing Capacitor</td>
<td>18</td>
</tr>
<tr>
<td>3.5</td>
<td>Silicon Rectifier</td>
<td>18</td>
</tr>
<tr>
<td>3.6</td>
<td>Test Transformer</td>
<td>18</td>
</tr>
<tr>
<td>3.7</td>
<td>Measuring Spark Gap</td>
<td>19</td>
</tr>
<tr>
<td>3.8</td>
<td>Single-stage Impulse Voltage Test Set-up Discharger Rod on the Capacitor</td>
<td>19</td>
</tr>
<tr>
<td>3.9</td>
<td>Vessel for Vacuum and Pressure</td>
<td>20</td>
</tr>
<tr>
<td>3.10</td>
<td>Plane to Plane Electrodes</td>
<td>21</td>
</tr>
<tr>
<td>3.11</td>
<td>Plane-Plane Electrodes</td>
<td>22</td>
</tr>
<tr>
<td>3.12</td>
<td>Install Plane to Plane Electrode</td>
<td>23</td>
</tr>
<tr>
<td>3.13</td>
<td>Main switch</td>
<td>23</td>
</tr>
<tr>
<td>3.14</td>
<td>Primary and Secondary Buttons</td>
<td>24</td>
</tr>
<tr>
<td>3.15</td>
<td>Status Bulb</td>
<td>24</td>
</tr>
<tr>
<td>3.16</td>
<td>Variable –Speed-Maximum button</td>
<td>25</td>
</tr>
<tr>
<td>3.17</td>
<td>Sphere Gap Measurement</td>
<td>25</td>
</tr>
<tr>
<td>3.18</td>
<td>Primary and Secondary Buttons</td>
<td>26</td>
</tr>
<tr>
<td>3.19</td>
<td>Discharge ‘Earth Stick’</td>
<td>26</td>
</tr>
</tbody>
</table>
3.20 Gate Area
3.21 Full lightning-impulse voltages
3.22 Full impulse voltage time parameters
3.23 Up and Down method
4.1 Full Lightning-Impulse Voltages for Plane and Plane Electrode
4.2 Impulse voltage (kV) vs. Number of Try
4.3 Impulse voltage (kV) vs. Number of Try
4.4 Impulse voltage (kV) vs. Number of Try
4.5 Impulse voltage (kV) vs. Number of Try
4.6 Impulse voltage (kV) vs. Number of Try
4.7 Graph U50 (kV) vs. Gap (mm)
4.8 Mesh for Gap 10 mm
4.9 Voltage Density Analyze for gap 10 mm
4.10 Field Intensity |E| for Gap 10 mm
4.11 Contour & vector for Gap 10 mm
4.12 Graph for voltage density for point a to b plane-plane configuration
4.13 Mesh for 15 mm Gap
4.14 Voltage Density Analyze for 15 mm Gap
4.15 Field Intensity |E| for 15 mm gap
4.16 Contour and Vector | for 15 mm gap
4.17 Graph for voltage density for point a to b plane-plane configuration
4.18 Graph for electric field intensity |E| for point a to b for plane-plane electrodes 15 mm
4.19 Mesh for 20 mm Gap
4.20 Voltage Density Analyze for 20 mm Gap
4.21 Field Intensity |E| for 20 mm gap
4.22 Contour and Vector | for 20 mm gap
4.23 Graph for voltage density for point a to b plane-plane configuration
4.24 Graph for electric field intensity |E| for point a to b for plane-plane electrodes 20 mm
4.25 Mesh for 25 mm Gap
4.26 Voltage Density Analyze for 25 mm Gap
4.27 Field Intensity |E| for 25 mm gap
4.28 Contour and Vector | for 25 mm gap
4.29 Graph for voltage density for point a to b plane-plane configuration
4.30 Graph for electric field intensity $|E|$ for point a to b for plane-plane electrodes
25 mm
4.31 Mesh for 30 mm Gap
4.32 Voltage Density Analyze for 30 mm Gap
4.33 Field Intensity $|E|$ for 30 mm gap
4.34 Contour and Vector $|$ for 30 mm gap
4.35 Graph for voltage density for point a to b plane-plane configuration
4.36 Graph for electric field intensity $|E|$ for point a to b for plane-plane electrodes
30 mm
4.37 Graph of U_{50} for Plane to Plane Electrode
4.38 Graph of E_{max} vs Field Utilization Factor (F.U.F)
4.39 Graph of E_{max} vs Gap (cm)
4.40 Graph of U_{50} vs Field Utilization Factor (F.U.F)
4.41 Graph of Field Utilization Factor (F.U.F) vs Gap
CHAPTER 1

PROJECT OVERVIEW

1.1 Introduction
Rapid growth in power sector of nation has given the opportunity to empower engineers to protect the power equipment for reliable operation during their operating life. It has been seen from the studies conducted by power engineers that one of the main problems in high voltage power (HV) equipment is the degradation of insulation quality of power equipment. As the high voltage power equipment are mainly subjected with spark over voltage causes by the lightning strokes, a protective device is used to determine the safe clearance required for proper insulation level. The plane gaps of different configuration are commonly used for this purpose.

The electric breakdown strength of an air-insulated gap between two plane metal electrodes can be improved considerably by an experiment. In the past several decades, extensive amount of research work has been done to understand the fundamental characteristics of the electrical breakdown [1]. Therefore, electrical breakdown characteristic of small air gap under the different applied voltage has its great significance for the design of overhead line, substation equipment and various air insulated HV equipment.

In this study to simulate the air breakdown voltage experimentally in high voltage laboratory is used for measurement of air breakdown voltages and electric field of the high voltage equipment. The above experiment is conducted at the normal temperature and pressure. In addition the influence of the air breakdown test has also been considered in this study. The simulation of such air breakdown voltage has been carried out in the FEMM software. Finally, the experimental result has been compared with theoretical, and simulation results.
1.2 Problem Statement

Over the past few years, the advancement of simulation tools technology have shown a great increase of researches done on Air breakdown under lightning impulse. These factors include the physical parameters of the electrodes (Plane, sphere, point and needle).

In electrical power system, high voltage (HV) power equipment is mainly subjected with spark over voltage. There have many advantages and disadvantages for that issue.

One of the advantage, is to produce high voltages for laser printers and cathode ray tube televisions, which has similarities to auto ignition for the spark plug to start the engine. Such example can be seen if a Transmission line (High Voltage) is not properly installed at actual distance or gap. It can be a disadvantage to human and can bring an effect like a sparking. So the technology is important and must be designed for our safety and benefit.

1.3 Objective

In electrical power system, high voltage (HV) power equipment is mainly subjected with spark over voltage. These over voltage may be cause by the lighting strokes will determine the safe clearance required for proper insulation level.

To avoid these problems in high voltage power equipment, plane gap method is considered as one of the standard methods for the measurement of peak value of DC impulse voltages. This method is used for measuring air breakdown under lightning impulse. The plane gap method is not complex and the accuracy is acceptable.

The main objectives of the report are:

a. To study setup circuit to generate impulse voltage lightning of air breakdown voltage with plane to plane electrode.

b. To study the method in finding the U_{50} voltage of impulse voltage using standard plane to plane for experimental setup in different gap plane electrode.

c. To find the electric field intensity $|E|$ using FEMM software comparison in all the studies.

d. To clarify the point of the electrode that produces the maximum electric field.
CHAPTER 2

LITERATURE REVIEW

Electrical breakdown or dielectric breakdown refers to a rapid reduction in the resistance of an electrical insulator when the voltage applied across it exceeds the breakdown voltage [2]. This results in a portion of the insulator becoming electrically conductive.

Electrical breakdown may be a momentary event (as in an electrostatic discharge), or may lead to a continuous arc discharge if protective devices fail to interrupt the current in a high power circuit. Under sufficient electrical stress, electrical breakdown can occur within air, gases, liquids and solids [3]. However, the specific breakdown mechanisms are significantly different for each, particularly in different kinds of dielectric medium.

2.1 Breakdown Voltage of Air

The breakdown in air (spark breakdown) is the transition of a non-sustaining discharge into a self-sustaining discharge. The buildup of high currents in a breakdown is due to the ionization in which electrons and ions are created from neutral atoms or molecules, and their migration to the anode and cathode respectively leads to high currents [4].

Townsend theory are the present types of theories which explain the mechanism of breakdown under different conditions as temperature, pressure, nature of electrode surfaces, electrode field configuration and availability of initial conducting particles . Normally air medium is widely used as an insulating medium in different electrical power equipment and overhead lines as its breakdown strength is 30kV/cm [5].
2.2 Lightning

Lightning is a massive electrostatic discharge between the electrically charged regions within clouds or between a cloud and the surface of a planet. The charged regions within the atmosphere temporarily equalize themselves through a lightning flash, commonly referred to as a *strike* if it hits an object on the ground [6].

Lightning is also the occurrence of a natural electrical discharge of a very short duration and high voltage between a cloud and the ground or within a cloud, accompanied by a bright flash and typically also thunder.

Hazards due to lightning obviously include a direct strike on human or property. However, lightning can also create dangerous voltage gradients in the earth, as well as an electromagnetic pulse, and can charge extended metal objects such as telephone cables, fences, and pipelines to dangerous voltages that can be carried many miles from the site of the strike. Although many of these objects are not normally conductive, very high voltage can cause the electrical breakdown of such insulators, causing them to act as conductors [7]. Lightning strikes also start fires and explosions, which result in fatalities, injuries, and property damage. (See Figure 2.1)

Figure 2.1: Lightning [6]
2.3 Spark Over

A spark gap (see Figure 2.2) consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the voltage difference between the conductors exceed the gap's breakdown voltage, a spark forms, ionizing the gas and drastically reducing its electrical resistance [8]. This usually happens when the voltage drops, but in some cases when the heated gas rises, stretching out and then breaking the filament of ionized gas. Usually, the action of ionizing the gas is violent and disruptive, often leading to sound (ranging from a snap for a spark plug to thunder for a lightning discharge), light and heat.

The dielectric breakdown the strength of dry air, at Standard Temperature and Pressure (STP), the spherical electrodes is approximately 33 kV/cm. This is only as a rough guide, since the actual breakdown voltage is highly dependent upon the electrode shape and size. Strong electric fields (from high voltages applied to small or pointed conductors) often produce visible sparks [9]. Even a small 9 V battery can spark noticeably by this mechanism in a darkened room.

Figure 2.2: Spark Over [8]
2.4 Flashover

A flashover (Figure 2.3) is a near-simultaneous ignition of most of the directly exposed combustible material in an enclosed area. When certain organic materials are heated, they undergo thermal decomposition and release flammable gases. Flashover occurs when the majority of the exposed surfaces in a space are heated to their auto-ignition temperature and emit flammable gases [10].

An example of flashover is when a piece of furniture is ignited in a domestic room. The fire involving the initial piece of furniture can produce a layer of hot smoke which spreads across the ceiling in the room. The hot buoyant smoke layer grows in depth, as it is bounded by the walls of the room. The radiated heat from this layer heats the surfaces of the directly exposed combustible materials in the room, causing them to give off flammable gases via pyrolysis [11]. When the temperatures of the evolved gases become high enough, these gases will ignite, throughout their extent.

![Image: Arc Flash and Blast](image)

Figure 2.3: Flashover [10]
2.5 **Finite Element Method Magnetic (FEMM)**

FEMM is a suite of programs for solving low frequency electromagnetic problems on two-dimensional planar and axisymmetric domains. The program currently addresses linear/nonlinear magneto static problems, linear/nonlinear time harmonic magnetic problems, linear electrostatic problems, and steady-state heat flow problems [12].

Finite element method is used in a wide variety of engineering problems like solid mechanics, dynamics, heat problems, fluids and electrostatic problems. Finite element analysis cuts a structure into several elements (pieces of the structure). This process results in a set of simultaneous algebraic equations. The behavior of electric field is based on the nature of electrodes (uniform and non-uniform). Finite element method uses the concept of piece wise polynomial interpolation. By connecting elements together, the electric field quantity becomes interpolated over the entire structure in piece wise fashion. In this method indeterminate structures are solved [13]. It can handle complex loadings like nodal load (point loads), element load (pressure, thermal and inertial forces) and time or frequency dependent loading.

The modeling and analysis of electric field distribution in plane to plane electrode is done by using FEMM software. In this software to construct plane gap arrangement using all the required numerical and physical parameters. And find out maximum electric field in between plane electrodes. The apparatus, shown in Figure 2.4, consists mainly of two vertically fixed plane electrodes separated with a gap. The electrodes serve as the electrodes that are connected to a high-voltage transformer driven by the frequency-convertible power supply. Two planes were made with aluminum.

2.6 Townsend Theory

The Townsend discharge is a gas ionization process where free electrons, accelerated by a sufficiently strong electric field, give rise to electrical conduction through a gas by avalanche multiplication caused by the ionization of molecules by ion impact. When the number of free charges drops or the electric field weakens, the phenomenon ceases [14].

The Townsend discharge is named after John Sealy Townsend, who discovered the fundamental ionization mechanism by his work between 1897 and 1901. It is also known as a "Townsend avalanche".

Townsend mechanism when applied to breakdown at atmospheric pressure was found to have certain drawbacks. Firstly, according to the Townsend theory, current growth occurs as a result of ionization processes, only. But in practice, breakdown voltages were found to depend on the gas pressure and the geometry of the gap [15].
While the Townsend mechanism predicts a much diffused form of discharge, in actual practice, discharges were found to be filamentary and irregular. (See Figure 2.5)

2.7 Paschen’s Law Theory

Paschen's Law is an equation that gives the breakdown voltage, that is the voltage necessary to start a discharge or electric arc, between two electrodes in a gas as a function of pressure and gap length. It is named after Friedrich Paschen who discovered it empirically in 1889 [16].

Paschen studied the breakdown voltage of various gases between parallel metal plates as the gas pressure and gap distance were varied. The voltage necessary to arc across the gap decreased as the pressure was reduced and then increased gradually, exceeding its original value. He also found that at normal pressure, the voltage needed to cause an arc reduced as the gap size was reduced but only to a point [17]. As the gap was reduced further, the voltage required to cause an arc began to rise and again exceeded its original value. For a given gas, the voltage is a function only of the product of the pressure and gap length. The curve he found of voltage versus the pressure-gap length product \((right)\) is called Paschen's curve. He found an equation that fitted these curves, which is now called Paschen's law. (See Figure 2.6)

At higher pressures and gap lengths, the breakdown voltage is approximately proportional to the product of pressure and gap length, and the term Paschen's law is
sometimes used to refer to this simpler relation. However this is only roughly true, over a limited range of the curve.

Figure 2.6: Paschen’s Law [16]

2.8 Marx Generator

A Marx generator is an electrical circuit first described by Erwin Otto Marx in 1924. Its purpose is to generate a high-voltage pulse. Marx generators are used in high energy physics experiments, as well as to simulate the effects of lightning on power line gear and aviation equipment. A bank of 36 Marx generators is used by Sandia National Laboratories to generate X-rays in their Z Machine [18].

The circuit generates a high-voltage pulse by charging a number of capacitors in parallel, then suddenly connecting them in series. See (Figure 2.7). At first, \(n \) capacitors \((C)\) are charged in parallel to a voltage \(V \) by a high voltage DC power supply through the resistors \((R_C)\). The spark gaps used as switches have the voltage \(V \) across them, but the gaps have a breakdown voltage greater than \(V \), so they all behave as open circuits while the capacitors charge. The last gap isolates the output of the generator from the load; without that gap, the load would prevent the capacitors from charging.
To create the output pulse, the first spark gap is caused to break down (triggered); the breakdown effectively shorts the gap, placing the first two capacitors in series, applying a voltage of about $2V$ across the second spark gap.

Consequently, the second gap breaks down to add the third capacitor to the "stack", and the process continues to sequentially break down all of the gaps. The last gap connects the output of the series "stack" of capacitors to the load. Ideally, the output voltage will be nV, the number of capacitors times the charging voltage, but in practice the value is less.

Note that none of the charging resistors R_c are subjected to more than the charging voltage even when the capacitors have been erected. The charge available is limited to the charge on the capacitors, so the output is a brief pulse as the capacitors discharge through the load (and charging resistors). At some point, the spark gaps stop conducting and the high voltage supply begins charging the capacitors again.

The principle of multiplying voltage by charging capacitors in parallel and discharging them in series is also used in the voltage multiplier circuit, it is used to produce high voltages for laser printers and cathode ray tube televisions, which has similarities to this circuit. Marx generators are used to provide high-voltage pulses for the testing of insulation of electrical apparatus such as large power transformers,
or insulators used for supporting power transmission lines. Voltages applied may exceed 2 million volts for high-voltage apparatus. (See Figure 2.8)

Figure 2.8: Marx Generator [18]
CHAPTER 3

METHODOLOGY

3.1 Safety Regulations for High Voltage Experiments

Experiments with high-voltages could become particularly hazardous for the participants should the safety precautions be inadequate. To give an idea of the required safety measures, an example of the safety regulations followed in several High Voltage Laboratories shall be described below.

These supplement the appropriate safety regulations and as far as possible prevent risks to human. Strict observance is therefore the duty of every one working in the laboratory. Here any voltage greater than 250 V against earth is understood to be a high voltage.

The fundamental rule before entering a high-voltage setup area is everybody must convince themselves by personal observation that all the conductors assume as high potential and lie in the contact zone are earthed, and that all the main leads are interrupted. The equipment, schematic diagram (test setup) and block diagram must be used when conducting this experiment. This is shown in Table 3.1, Figure 3.1 and Figure 3.2
3.2 Experiment Setup to Measure Air Breakdown under Lightning Impulse with Plane-Plane Electrode

Table 3.1: Equipment used

<table>
<thead>
<tr>
<th>COMPONENT DESCRIPTION</th>
<th>TERCO TYPE</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV Test Transformer</td>
<td>HV9105</td>
<td>1</td>
</tr>
<tr>
<td>Control Desk</td>
<td>HV9103</td>
<td>1</td>
</tr>
<tr>
<td>Smoothing Capacitor</td>
<td>HV9112</td>
<td>1</td>
</tr>
<tr>
<td>Load Capacitor</td>
<td>HV9120</td>
<td>1</td>
</tr>
<tr>
<td>Silicon Rectifier</td>
<td>HV9111</td>
<td>2</td>
</tr>
<tr>
<td>Measuring Resistor</td>
<td>HV9113</td>
<td>1</td>
</tr>
<tr>
<td>Charging Resistor</td>
<td>HV9121</td>
<td>1</td>
</tr>
<tr>
<td>Wavefront Resistor</td>
<td>HV9122</td>
<td>1</td>
</tr>
<tr>
<td>Wavetail Resistor</td>
<td>HV9123</td>
<td>1</td>
</tr>
<tr>
<td>Sphere Gap</td>
<td>HV9125</td>
<td>1</td>
</tr>
<tr>
<td>Drive for sphere gap</td>
<td>HV9126</td>
<td>1</td>
</tr>
<tr>
<td>Insulating Rod</td>
<td>HV9124</td>
<td>2</td>
</tr>
<tr>
<td>Connecting Rod</td>
<td>HV9108</td>
<td>2</td>
</tr>
<tr>
<td>Connecting cup</td>
<td>HV9109</td>
<td>7</td>
</tr>
<tr>
<td>Floor Pedestal</td>
<td>HV9110</td>
<td>6</td>
</tr>
<tr>
<td>Spacer Bar</td>
<td>HV9119</td>
<td>4</td>
</tr>
<tr>
<td>Electrode</td>
<td>HV9138</td>
<td>1</td>
</tr>
<tr>
<td>Earthing Switch</td>
<td>HV9114</td>
<td>1</td>
</tr>
<tr>
<td>Earthing Rod</td>
<td>HV9107</td>
<td>1</td>
</tr>
<tr>
<td>DC Voltmeter</td>
<td>HV9151</td>
<td>1</td>
</tr>
<tr>
<td>Impulse Peak voltmeter</td>
<td>HV9152</td>
<td>1</td>
</tr>
<tr>
<td>Low Voltage Divider</td>
<td>HV9130</td>
<td>1</td>
</tr>
<tr>
<td>Measuring Spark Gap</td>
<td>HV9133</td>
<td>1</td>
</tr>
<tr>
<td>Spacer Bar (for HV9133)</td>
<td>HV9118</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 3.1: Schematic Diagram for experimental Setup for Generation of Lightning Impulse Voltages
Figure 3.2: Block diagram Generation of Lightning Impulse Voltages
There is some picture provided as a reference to identify the equipment used in this experiment Generation of impulse voltages

HV 9103 Control Desk

The Control Desk (see Figure 3.3) is used to control and operate high voltage AC/DC/Impulse test equipment. The desk contains operating and signal elements for the control circuit of the test equipment for warning and safety. The control desk is made to house the measuring instruments (Peak, Impulse and DC Voltmeters) and also the Trigger Device. The HV 9103 is fabricated of steel and stands on four wheels.

![Figure 3.3: HV 9103 Control Desk](image-url)
HV 9112 Smoothing Capacitor

![Smoothing Capacitor](image1.png)

Figure 3.4: Smoothing Capacitor

HV 9111 Silicon Rectifier

![Silicon Rectifier](image2.png)

Figure 3.5: Silicon Rectifier

HV 9105 Test Transformer

Test transformer (Figure 3.6) with coupling winding for cascade connection to produce AC high voltage. The transformer consists of three windings with insulating shell and the top and bottom are corona free aluminum shielding electrodes.

![Test Transformer](image3.png)

Figure 3.6: Test Transformer
HV 9133 Measuring Spark Gap

Plane Gap (Figure 3.7) is a standard measuring device for flash over voltage using various electrode arrangements. It consists of supporting arrangements like remote and hand operated gear for easy gap setting.

![Figure 3.7: Measuring Spark Gap](image)

Figure 3.7: Measuring Spark Gap

![Figure 3.8: Single-stage Impulse Voltage Test Set-up Discharger Rod on the Capacitor](image)

Figure 3.8: Single-stage Impulse Voltage Test Set-up Discharger Rod on the Capacitor
HV 9134 Vessel for Vacuum and Pressure.

For the determination of the flashover voltage of electrode arrangements as a function of vacuum and pressure. The vessel consists of a Plexiglas cylinder fixed with top and bottom flanges which are connected to high voltage and ground potential respectively. The bottom cover is equipped with the necessary accessories like inlet valve, outlet valve and measuring gauges for pressure and vacuum. The earthing terminal is provided in the bottom pedestal. The 50 mm sphere electrodes are mounted as shown in (Figure 3.9) And Figure (3-10)
3.3 Electrode Arrangement for Measurement of Breakdown Voltage

Plane-Plane

The plane-plane electrode arrangement is also known as uniform field spark gap. These gaps provide accuracy within 0.2% for alternating voltage measurements; an appreciable improvement as compared with the equivalent sphere gap arrangement. The advantages of this electrode arrangement are not influenced by nearby earthed objects and no polarity effect. However, the disadvantages are very accurate mechanical finish of the electrode is required, careful parallel alignment of the two electrodes and Influence of dust brings in erratic breakdown of the gap. This is much more serious in these gaps as compared with sphere gaps as the highly stressed electrode areas become much larger. Hence, a uniform field gap is normally not used for high voltage measurements. The Plane-Plane electrode arrangement is shown in Figure 3.11
At normal temperature and pressure, the breakdown voltage of air in the gap between plate-plate electrodes is $V = 24.22 S + 6.08 \sqrt{S}$

Where, S is the gap length between the electrodes. In recent years, however, there has been a growing interest in the effects of the electrode area and stressed volume on the breakdown voltage of plate-plate gaps. The uniformity of the field along the electrode surface has also taken on a certain importance as it directly affects both the useful electrode area and stressed volume [19]. In plane-plane electrode arrangement electric field is maintained maximum.
3.4 Standard Operation Procedure for Measuring Breakdown Voltage

How to Turn ‘ON’ the HV Modulator Training Set Control Panel

1. Install Plane to Plane electrode at Measuring Spark Gap tool.

![Figure 3.12: Install Plane to Plane Electrode](image)

2. Switch on the main switch on the wall.

![Figure 3.13: Main switch](image)
3. Switch on the key at control panel
4. Push the main switch button at control panel.(Green)
5. Decrease ‘voltage Regulation’
7. Push the’ Primary’ button and the stick will be down.

8. Push the ‘secondary ’button, the red light on the fence will light up.
REFERENCES

