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ABSTRACT 

 

 

Fuzzy logic has been widely used in many engineering applications since this can 

overcome the limitations of conventional method of data analysis, modelling and 

system identification, and control system. The capability of dealing with highly non-

linear system modelling that is so complex that require absolute analytical design 

make these mathematical model architecture more popular in the engineering field. 

This project is addressed on the modelling of induction motor Auto-Regressive with 

exogenous input (ARX) model structure using fuzzy logic. In this case fuzzy logic is 

combined with neural network of said Neuro Fuzzy (ANFIS) is applied and has 

functioned as estimator of the ARX model parameters. The ARX model of induction 

motor is estimated from its input output data. Input variable is voltage and output 

variable is speed. The experimental results show that the best model responses have 

similarly trend with the motor actual responses, final prediction error is 0.00873, loss 

function is 0.00807, and fit to working data is 67.22%. It means the model produce 

from system identification able adopt the motor dynamic and can use for replacing 

real motor for analysis and control design.   
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ABSTRAK 

 

 

Logik kabur telah digunakan secara meluas dalam aplikasi kejuruteraan, ini kerana ia 

boleh mengatasi keterbatasan dalam kaedah konvensional bagi membuat data 

analisis, model, sistem pengenalan dan sistem kawalan. Bagi sistem model bukan 

linear memerlukan analisis rekabentuk yang mutlak, dimana ia melibatkan 

matematik model yang popular dalam bidang kejuruteraan. Projek ini melibatkan 

model motor aruhan auto-regresif dengan model struktur input luarannya(ARX) 

menggunakan logik kabur. Dalam projek ini logik kabur digabungkan dengan 

rangkaian neural (ANFIS) yang berfungsi untuk menganggar parameter bagi ARX 

model. Di mana model ARX bagi motor aruhan ini dianggarkan daripada data bagi 

input dan output.Input bagi motor aruhan ini adalah voltan sementara output adalah 

kelajuan bagi motor aruhan. Hasil projek ini menunjukkan model yang terbaik untuk 

motor aruhan mempunyai model yang sama dengan motor aruhan sebenar, dimana 

ramalan ralat akhir adalah 0.00873, fungsi badan adalah 0.00807 dan sesuai untuk 

data yang berfungsi pada 67.22%. Ini bermakna model ini boleh diterima pakai bagi 

motor aruhan dinamik dan boleh digunakan untuk menggantikan motor sebenar bagi 

tujuan analisis dan rekabentuk kawalan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

1.1 Project Background 

 

 

The induction motor, which is the most widely used motor type in the industry, has 

been favoured because of its good self-starting capability, simple and rugged 

structure, low cost and reliability. Along with variable frequency AC inverters, 

induction motors are used in many adjustable speed applications which do not 

require fast dynamic response. The concept of vector control has opened up a new 

possibility that induction motors can be controlled to achieve dynamic performance 

as good as brushless DC motors.  

In order to understand and analyze vector control, the dynamic model of the 

induction motor is necessary. It has been found that the dynamic model equations 

developed on a rotating reference frame is easier to describe the characteristics of 

induction motors. Any method for speed prediction is based on a model of the motor 

and the drive. The best accuracy of prediction for an induction motor is needed. 

Today, there are many choices of modelling techniques. One of them is system 

identification where it identifies the behaviour of a given system by estimating the 

model from input and output data. The estimated model is useful to simulate and 

predict the behaviour of the system. Not limited to that, the fitted model can be 

employed to regulate the output of plant.  

An ARX model is one of the linear models that is usual used as a candidate 

model in system identification. The ARX stands for Auto-Regressive with 
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Exogenous Input where its autoregressive variable comprising of past output data 

and the exogenous input variable is represented as past input data (Bjorn Sohlberg, 

2005). In other word, this model is used to estimate the parameters in the model 

structure from historical input-output data of a scrutiny system.  

The ARX model is among the simple Models for linear process and it is easy 

to be implemented (Xiangdong Wang et all, 2008). This project is addressed the 

modelling of induction motor based on the ARX model structure using fuzzy logic. 

Fuzzy models become useful when a system cannot be defined in precise 

mathematical terms. The non-fuzzy or traditional representations require a well 

structured model and well defined model parameters. Even if the structure is known, 

numerical model representations usually become irrelevant and computationally 

inefficient as the complexity increases. Moreover, there may be a lot of uncertainties, 

unpredictable dynamics and other unknown phenomena that cannot be 

mathematically modelled at all. Therefore, when a system cannot be modelled with 

traditional methods for the reasons stated above, then fuzzy logic offers an efficient 

mathematical tool in handling many practical problems. The main contribution of 

fuzzy control theory is its ability to handle many practical problems that cannot be 

adequately handled by conventional control methods.  

Fuzzy modelling of the systems has been observed in many scientific 

researches. Takagi and Sugeno have proposed a search algorithm for a fuzzy 

controller and generalized their research for fuzzy identification (T. Takagi & M. 

Sugeno,1985). Sun has observed a modelling scheme for an adaptive-network-based 

fuzzy inference system (C.T. Sun, 1994). Chen, Pham and Weiss have shown that 

state space model of a linear system can be modelled fuzzily and extended their 

study on nonlinear systems (G. Chen et all,1995). Eksin and Ayday have proposed an 

approach for fuzzy identification of nonlinear systems (I. Eksin & C.T. Ayday, 

1993), Mouzouris and Mendel have implemented a search algorithm for dynamical 

non-singleton fuzzy control systems (G.C. Mouzouris & J.M. Mendel, 1997). In the 

studies listed above, except the one by Takagi and Sugeno, the models require some 

human knowledge and experience. The operator’s experience in the system is 

involved in the mathematics of fuzzy control theory as a collection of “if...then” 

rules, known as “heuristic rules”. The main goal of this paper is to present a 
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mathematical way of defining a fuzzy model of a nonlinear system without 

necessitating any human knowledge. 

 

 

1.2 Problem Statements 

 

System identification in control theory is about building a mathematical model, 

which identifies any dynamical system or signal, based on observed inputs and 

outputs data. The key problem in modelling induction motor is to find a suitable 

model structure. To avoid this problem, in this project nonlinear ARX modelling has 

been chosen as a candidate model of induction motor and fuzzy logic as an estimator 

algorithm. 

 

1.3 Project Objectives 

 

The objectives of this project consist of the following: 

1. To design fuzzy logic for system modelling. 

2. To derive ARX model structure for induction motor candidate model.  

3. To collect input output data of induction motor through experimental 

test. 

4. To identify mathematical model of induction motor using fuzzy logic. 

Algorithm based on induction motor input output data. 

5. To validate the identified induction motor mathematical model. 

 

 

1.4 Scopes of the project 

 

The scopes of the project are: 

1. Induction motor input output data are collected in experimental test. 

2. Induction motor is assumed has ARX model structure 
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3. ARX model of induction motor is identified applying fuzzy logic 

4. Identified model is validated with noise test and several prediction 

methods. 

5. System identification is done off line. 
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1 Introduction 

 

Mathematical modelling is of fundamental importance in science and engineering. It 

is very useful and presents a compact way of summarizing the knowledge about a 

process or system. This need for identifying and modelling the observation data 

appears in a wide range of applications. The process of model building consists of 

mapping the relationship between observed data from the system, onto a 

mathematical structure. Mathematical models can be constructed based on either 

known results from physics or data analysis. 

 

 

2.2   Induction Motor Basics 

 

The motor, used in this thesis work, is a two pole induction machine composed of a 

cage rotor and a stator containing windings connected to the three-phase power 

supply. In common for induction machines is that the stator is made up of a stack of 

steel laminations pressed into a aluminium or cast iron frame, and that the rotor 

consists of a stack of steel laminations with evenly spaced slots punched around the 

circumference where the rotor bars are placed, see Figure 2.1 both the rotor and 

stator lamination plates are insulated to prevent eddy currents1 from flowing in the 
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iron. The rotor slots are also skewed to reduce non-linear effect such as harmonics 

and torque pulsation. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Inside view of an induction motor 

 

2.2.1 The Stator 

 

Each of the three alternating currents that flow in the three stator windings give rise 

to a magnetic field. Since the currents are alternating, the resultant magnetic field 

Figure 2.2 rotates with the stator current frequency and crosses the air-gap radially. It 

is the layout of the stator windings that determines the number of poles, see      

Figure 2.3 and hence the speed of the rotating magnetic field in relation to the supply 

frequency. 
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Figure 2.2 Resultant flux vectors as a sum of the three phase currents at 90 and 180 

 

 

 

 

 
 

Figure 2.3 Air-gap flux density of a 3-phase, 2-pole, two-layer induction motor 

winding 
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Since every stator conductor is cut by the rotating magnetic field an alternating 

electromotive force (emf) E will be induced opposing the voltage V according to 

Lenz’s law. The stator can thus be described by the equation V = ImR + E, which 

shows the relation between the applied voltage V ,the magnetizing current Im 

(example the current that sets up the flux) and the induced (emf) E. If the flux 

decreases, so will the emf. This makes the magnetizing current increase which in turn 

makes the flux increase and hence the emf. The magnetizing current will adjust itself 

so that the emf always equals the applied voltage. 

 

 

2.2.2 The Rotor 

 

Torque producing currents are induced in the rotor bars by interaction with the air-

gap flux wave, the rotor is dragged along by the rotating field. If the rotor is held 

stationary there will be a high current induced in the rotor bars since the wave will 

cut the bars at a high velocity. If, on the other hand, the rotor is rotating with the 

same velocity as the magnetic field, there will be no current induced in the rotor bars. 

The slip is defined as the relative velocity between the speed of the magnetic field 

(ns), which is also known as the synchronous speed, and the speed of the rotor (n). 

 

                                                          (2.1) 

 

If a mechanical load is applied to the shaft, the rotor slows down, the slip 

increases and more current gets induced in the rotor bars. This results in a stronger 

magnetic field in the rotor bars and hence a higher torque is produced. The currents 

in the rotor bars also set up a magnetomotive force (mmf) wave in the stator that 

counteracts with the stator generated flux wave. Hence, a modest reduction of air-gap 

flux results in a reduction of e.m.f. Since the applied voltage is constant this 

increases the magnetizing current. 
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2.2.3 Torque Production 

 

With a small slip, the frequency of the induced emf in the rotor is low which makes 

the reactance of the rotor low (in this case the rotor is predominantly resistive) and 

thus the rotor current in phase with the rotor emf which in turn is in phase with the 

air-gap flux. As a result the torque-speed relationship for small slip is approximately 

a straight line. As the slip increases, both the rotor emf and frequency increases. With 

increased frequency the rotor inductive reactance also increases which makes the 

current lag by a angle r shown in the right part of Figure 2.4. 

 

 

 

 

Figure 2.4 Torque speed relationship 
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2.3 Mathematical Dynamic Model of an Induction Motor 

 

The induction motor can be represented in the stator stationary reference frame (- 

coordinate axes) by a second order differential equation relating the stator input 

voltages and currents as:  

                       svh
dt

dv
hig

dt

di
g

dt

id
0

s
1s0

s
12

s

2

                                          (2.2) 

 

Where the coefficients of equation (2.2) are given in the following way 
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              (2.3)       

 

These coefficients are functions of the machine parameters and motor speed 

(r).Where  Ls  and  Lr   are  stator and rotor self inductance respectively, and are 

defined by  Ls = Lm + Lls and  Lr = Lm + Llr , Tr = Lr/Rr    is a rotor time constant and  

s = Ls Lr - Lm
2
   is known as leakage index.  The stator phase voltages and currents 

can also be transformed to the stationary reference frame (- axes) (D. W. Novotny 

& T. A. Lipo,1996). The stator voltage and current equations, which are complex, 

can be written as 
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 sss jvv v                                                          (2.4) 

  ss jii si                                             (2.5) 

 

Where   ss vv ,  are the -axis and -axis stator voltage components in the stationary 

reference frame and i is s ,  are the corresponding currents. Using equations (2.2)-

(2.4), the second derivative of the stator current, components at constant speed can 

be derived as 
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Applying the following constraints to equation (2.6), 

Constraint 1: tVv sss  cos  

Constraint 2: tVv sss  sin  

Constraint 3: )cos(   tIi sss  
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Constraint 4: )sin(   tIi sss  

Where s is the stator supply angular frequency (rad./sec.) and  is the phase angle 

between the stator voltage and current components. This results in the following 

equations: 

  


srsrsssss

rss

s iAvAiAvAvA
A

i 52132

4

2
)(

1



              (2.7) 

  


srsrsssss
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i 52123

4

2
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              (2.8) 

 

Equations (2.7) and (2.8) represent the model of the induction motor. These 

equations may be put in the form 

  srsrssss iKvKiKvKvKi 54321                                                       (2.9) 

  srsrssss iKvKiKvKvKi 54312                                          (2.10) 
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This is for constant known motor speed and if the leakage inductance in both stator 

and rotor circuits are considered the same (M. Liwschitz-Garik and C. C. 

Whipple,1961). (Lls  Llr), equations (2.11)-(2.15) may be solved together to obtain 

the electrical machine parameters in the form. 
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2.4 System Identification 

 

Higher quality standards, economic motives, and environmental constraints impose 

more stringent demands on productivity, accuracy, and flexibility of production 

processes and products. To meet these demands, control theory has become 

increasingly more important. Modern controllers are model based on a mathematical 

model of the process to be controlled. The achievable performance is limited, 

amongst other things, by the fidelity of the model. A model must capture the 

dynamic behaviour, and this is often accomplished using differential or polynomial 

equations. Black-box modelling from data, without trying to model internal physical 

mechanisms, is also referred to as system identification or time series analysis. 

Another way to come up with models is based on rigorous mathematical deduction 

and a prior knowledge of the process (D. C. Karnopp et all 1990). This route is 
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referred to simply as modelling (P. V. d. Bosch, 1994). System identification 

techniques are applied in, example the process industry to find reliable models for 

control design (Y. Zhu & T. Backx,1993). The input-output data is collected from 

experiments that are designed to make the data maximally informative on the system 

properties that are of interest. The model set specifies a set of candidate models in 

which the "best" model according to a well-defined criterion will be searched for. In 

prediction error methods, the sum of the square of prediction errors, example the 

mismatch between the real measured output and the model output is often used as a 

criterion (L. Ljung, 1987). Selecting the three entities, data, model set, and criterion 

are very important steps in an identification procedure. When the data is available, 

the model set is chosen, and a criterion is selected, the model in the model set that 

best fits the data according to the specified criterion has to be found. In general, a 

model set is parameterized and a parameter estimation algorithm is used to find the 

parameter values such that the model behaviour fits best to the data according to the 

criterion. Finally, model validation tests are performed. 

A control-engineering inspired approach depicting the basic idea behind the 

identification process is presented in Figure 2.5. The process (the real-world system 

whose dynamics we want to identify) outputs are compared with the model outputs, 

when both are subject to the same input signals. After comparing the output 

difference an error criterion is established by which the model gets refined in the 

following iterations. 
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Figure 2.5: A set of inputs u is fed to the process and model. Output y is disturbed by 

noise v, denotes the model output and e the error difference yˆ 

 

 

2.5  Linear model structures 

 

The choice of model structure is a central concept in identification – in this section 

the most well-known structures are briefly introduced. This framework of model 

structures is often referred to as black box structure (A. Procházka, 1998), which 

covers a general set of systems without particular attention to physical constraints. A 

further distinction is often made between parametric and nonparametric models (O. 

Nelles, 2001). Parametric models represent the system through a finite set of 

parameters, example in a difference equation, which allows parametric methods to be 

used in identification. Hence, the discussion will deal almost exclusively with 

parametric models, with the parameters assumed to be time-invariant. Furthermore, 

the models presented are considered in discrete time only due to implementation 

reasons. 

 

Identification of linear input-output data can be classified into two main 

categories: input-output model identification and state-space model identification. In 
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the first category, the most general representation (assuming a SISO system) can be 

obtained by filtering the input u by a linear filter G and filtering the stochastic white-

noise term e by a corresponding filter H. The filters can generally be split into a 

nominator and denominator part (where A represents a possible common 

denominator of G and H), hence giving the model; 

 

 

                    (2.21) 

 

 

Where    is the backward shift operator, . The polynomials A, 

B, C, F and D are thus of the form; 

 

         (2.22) 

 

 

Equation (2.21) represents the basic model for a linear system from which all linear 

models can be derived (L. Ljung,1983). This basic model structure is, however, 

seldom used, as it has proven to be too abstract. Instead, it is often preferred to start 

with the simplest model which has a possibility of describing the system adequately. 

The simplest models for linear systems originate from econometrics, where 

models were built for stochastic time series (O. Nelles, 2001). The common 

equations featured only white noise as input and included the autoregressive (AR); 

       

                                                (2.23) 

 

The moving average (MA); 

 

                 (2.24) 

 

and the autoregressive moving average (ARMA) forms (combining the first two 

mentioned). 
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       (2.25) 

 

These models served as building blocks for the subsequent ARX model 

(autoregressive with exogenous inputs), which contains both an autoregressive and 

input part. The ARX model is often referred to as the “the mother of all dynamical 

model structures” (L. Ljung.1983), as it is the most commonly used equation to 

model linear systems, defined as; 

 

                     (2.26) 

 

The model conforms to the basic difference equation form; 

 

 

                                                        (2.27) 

 

which signifies that the white-noise error term e(k) enters the equation directly. The 

finite impulse response model (FIR) is a special case of the ARX model, which is 

better known from filtering theory. The model considers only feedback in the input 

signal; 

           (2.28) 

 

The use of ARX in identification is justified in many ways, the main reason 

being that the parameters of the model are easy to estimate (the predictor of the  

 

model defines a linear regression,) (O. Nelles, 2001) (G. D. Nicolao,1997). The 

parameters are therefore subject to linear optimization techniques such as linear least 

squares. As a restriction of the model, both the noise e(k) and the input u(k) share the 

same denominator A(q). This implies that the noise shares the poles (denominator 

zeros) of the input and enters the process early. Since e(k) is assumed white noise, 

correlated noise will yield suboptimal estimation with linear regression techniques. 
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Correlated noise can be modelled as a moving average (2.24), which inserted into 

(2.26) gives the popular ARMAX form; 

 

                  (2.29) 

 

A second more realistic structure for the noise is provided by the output error 

(OE) model, which assumes that the noise enters late in the process without sharing 

denominator dynamics. The model takes the form; 

 

                  (2.30) 

 

Where the noise is the direct error between the model and the real output. However 

optimal identification of this model, as opposed to the ARX, requires the simulated 

outputs, which result in a nonlinear regression (O. Nelles, 2001),(L. Ljung, 1987) 

Identification of ARMAX and OE model generally involves the use of approximate 

linear nonlinear optimization method. 

 An alternative representation for both SISO and MIMO models is provided 

by state-space models (IIASA’s 20th Anniversary, System Identification, 2009). State-

space models have the following representation in discrete timel 

 

                                       +  

                                       (2.31) 

 

The model parameterization, i.e., the selection of A, B, and C is not unambiguous, 

which is why state-space models are arguably less preferred for modeling simple 

relationships (M. Nørgaard, et all, 2000). Furthermore, many identification 

algorithms, including the one presented here, require strictly systems of input-output 

form. A system in state-space form can be transformed into an equivalent input-

output representation, providing it is a minimal realization. For such systems, the 

transform can be derived using the forward shift operator q, according to: 
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                                     (2.32) 

 

The expression is substituted in (2.29), yielding the relation; 

 

 

⇒                                                                                                                 (2.33) 

 

If the system is SISO, H(q) is a transfer function, whereas MIMO systems will 

convert into a matrix of transfer functions. Correspondingly, a model in input-output 

form can be transformed into various state-space representations, provided it is 

proper. For a more detailed discussion, refer to (O. Nelles, 2001). 

 

2.6 Nonlinear model structures 

 

The selection of a black-box model structure becomes a more difficult problem when 

one is dealing with nonlinear systems, although the nomenclature follows that of the 

linear models. A general model including all nonlinear and linear models can be 

described as; 

                                                  (2.34) 

 

      

        (2.35) 

 

Where f can represent any function of the regression vector            containing the past 

inputs, outputs and errors, and a parameter vector. Every special group of linear 

model can be transformed into their corresponding nonlinear models (ARX-NARX ), 

simply by replacing the linear dependency with a general function. The main 

challenge arises from estimating the parameters, which essentially becomes a 

function approximation problem. 
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The dilemma of choosing the regressor set is discussed further in  (J. Sjöberg, 

H. Hjalmarsson & L. Ljung. Neural Networks in System Identification, 1994), from 

which the following can be concluded, applying both to nonlinear and linear 

modelling:  The regressor can be limited to inputs and no past outputs, if the 

response time of the system is finite, i.e., only inputs within a finite time frame t 

affect the output. This construction has the disadvantage of potentially requiring a 

large number of past inputs. By including past outputs in the regressor, the system 

can model an infinite and complex response even with a small number of regressors. 

On the downside, this construction is prone to instability and adds up possible output 

noise in the model. 

 

2.7  Parameter estimation 

 

When the data and an appropriate model structure have been identified, the following 

step marks the identification of the parameters. The goal is to estimate the parameters 

in a way that provides an optimal fit of the model to the data. The majority of the 

traditional estimation techniques are based on the least-square estimate, which 

provides a standard method for solving linear regression problems. When the model 

parameters are constant, a linear estimation can be carried out batch, in a single step. 

Unfortunately, most real-world engineering problems are intuitively described by 

nonlinear functions, which require nonlinear optimization methods and a numerical 

“step-by-step” estimation process. 

 

2.7.1 Linear regression – linear least squares 

 

Linear regression is a common term for approaches where a line or a curve is fit to a 

set of observations, consisting of one or more independent variables and a (linearly) 

dependent variable (M. Verhaegen & V. Verdult, 2007). Assuming the dependence is 

described by a simple model. 

                                               (2.36) 
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The regression would imply estimating a and b over the observation set (in this case 

consisting of the independent variable X and dependent variable Y). In identification, 

a linear regression arises when the error between the estimated and real output is 

described by a linear relationship (O. Nelles, 2001). This is a feature of the ARX models, 

which can be proven by transforming the ARX model (2.26) into regression form; 

             (2.37) 

 

Where,                                                                                                is a regression 

vector and                                           contains the model parameters. If the noise e(k)  

is assumed white, the scalar product                defines the best possible predictor for 

the output. Notably, the prediction error;  

                      (2.38) 

 

 

is now of the same form as the equation error e(k). The error for each prediction is 

hence linearly dependent on the parameter vector  – exactly as the linear regression 

requires. The least-squares method is the most well-known way of solving any linear 

regression (M. Verhaegen & V. Verdult, 2007)(L. Ljung, 1987). Other identification 

methods for linear regression exist, but are omitted from description here since they are 

of larger interest in the statistics community. The least-squares method attempts to 

minimize a squared loss function, in this case the squared sum of residuals; 

          (2.39) 

 

This function can be minimized analytically by setting its derivative 

(gradient) to zero. The solution for a multi-parameter system is most conveniently 

obtained by transforming (2.39) into matrix form. This is done by defining a 

regression matrix, a vector of outputs y, and applying matrix algebra to obtain;  

 

           (2.40) 
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The gradient is given as a vector of partial derivatives of 

                            

       (2.41) 

 

and the least-square estimates are determined by setting  to zero, which yields 

the normal equation;  

                                                                 (2.42) 

 

The least squares estimate is finally computed by inverting    example with 

Gaussian elimination, yielding;  

=                                                (2.43) 

 

The least-squares method can also be used for estimation of certain nonlinear 

problems, providing the nonlinear function is linearly dependent on the parameters 

(G. D. Nicolao. System Identification: Problems and Perspectives, 1997). If the 

measurement samples involve varying degrees of uncertainty or relevance for the 

estimation, a variant known as weighted least squares can be used. Each 

measurement is weighted with a factor wk, which results in the modified final 

estimate;   

                                            (2.44) 

 

Containing a diagonal matrix W with the elements wk 

 

2.8  Nonlinear methods 

 

 

Real-world processes often give rise to models that are either nonlinear or include a 

nonlinearity in the error, rendering the linear least squares method unusable. In 

accordance with the linear case, the most commonly used criterion function is the 

sum of the squared residuals, which, in the nonlinear case is; 
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                    (2.45) 

 

Whereas linear least squares estimation is straightforward, nonlinear problems lack a 

corresponding one-step solution. Instead of estimating the parameters directly, the 

nonlinear methods approximate the function f locally, in a step-by-step process. An 

initial estimate is provided for the parameters, followed by iterative update through 

successive approximation, until a satisfying solution is obtained.  Nonlinear 

parameter estimation is generally carried out by nonlinear optimization methods, 

which are not limited to solving equations of the least-squares form.  

 

2.9 Types of models  

 

To describe a process or a system we need a model of system. This is nothing new, 

since we use models daily, without paying this any thoughts. For example, when we 

drive a car and approaching a road bump, we slow down because we fell intuitively 

that when this speed is too high we will hit the head in the roof. So from experiences 

we have developed a model of car driving. We have a feeling of how the car will 

behave when reach the bump and how we will be affected. Here the model of 

situation can be considered as a mental model. We can also describe the model by 

linguistic terms. For example if we drive the car faster than 110km/h then we will hit 

the head at the roof. This is linguistic model, since the model uses words to describe 

what happens (Bjorn Sohlberg, 2005). A third way of describing the systems is to use 

scientific relations to make a mathematical model , which describes in what way 

output signals respond due to changes in input signal. There are different types of 

models to represent the system. 

White Box Modelling; when a model is developed by modelling, we mean 

that model is constructed completely from mathematical scientific relations, such as 

differential equations, difference equations, algebraic equations and logical relations. 

The resulting model is called white box or a simulation model. 
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For example a model of electrical network using Kirchhoff’s laws and similar 

theorems; 

 

 

Figure 2.6 RC Circuit 

 

In above RC-circuit where the relation between the input signal u(t) and output signal 

y(t) is given by Ohm’s law. The resulting model would be a linear differential 

equation with the unknown parameter M=RC, which can be estimated form an 

experiment with the circuit or formal nominal values of the resistor and the capacitor. 

A mathematical model is given by; 

 

M.y(t) + y(t) = u(t)                                    (2.46) 

 

Similarly other processes can be modelled using scientific relations. 

Black Box Modelling; when a model is formed by means of identification, we 

consider the process completely unknown. The process is considered black box with 

inputs and outputs. Thus it is not necessary to use any particular model structure 

which reflects the physical characteristics of the system. Normally we use a model 

which given from a group of standard models. Unknown model parameters are 

estimated by using measurement data which is achieved from an experiment with the 

process. In this way model shows input-output relation. Identification using black 

box models have been used for industrial, economic, ecological and social systems. 

Within industry, black box models have been used for adaptive control purposes.  
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