RISK ASSESSMENT IN POWER SYSTEM USING MULTI-CRITERIA
DECISION MAKING (MCDM) METHODS

CAROLINE DAME SIAGIAN

A project report submitted in partial
fulfillment of the requirement for the award of the
Degree of Master of Electrical & Electronic Engineering

Faculty of Electrical & Electronic Engineering
Universiti Tun Hussien Onn Malaysia

FEBRUARY 2013
For my beloved family and friends
ACKNOWLEDGEMENT

First of all, I am grateful to The Almighty God for guiding me to complete this project.

I wish to express my sincere thanks to my supervisor project, Ir. Dr. Goh Hui Hwang for his valuable guidance and advice. He inspired me greatly to work in this project. His willingness to motivate me contributed tremendously to this project. I also would like to thank him for showing me some example that related to the topic of my project. And foremost, his patient and understanding were the keys to the completion of this project.

I also would like to express my appreciation to SESB committee members, Mohd Khairul Zawawi and Myjessie. Thank you for your time, support and guidance. Your contributions played a significant role in the completion and success of this project.

I would also like to thank Dr. Kok Boon Ching for his expertise, sincerity, valuable guidance and encouragement to me.

I take this opportunity to record my sincere thanks to all my classmates (Pesisir Master Sabah) for their help and encouragement. Especially, Ahmad Khairul Radhi and Nur Suriya for their sincerity, unwavering patience and support throughout this process.

I owe a lot to my parents, who encourage and helped me at every stage of my personal and academic life, and longed to see this achievement come true.

I would like to thank my husband, Cosward, for his understanding of the meaning of love.

Finally, I’d like to thank my daughter, Esther Martauli, who is more of a dream than I could have ever imagined.
ABSTRACT

In recent years, immense power system outage events have happened across the world. This is not exceptional to the Malaysia power system whereby on 27 Jun 2013 the system blackout occurred in the state of Sarawak, due to sudden dropping of frequency. Hence, power system risk assessment has become an important and mandatory task in planning, operation, maintenance and asset management of utilities. There have been efforts devoted in searching for new methods and procedures that effectively evaluate the risk of a power system. The objective of this study is to rank and determine the most common cause of power loss outages in the grid. This study implements multi criteria decision-making methods such as Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). For data collection, it employed interviews of key participants, review of documents including unpublished official reports and annual reports. From the data collected there are four criteria identified, namely Duration Time (min), Estimated Maximum Loss of load (MW), Estimated Energy No Supplied (MW-min) and System Minutes. On the other hand, seven causes of power loss outages are identified, they are Treat To System Security, Equipment Failure, Fire or Explosion, Switching Risk, Tower Collapse, Accelerated Ageing of Equipment and Supervisory Control System Failure. Results of data analysis show that both methods have identified that Equipment Failure is the major cause, followed by Supervisory Control System Failure.
ABSTRAK

CONTENTS

TITLE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v-vi

CONTENTS vi

LIST OF TABLE xi

LIST OF FIGURE xii-xiii

LIST OF SYMBOL AND ABBREVIATION xiv

LIST OF APPENDICE xv

CHAPTER 1

INTRODUCTION

1.1 Project background 1-2

1.2 Problem statement 2-4

1.3 Project objectives 4

1.4 Project scopes 4

1.5 Contribution and claims of originality 5

1.6 Thesis outline 5

1.7 Summary 6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction 7-8

2.2 Power System Security 8-12

2.3 Steady State Security Assessments 13-14

2.3.1 Deterministic Approach 13-14

2.3.2 Probabilistic Approach 14-15

2.3.3 Comparison of the Probabilistic and Deterministic Approaches 15-16
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Dynamic Security Assessment</td>
<td>16 - 17</td>
</tr>
<tr>
<td>2.5</td>
<td>Risk Based Probabilistic Approaches in Power System Security</td>
<td>17 - 19</td>
</tr>
<tr>
<td>2.6</td>
<td>Risk Assessment Techniques in Power System Adequacy</td>
<td>19 - 21</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Operating Reserve Risk Assessment</td>
<td></td>
</tr>
<tr>
<td>2.6.2</td>
<td>Risk Based Assessments of Available Transfer Capability</td>
<td>21 - 23</td>
</tr>
<tr>
<td>2.7</td>
<td>Risk Assessment Techniques in Power System Security</td>
<td>23 - 24</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Risk of Transmission Line Overload</td>
<td></td>
</tr>
<tr>
<td>2.7.2</td>
<td>Risk of Transformer Loading</td>
<td>24 - 27</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Annual Risk of Transmission Line and Transformer Overload</td>
<td>27 - 29</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Risk of Special Protection Systems</td>
<td>29 - 30</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Voltage Security Assessment</td>
<td>31 - 33</td>
</tr>
<tr>
<td>2.7.6</td>
<td>Risk of Transient Instability</td>
<td>33 - 36</td>
</tr>
<tr>
<td>2.7.7</td>
<td>Composite Risk of Power System Security</td>
<td>37</td>
</tr>
<tr>
<td>2.7.8</td>
<td>Risk Based Approach for Maintenance and Scheduling</td>
<td>37 - 39</td>
</tr>
<tr>
<td>2.7.9</td>
<td>Online Risk-Based Security Assessment</td>
<td>39 - 41</td>
</tr>
<tr>
<td>2.7.10</td>
<td>Further Aspects of Risk Based Approaches</td>
<td>41</td>
</tr>
<tr>
<td>2.8</td>
<td>An Alternative Form of Probabilistic Approach</td>
<td>42 - 43</td>
</tr>
<tr>
<td>2.9</td>
<td>Analytical Hierarchy Process (AHP)</td>
<td>43 - 48</td>
</tr>
<tr>
<td>2.10</td>
<td>Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)</td>
<td>48 - 49</td>
</tr>
<tr>
<td>2.11</td>
<td>2.11 Summary</td>
<td>50</td>
</tr>
</tbody>
</table>

CHAPTER 3 METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Basic AHP procedure</td>
<td>51</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Develop the weights for criteria</td>
<td>51 – 53</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Develop the rating for each alternative in each criterion</td>
<td>53</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Calculate the overall weights and determine the priority</td>
<td>53 – 58</td>
</tr>
<tr>
<td>3.2</td>
<td>Procedure of TOPSIS</td>
<td>57 – 60</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary</td>
<td>61</td>
</tr>
</tbody>
</table>
CHAPTER 4

RESULT AND ANALYSIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>SESB transmission data</td>
<td>62–66</td>
</tr>
<tr>
<td>4.2</td>
<td>Risk assessment using Analytic Hierarchy Process (AHP)</td>
<td>67–68</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Criteria</td>
<td>68–70</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Develop a pairwise comparison matrix for each criterion</td>
<td>68–70</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Normalizing the resulting matrix</td>
<td>70</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Averaging the values in each row to get the corresponding rating</td>
<td>71</td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Calculating and checking the consistency ratio</td>
<td>72–73</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Duration time (min), C1 vs Alternatives</td>
<td>74–75</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Develop a pairwise comparison matrix for each criterion (C1)</td>
<td>74–75</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Normalizing the resulting matrix</td>
<td>75</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Averaging the values in each row to get the corresponding rating</td>
<td>76–77</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Calculating and checking the consistency ratio</td>
<td>77–80</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Estimated maximum loss of load (MW), C2 vs Alternative</td>
<td>80–81</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Develop a pairwise comparison matrix for each criterion (C2)</td>
<td>80–81</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Normalizing the resulting matrix</td>
<td>81–82</td>
</tr>
<tr>
<td>4.2.3.3</td>
<td>Averaging the values in each row to get the corresponding rating</td>
<td>82–83</td>
</tr>
<tr>
<td>4.2.3.4</td>
<td>Calculating and checking the consistency ratio</td>
<td>83–86</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Estimated energy no supplied (MW_min), C3 vs Alternative</td>
<td>86–87</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>Develop a pairwise comparison matrix for each criterion (C3)</td>
<td>86–87</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Normalizing the resulting matrix</td>
<td>87–88</td>
</tr>
<tr>
<td>4.2.4.3</td>
<td>Averaging the values in each row to get the corresponding rating</td>
<td>88–89</td>
</tr>
<tr>
<td>4.2.4.4</td>
<td>Calculating and checking the consistency ratio</td>
<td>90–93</td>
</tr>
<tr>
<td>4.2.5</td>
<td>System minute (sys_min), C4 vs Alternatives</td>
<td>93–94</td>
</tr>
<tr>
<td>4.2.5.1</td>
<td>Develop a pairwise comparison matrix for each criterion (C4)</td>
<td>93–94</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>Normalizing the resulting matrix</td>
<td>94</td>
</tr>
<tr>
<td>4.2.5.3</td>
<td>Averaging the values in each row to get the corresponding rating</td>
<td>95–96</td>
</tr>
</tbody>
</table>
4.2.5.4 Calculating and checking the consistency ratio 96 – 99
4.2.6 AHP Result 99 – 103
4.3 Risk assessment using Technique for Order Preference by Similarity to Ideal Solution Process (TOPSIS) 104
4.3.1 Decision Matrix 104 – 109
4.4 Summary 110

CHAPTER 5 DISCUSSION, CONCLUSION AND RECOMMENDATION
5.1 Discussion 111 – 115
5.2 Conclusion 116
5.3 Recommendation 117
LIST OF TABLES

2.1 Security related decisions 9
2.2 The fundamental scale of absolute number 47
3.1 Random index 53
4.1 Summary of Appendix C 66
4.2 SESB data used in AHP for risk assessment 67
4.3 The pairwise comparison table of criteria for risk assessment in transmission power system by using AHP 69
4.4 The criteria averaged value for each row (C) 71
4.5 The duration time (min), C1 averaged value for each row 76
4.6 The estimated maximum loss of load, (MW), C2 averaged value for each row 82
4.7 The estimated energy no supplied (MW_min), C3 averaged value for each row 88
4.8 The system minute (sys_min), C4 averaged value for each row 95
4.9 Calculation for the Risk Types with respect to the Criteria 100
4.10 Priorities for all the risk types 101
5.1 Overall rank for most outages loss of supply in the grid using AHP and TOPSIS methods 112
LIST OF FIGURES

1.1 System minutes in Sabah .. 2
1.2 Unplanned interruption per 1,000 customers 2
1.3 Planned interruption per 1,000 customers 2
1.4 Total interruption per 1,000 customers 2
1.5 Causes of unscheduled supply interruption 4
2.1 Decision drivers of power system security 9
2.2 Power system states and actions 11
2.3 Time scales in emergency control actions 12
2.4 Component two state model 20
2.5 General procedure for calculating ATC 22
2.6 The procedure for calculation of transformer loading risk 25
2.7 Annual thermal overload risk assessment framework 27
2.8 Procedure for SPS risk assessment 30
2.9 Illustration of maximum distance function $t_{ijp,30}$ 34
2.10 Integrated maintenance selector and scheduler 38
2.11 Illustration of basic online risk based security assessment process 39
2.12 The Analytic Hierarchy Process (AHP) scheme 45
3.1 Flowchart of AHP analysis 55 – 56
3.2 Flow chart of TOPSIS solution procedure 60
4.1 Criteria of the SESB data of major outages causing loss of supply in the grid 64
4.2 Unplanned and forced data only 65
4.3 The hierarchy of risk assessment in transmission power system 68
4.4 The overall results of the most major outages loss of supply in the transmission grid 102
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>The sequence of the most major outages loss of supply in the grid using AHP method</td>
</tr>
<tr>
<td>4.6</td>
<td>The sequence of the most major outages loss of supply in the grid using TOPSIS method</td>
</tr>
<tr>
<td>5.1</td>
<td>The most outages loss of supply in the grid using AHP method in histogram</td>
</tr>
<tr>
<td>5.2</td>
<td>The most outages loss of supply in the grid using TOPSIS method in histogram</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison between AHP and TOPSIS on the most outages loss of supply in the grid</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTHM</td>
<td>Universiti Tun Hussein Onn Malaysia</td>
</tr>
<tr>
<td>C_n</td>
<td>criteria</td>
</tr>
<tr>
<td>A_n</td>
<td>alternative</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>normalized decision matrix</td>
</tr>
<tr>
<td>x_{ij}</td>
<td>rating A_i with respect to criterion C_j</td>
</tr>
<tr>
<td>v_{ij}</td>
<td>weight normalized decision matrix</td>
</tr>
<tr>
<td>w_{ij}</td>
<td>criteria weight</td>
</tr>
<tr>
<td>S_i</td>
<td>ideal solution</td>
</tr>
<tr>
<td>S_{ni}</td>
<td>negative ideal solution</td>
</tr>
<tr>
<td>RC</td>
<td>relative closeness</td>
</tr>
<tr>
<td>W_c</td>
<td>criteria weight</td>
</tr>
<tr>
<td>CR</td>
<td>consistency ratio</td>
</tr>
<tr>
<td>λ_{max}</td>
<td>criteria in risk assessment</td>
</tr>
<tr>
<td>CI</td>
<td>consistency index</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of risk register transmission unit in SESB</td>
<td>125 - 132</td>
</tr>
<tr>
<td>B</td>
<td>Unplanned and Forced SESB 2011 data</td>
<td>133 - 144</td>
</tr>
<tr>
<td>C</td>
<td>The unplanned and forced data from Appendix B are arrange into months in four main groups</td>
<td>145 - 146</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Project background

Power system is a complex and large-scale nonlinear dynamic system. With the improvement of the functions of modern power system, the structure of the system is increasingly moving towards high degree of automation and involves with high-voltage, long distance and large-capacity power. However, random failure sometimes appear in the system components, causes the system to function with some or all loss. Therefore, the risk prevention of power system operation has become an important and complex task.

The application of power system risk assessment has drawn ever-increasing interest in the electric utility industry, particularly since massive power outage events have occurred across the world in the past years. According to an EPRI (Electric Power Research Institute) report based on the national survey in all business sectors, the U.S. economy alone is losing between $104 and $164 billion a year due to power system outages. Severe power outage events have happened frequently in recent years. For instance, a major system disturbance separated the Western Electricity Coordinating Council (WECC) system in the west of north America into four islands on August 10, 1996, interrupting electricity service to 7.5 million customers for period of up to nine hours. The 1998 blackout at the Auckland central business
district in New Zealand impacted 30 square blocks of the downtown area for about two months, resulting in lawsuits totalling $600 million against the utility. On August 14, 2003, the massive blackout in the east of North America covered eight states in the United States and two provinces in Canada, bringing about 50 million people into darkness for periods ranging from one to several days. This is not exceptional to the Malaysia power system whereby on January 13, 2005 the system blackout occurred due to cascading overloads (The STAR, 2005). In Sabah, on April 21, 2008, a transmission tower collapse triggered a major power blackout throughout the state (The STAR, 2008) and recently, a massive power outage caused by frequency dip occurred in Sarawak on June 27, 2013 (The STAR, 2013).

Due to this, risk assessment has become a challenge and an essential business in the power utility industry today.

1.2 Problem statement

According to the statistics Figure 1.1 provided by *Suruhanjaya Tenaga* 2011 report, system minutes of the grid system in Sabah has been increased significantly from 98.6% to 40.13 minutes and thus affecting the reliability of the whole supply system.

![System Minute](image)

Figure 1.1 : System minutes in Sabah

Figure 1.2, Figure 1.3 and Figure 1.4 shows that the number of unplanned interruptions per 1,000 customers has increased by 5.0% to 50.4% in Sabah for year
2011. The unplanned interruptions scored the highest percentage of 92% from the total interruption in year 2011.

Figure 1.2 : Unplanned interruption per 1,000 customers

Figure 1.3 : Planned interruption per 1,000 customers

Figure 1.4 : Total interruption per 1,000 customers

There are various causes of the electricity supply interruptions such as natural disasters, equipment failures, overload, damaged by third parties, process and quality of work, trees, unknown causes, and others. If the most common cause of the electricity supply interruption can be identified, SESB could take preventive action to reduce the interruptions, as consumers demand to have an uninterruptable power supply.
This thesis will identify the most common cause of power outages and identify the most suitable method of risk assessment in the transmission power system.

1.3 Project objectives

There are two objectives for this project:
(i) To determine the most common cause of power outages in the grid
(ii) To implement multi criteria decision-making methods such as AHP and TOPSIS

1.4 Project scopes

The purpose of this thesis is to determine the most common cause of power system outages in the grid using multi criteria decision making. This thesis will only focus on the risks in transmission line of the power system. The data analyzed is obtained from SESB. Consequently, it will develop a systematic approach to identify the priority based on the risk impact of the power system.
1.5 Contribution and claims of originality

The research has identify the most common cause of power system outages in the grid, thus SESB should take preventive action to reduce the interruptions as maximum as possible.

1.6 Thesis outline

The subsequent chapters of the thesis are organized as follow:

Chapter 1 highlights the occurrence of power-outages events in several countries around the world, statistics of an unplanned electricity interruption in Sabah, and the various causes of the electricity interruption in year 2011. The objectives of this thesis are stated in this chapter.

Chapter 2 is the literature review of this project. This review begins with the fundamental concepts of power system security and progresses through security assessments of different time frames. The deterministic and probabilistic approaches to security assessment are addressed and the limitations of each of these approaches are highlighted. The literature on the risk-based security assessments is also reviewed.

Chapter 3 discusses about the project procedure and also approach used to implement the project.

Chapter 4 shows the results and data analyses. The risk assessment monitoring in electrical power system by using the Analytic Hierarchy Process (AHP) and TOPSIS is discussed in this chapter.

Chapter 5 presents the project discussions, conclusions and recommendations. This chapter will discuss about the conclusions of the project and also some future recommendations.
1.7 Summary

This chapter of this thesis discusses about the introduction for the whole project. Firstly, the power-outages events are introduced in the first part. Next, the problem statement is discussed. Then, the next part is about the objectives and scopes of the project. Lastly, the thesis outline is discussed which will give an overview for the reader about the thesis.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The fundamental objective of an electric power system is to supply its customers with electrical energy as economically as possible and with a reasonable assurance of continuity and quality. To maintain such security standards the power systems are required to be reliable.

Power system reliability reflects the adequacy and security in a power system (Billinton & Li, 1994), (Billinton, Firuzabad & Aboreshaid, 1997). Adequacy with regard to composite generation and transmission relates to the existence of both sufficient generation capacity to supply the energy demand and of the associated transmission facilities required to transport the energy to the major system load points. Security relates to the ability of the system to withstand unexpected failures and continue operating without interruption of supply to the consumers (Kirschen, 2002), (Knight, 2000). Security assessment is a major concern in planning and operation of electric power systems.

The following sections of this chapter, review the literature relevant to this exploration of security issues. In particular, it covers the fundamental concepts of power system security, the deterministic and probabilistic approaches to security, and the techniques used in adequacy and security assessments. It focuses mainly on
the probabilistic framework for system security, in the context of power system operation.

2.2 Power System Security

Power system security is usually assessed on the basis of security standards, i.e., the relationship between outages of generation and transmission plant and the level of any acceptable loss of demand. An ‘N-1’ security standard requires the system to work satisfactorily following loss of any one of its N elements (Strbac, 2001).

Loading on transmission system under normal operating conditions must be limited to levels that permit any "credible contingency" to occur without exceeding acceptable power quality, component or system limits (Strbac, 2001).

Contingencies may be external or internal events (for instance, faults subsequent to lightning versus operator-initiated switching sequences) and may consist of small/slow or large/fast disturbances (for example, random behaviour of the demand pattern versus generator or line tripping) (Wehenkel, 1997).

Usually, numerical simulation of the contingency scenario is used to assess the effect of a contingency on a power system in a given state. However, the non-linear nature of the physical phenomena and the growing complexity of real-life power systems make security assessment difficult. For example, monitoring a power system every day calls for fast sensitivity analysis to identify the salient parameters driving the phenomena, and suggestions on how to act on the system so as to increase its level of security (Wehenkel, 1997).

On the other hand, increasing economic and environmental pressures make the conflicting aspects of security and economy even more challenging as instead of building of new transmission lines and generation facilities, operators tend to operate power systems more closer to the critical limits (Wehenkel, 1997).

Every small change in load is a disturbance that causes a change in system conditions. However, system security is assessed for larger changes that cause major changes in system conditions. These changes are mainly caused by contingencies. Most commonly contingencies result in relay operations that are designed to protect
the system from faults or abnormal conditions. Typical relay operations result in the loss of a line, transformer, generator, or major load (McCalley, 2000).

Various components in a power system respond to changes that occur and may reach an equilibrium condition that is acceptable according to some criteria. Mathematical analysis of these responses and the new equilibrium condition is called security analysis (McCalley, 2000).

The decision drivers of security can be classified as shown in Figure 2.1 and the corresponding time frames for making security related decision are given in Table 2.1.

Figure 2.1: Decision drivers of power system security

Table 2.1: Security related decisions

<table>
<thead>
<tr>
<th>Time-frame</th>
<th>Decision-maker</th>
<th>Decision</th>
<th>Basis for decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-line assessment</td>
<td>Operator</td>
<td>How to constrain the economic operation to maintain the normal state?</td>
<td>Operating rules, online assessment, and cost</td>
</tr>
<tr>
<td>(Minutes to hours)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational planning</td>
<td>Analyst</td>
<td>What should be the operating rules?</td>
<td>Minimum operating criteria, reliability, and cost</td>
</tr>
<tr>
<td>(Hours to months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning (Months to years)</td>
<td>Analyst</td>
<td>How to reinforce/maintain the transmission system?</td>
<td>Reliability criteria for system design and cost</td>
</tr>
</tbody>
</table>
If the analysis evaluates only the expected post disturbance equilibrium condition (steady-state operating point), then it is called Static Security Assessment (SSA). Static or steady state security is the ability of the system to supply load without violating operating conditions and load curtailment (Kirshen, 2001), (Kim & Singh, 2002).

If the analysis evaluates the transient performance of the system as it progresses after the disturbance, then it is called Dynamic Security Assessment (DSA) (Grigsby, 2001), (Silva et al., 1999), (Ejebe et al., 1998). Further, the DSA has been formally defined by the IEEE, Power Engineering Society (PES) working group on DSA as an evaluation of the ability of a certain power system to withstand a defined set of contingencies and to survive the transition to an acceptable steady state condition. Dynamic security considers the ability of the system to supply the load against system dynamic problems of early swing, transient instability and oscillatory instability (Kirshen, 2001), (McCalley, Vittal & Abi-Samra, 1999).

Voltage security is the ability of a system, not only to operate in a stable manner, but also to remain stable (maintenance of system voltage) following any reasonable credible contingency or adverse system change (Kirshen, 2001), (Knight, 2000). Voltage security analysis is performed to investigate whether any contingency triggers a voltage collapse (Kirshen, 2001).

SSA can be used quickly to determine if a system is insecure by simply looking at the static outcome of each contingency. However, to know whether the system is fully secured, DSA must be performed. It determines if the associated dynamics of each contingency are acceptable.

A power system always resides in one of four states called normal, alert, emergency, and restorative. The emergency state can be extreme, temporary, or controlled (Fink & Carlsen, 1978). The importance of the four security states is that they provide a conceptual basis for making security-related decisions. This basis rests on the assumption that any normal state is acceptable and any other state is unacceptable. Figure 2.2 shows the power system states and the corresponding actions.
REFERENCES

1. “KL, Selangor, Putrajaya, Johor Hit by Major Blackout,” the Star, January 13, 2005
3. “Cause of June 27 Sarawak blackout still a mystery”, the Star, July 02, 2013

