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ABSTRACT 

This project report is about comparison between conventional permanent magnet flux 

switching machine (PMFSM) with double stator flux switching machine (DS-

PMFSM). Due to the unique design of double stator single rotor motor itself, many 

research has been developed but not being compare to different kind of motor. The 

purpose of this study is to observe the capability of each different motor. The test will 

be also conducted in no load and load situations. Result each of the motor will be 

compare. JMAG design 16 is being use as a platform to develop both motor. Although 

both machine is silent pole type motor, each of them have a different topology and 

characteristic. By using JMAG, each of the motor is been constructed, starting from 

JMAG sketch that are used to sketch the motor topology. The both motor topology 

need to be almost the same with different in stator design. After that, by using JMAG 

designer, both electrical motor material, condition circuit, mesh value and properties 

have to be exactly the same as dimmed variable. Thus an in depth study is about the 

performance of both motor is conducted. Result shows that under no load condition 

the DS-PMFSM has a lower cogging torque then conventional PMFSM. Beside that 

went compare with flux line, flux density and induce EMF conventional PMFSM have 

advantage over DS-PMFSM. Went both motor is test with load test, it is show a large 

performance gap. Load test shown that conventional PMFSM has a higher torque, 

power and speed went compare.  Result conclude that conventional PMFSM has a 

better performance in all the load test and in flux line, flux density, induce EMF for no 

load. However, DS-PMFSM has an advantage in cogging torque with lower cogging 

and reduce noise. Although the 12S/14P motor is selected for securing the initial 

highest torque of 11.5 Nm and achieved the target average torque/power after using 

parameter optimisation method (POM). 
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ABSTRAK 

Memandangkan motors magnet kekal (PM) telah menarik perhatian penyelidikan yang 

ketara kerana ketumpatan kuasa tinggi mereka, prestasi cemerlang, kebolehpercayaan 

yang rendah, kebolehpercayaan yang tinggi, kawalan yang sangat baik dan telah 

digunakan secara meluas dalam pelbagai aplikasi sedia ada dan yang baru muncul. 

Laporan projek ini adalah mengenai perbandingan antara motor bergigi salient dan 

segmen. Reka bentuk slot tersebut dipanggil PMFSM 12S / 10P salient dan segmen 

PMFSM 12S / 14P. Kedua-dua kombinasi ini dipilih dengan menganalisis nilai kuasa 

tertinggi dan tork melalui analisis pada tiang. Reka bentuk yang dicadangkan telah 

dibincangkan secara ringkas mengenai pembangunan topologi, penetapan bahan dan 

ciri-ciri bahan yang digunakan.Beberapa analisis telah dijalankan seperti 

menggerakkan emf, tork cogging, kuasa keluaran dan tork, dan kelajuan motor yang 

dicadangkan. Kajian ini dijalankan dengang menggunakan perisian JMAG Designer 

versi 16 Kedua-dua motor yang mempunyai saiz stator yang sama. Ujian ini dilakukan 

di bawah keadaan ada beban dan tiada beban untuk menilai prestasi awal reka bentuk 

yang dicadangkan. Hasil simulasi menunjukkan bahawa motor bergigi 12S / 10P 

salient menghasilkan tork yang lebih tinggi, kerana kita tahu bahawa semakin tinggi 

fluk terhasil maka semakin tinggi nilai tork pada motor tersebut. Oleh itu, matlamat 

kami untuk projek ini adalah untuk mencadangkan motor segmen PMFSM 12S / 14P 

bagi mengurangkan back-emf, dan cogging tork. Beberapa kelebihan rotor Segmental 

adalah laluan fluks yang pendek, pautan fluks yang tinggi, dan prestasi yang lebih baik 

dari segi kelebihan emf dan tork cogging yang rendah. Walau yang demikian,, motor 

12S/14P terpilih kerana tork permulaan yang tertinggi iaitu 11.5Nm dan mencapai 

tahap purata tork setelah mengaplikasikan  kaedah pengoptimum parameter (POM). 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

1.1 Background of Study  

 Flux-switching machine (FSM) is a novel kind of machine in which both 

excitation flux and armature windings are located on the stator, its rotor is a single 

piece of iron. Flux switching machines can be divided into three permanent groups 

such as permanent magnet (PM) FSMs, field excitation (FE) FSMs as well hybrid 

excitation (HE) FSMs. While PMFSM utilizes PM flux source, Field excitation utilizes 

field coil and hybrid utilizes both PM and FE flux source as main and secondary 

source. Between these FSMs FEFSM offers benefits of less cost-effective, simple 

designs and variable flux Control capabilities options for various services. [1][2]. The 

Flux- Switching Permanent magnet (PM) motor is a new brushless machine with 

magnets in the stator. For brushless alternating current (BLAC) operation, it is 

desirable to make the machine with the back EMF waveform as sinusoidal as possible 

to eliminate torque ripple [3]. Some special steps are usually applied to PM-rotor 

motors, for example to create magnets that produce complexity and cost generation, to 

eject throwing magnets or slits [4]. However, especially for stator-PM motors in 

Doubly Salient Permanent Magnet (DSPM) motors, since the magnets are present in 

the stator, there is no winding or magnet in the rotor and the rotor can easily be tilted 

to change the back-EMF waveform, but the back-EMF peak is reduced. Fortunately, 

for the (PM) FSM motor developed, the rear EMF can be naturally sinusoidal without 

any additional steps that have the advantage of this motor. 
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       Nowadays, permanent magnet (PM) machine has attracted considerable interest 

in research and has been widely used in various existing and emerging applications, 

due to their advantages such as high power density, excellent performance, low 

reliability, high reliability and superior control.[5,6] There are generally two types of 

electromagnetic torque in PM-PM machines. The PM torque generated by the 

interaction between the PM Field and the armature winding and the reluctance torque 

generated by the variation of the inductance of the PM winding with the rotor position 

due to rotor [7, 8]:  For this reason, PM- brushless machines are preferred to ensure 

that both the PM and the break torque are suitably used to improve overall machine 

performance [10]. In most conventional PM machines, the armature windings are 

mounted on the stator, while the PM is positioned differently on the rotor to carry a 

wide range of machines, [9]. However, new brushless PM machines with both 

armature winding and PMs are also proposed and developed. The three-phase version 

was first reported in 1997, but in 1955 the PM flux switching machine (PFMS) was 

first introduced as a single-phase alternator. PMFS machine inherits the highest 

benefits Traditional PM brushless machines. In the PMFS machine a typical double 

remarkable building with a simple passive rotor but rather a complex stator. The 

mechanically robust rotor is identical to that of a switched reluctance machine, 

resulting in a rapid dynamic response [11].  

          Motors and generators are very similar. Generators convert the mechanical 

energy into electricity and the motor converts the electrical energy into mechanical 

energy. In addition, motors and generators have the same structure [12]. Nevertheless 

the back EMF is the voltage generated during operation of a rotating machine [13]. In 

a generator motor, when the voltage (an electromotive force) is applied to the armature 

of a motor, it starts to rotate and an electrical resistance is generated by the rotating 

magnetic field. [14] Furthermore the back EMF is proportional to the acceleration of 

free load, it also creates opposing forces that limits the engine speed, the higher the 

armature, the greater the back EMF is made [15].  

. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



3 

 

1.2 Problem Statement 

 The Design of 12S/10P PMFSM in salient pole with various slot pole 

configuration has been and will be developed in inner rotor configuration; it as well 

had been optimized for improved induced EMF. It embraced all stator teeth armature 

winding with permanent magnets sandwiched between stator teeth in circumferential 

magnetisation direction [16]. One of the advantages of this motor is that the phase back 

EMF waveform tends to be naturally sinusoidal without any such measures. The 

performance in terms of power and efficiency of this motor seems to be low due to 

high iron loss, high copper loss. In addition, stator design is complex while it embraced 

high volume of PM which might make the construction of the motor costing. In order 

to overcome these challenges associated with the above-mentioned motor, 12S/14P 

PMFSM in segmental rotor is proposed. It consists of alternate armature winding and 

embracing alternate permanent magnet radial magnetisation direction [17]. Segmental 

rotor has the advantages of short flux path generating high flux linkage, for better 

performance in terms of low cogging torque and favourable induced back EMF. 

1.3 Objectives of Project  

In this project, the main objectives have been formed as follows; 

 

(i) To design a three phase 12S/10P PMFSM salient and 12S/14P PMFSM SegIR-

PMFSM. 

(ii) To analyse and compare the three phase 12S/10P PMFSM salient and 12S/14P 

SegIR-PMFSM.  

(iii) To optimise 12S/14P SegIR-PMFSM using parameter optimisation method 

(POM) for better average torque and power, torque-speed characteristics. 
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1.4 Scope of Study 

The scopes of this project are as follows: 

(i) This project is designed by using JMAG Design Version 16 software, 

released by Japan Research Institute (JRI) was utilized for this design. 

(ii) A three phase 12S/10P PMFSM in salient and 12S/14P SegIR- PMFSM 

will be designed. 

(iii) Analyse and compare three phase of 12S/10P PMFSM in salient and 

12S/14P SegIR- PMFSM will be analysed.  

(iv) Optimise of SegIR-PMFSM is detected using parameter optimisation 

method (POM) for better average torque and power. 

(v) The rated speed of the drive machine is approximately 1500rpm as 

mentioned in table1.1. 

 

               Table 1.1: Specifications of parameters of both motors and optimised  

 

 

 

 

 

 

 

 

 

 

 

 

  

Items  Units 

 

12S/10P 

PMFSM 

Salient pole   

12S/14P 

SegIR-

PMFSM  

Optimised 

12S/14P   

SegIR-

PMFSM 

Rated speed, nr  rpm 1500 1500 1500 

dc-link voltage,  V 440 440 440 

Phase number,  m 3 3 3 

Air-gap length  mm 0.35 0.35 0.35 

PM height  mm 28.8 28.8 29.8 

PM width  mm 4.6 4.6 4.44 

Stator outer diameter mm 128 128 128 

Active stack length mm 25 25 25 

Rotor inner radius mm 22 22 21 

Rotor outer radius mm 34.85 34.85 33.85 

Stator tooth number mm 12 12 12 

RMS current density, Ja A/mm2 30 30 30 
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CHAPTER 2       

 

 

 

 

REVIEW OF FLUX SWITCHING MOTORS 

2.1 Introduction to electrical Motors  

 Electric motors are electromechanical devices that convert electrical energy 

into mechanical energy. This transformation is usually obtained by the generation of a 

Magnetic field by means of a current flowing in one or more coils. It is the interface 

between the electrical and mechanical systems of a facility. Electric motors are an 

important part of any electrical system. They consumed in every production plant, 

every office, houses and consumed about 64% of the total electricity. Electric motors 

are devices that carry one of the greatest advances in engineering and technology since 

the creation of electricity.  There are various motor types that have been developed for 

specific purposes; different types of electrical motors can be classified according to 

the shown figure 2.1. In principles, electric motors are divided into two groups, such 

as direct current (DC) and alternating current (AC).  There are four types in alternating 

currents which are flux switching machine (FSM), switch reluctance motor (SRM), 

synchronous motor (SM), induction motor (IM). Synchronous motors are divided into 

three hybrid excitation (HE), field excitation (FE), permanent magnet (PM). While 

flux switching machine (FSM) are separated into three as well which are Permanent 

Magnet Flux Switching Machine (PMFSM), Hybrid Excitation Flux Switching 

Machine (HEFSM), and Field Excitation Flux Switching Machine (FEFSM). 
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 Electromagnetic is the basis of an electric motor. Electric motors are 

completely motors of magnets and electric motors do usually operate based on the 

interaction between electric motor’s with magnetic fields and electricity generating 

energy in the motor.  

 

          Figure 2.1: classification of electric motor. 

2.2 Flux switching motor and operation principle  

 In search of an electric machine with improved performance and high 

frequency, Rauch & Johnson [18] developed a flux switch generator using a PM flux 

source located on a flux switch stator [19], which is known as a “flux switch machine. 

'. The FSM is a synchronous machine in which the armature flux linkage changes with 

the rotor position due to the change in presence seen by the armature windings [20]. 

 This machine consists of a pair of stator windings, a double set of laminated 

yokes and a pair of PMs located on the stator, while the rotor is a double pole plate on 

the shaft, as shown in Figure 2.2. The flow paths shown by arrows in Figure 2.2 (a) 

show the flow from left to right in both windings. However, when the rotor position 

moves half an electrical cycle, as in Figure 2.2 (b), the flux linkage had the same 

magnitude, but the direction was reversed, as in Figure 2.2 (a). A complete reversal of 
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the flow direction was achieved with each revolution of the rotor. Consequently, the 

salient pole of the stationary part and the rotor operated in the usual pulsating flow 

regime. In the proposed motor, without changing the basic characteristics, the 

protruding rotor of the PM inductor is replaced by a segmented rotor. Therefore, the 

principle of operation based on the original design and development of the PMFSM, 

which locates the PM flux source and the stator armature winding in the inductor 

generator, is the same. 

 

 

 

 

 

 

 

 

 

                          

(a)                                                           (b)  

Figure 2.2: Single-phase 4S/2P flux switch alternator (inner rotor). 

 The automaton has three internal types arising from sources of excitation, 

which are designated as; Permanent magnet state machine, field excited state machine, 

and hybrid excited state machine. The PMFSM uses a permanent magnet (PM) as the 

excitation source, the FEFSM uses an n-field excitation coil, and the HEFSM uses 

both PM and FE as primary and secondary sources. In addition, both the FEFSM and 

HEFSM require external circuitry and DC excitation. Interestingly, the FSM was 

founded with good advantages in terms of design, torque, efficiency and thermal 

management. Unlike machines in which materials are on the rotor, in this machine all 

materials are placed on the stator [21]. Taking into account the favourable 

characteristics of state machines, research and development thus continue to improve 

the performance of electric motors in terms of high torque, increased accuracy, less 

starting energy use, and less heat loss for efficient output. 

Rotor  

Rotor  
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2.3 Review of flux switching motors (FSMs) 

 The concept of permanent magnet switch flux (FSPM) was published in the 

1950s. Over the last decade many new topologies and new FSMs has been developed 

for a variety of applications, ranging from financial devices, cars, wind and aviation 

as well [22]. The FSPM machine offers several potential advantages over conventional 

PM concrete machines that use a magnet on the rotor. The structure of the FSPM 

engine is relatively simple and consists of steel piles with salient poles. FSPM 

machines have shown advantages over SPM engines for high-speed generator 

applications, due mainly to a reduction in magnetic retention problems during high-

speed operation [23]. In addition, FSPM machines have been engineered to achieve 

attractive torque densities that are superior to other types of PM doubly-salient motors 

[24]. The advantages and disadvantages of FSM are considered and listed in table 2.1. 

 

Table 2.1: Advantages and disadvantages of FSM 

Advantages  Disadvantages  

i. Simple and robust rotor 

structure suitable for high 

speed applications.  

ii. Easy to manage magnet 

temperature rise as all 

active parts are located in 

the stator. 

iii. Flux focusing / low cost 

ferrite magnets can also be 

used.  

iv. Sinusoidal back-emf 

waveform which is 

suitable for brushless AC 

operation.  

i. Reduced copper slot area in 

stator. 

ii. Low over-load capability due 

to heavy saturation.  

iii. Complicated stator. 

iv. Flux leakage outside stator.  

v. High magnet volume for 

PMFSM 
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2.4 Classification of flux switching machine (FSM) 

 In general, the FSMs can be divided into three groups, permanent magnet flux 

switching machine (PMFSM), field excitation flux switching machine (FEFSM), and 

hybrid excitation flux switching machine (HEFSM). Both PMFSM and FEFSM has 

only PM and field excitation coil (FEC), respectively as their main flux sources, while 

HEFSM combines both PM and FEC as their main flux sources. Figure 2.3 shows the 

general classification of FSM.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Classification of flux switching machine (FSMs) 

2.4.1 Permanent Magnet Flux Switching Machine (PMFSM) 

 Permanent magnet flux machines (PMFSM) have a short history and have been 

researched for several decades. And this is a relatively new category of electric motors. 

The main PMFSM model was described in [25].  Where Rauch and Johnson proposed 

a new type of motor with permanent magnets placed in the stator. Typically, these 

machines have an important salient rotor with poles and PMs, which are stationed in 

the stator.  PMFSM is very similar to the (DSPM) machine (Double salient Permanent 

magnet) or to the (FRM) flux reversal machine [26]. However, the conventional 

Flux Switching Machines 

(FSMs) 
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PMFSM has a relatively weak flux weakness due to fixed magnetic flux, which 

requires existing armature winding current controllers to work in an increasingly weak 

range. By using a negative d-axis current, the PM flux can be overcome, thereby 

reducing the density of the magnetic flux. However, the disadvantages of increasing 

the loss of copper can reduce efficiency, and the possibility of non-recoverable 

demagnetization by the PM is difficult to overcome. A new 12S-10P PMFSM structure 

to provide interesting features [27].     

 Permanent magnet motors based on the principle of flux switching have been 

studied for decades. Generally, such a machine has a salient pole rotor and PM housed 

in the stator. [28] And [29] describe three-phase FSM based on the principle of 

homopolar flux and bipolar flux, respectively, in [30], new types of single-phase and 

three-phase PMFSM were reported respectively, in which a pair of PMs are embedded 

in the stator. In addition, in [31], the performance of the Law relay is proposed, a 

limited angle actuator type magnetic flux actuator. Various examples of three-phase 

PMFSM are shown in Figure 2.4. 

 Figure 2.4 (a) shows a special three-phase 12S-10P PMFSM, in which the 

salient pole stator core is composed of a modular U-shaped lamination, the lamination 

and the circular magnetic PM phase placed between them adjacent. For the principle 

of magnetic flux transfer, the polarity of PM magnetization is reversed from one 

magnet to another. The stator armature winding consists of a thicker coil, and each coil 

is wounded around the stator tooth formed by two adjacent laminations parts and a 

magnet. In the same figure, all phases of the armature coil (for example, A1, B1, C1, 

A2, B2 and C2) have the same winding configuration and are placed in the stator core 

to form 12 winding slots. Salient pole rotor is similar to SRMs, which is stronger and 

more suitable for high-speed applications, and the difference between the number of 

rotor poles and the number of stator teeth is two. Compared with conventional IPMSM, 

when the magnet moves from the rotor to the stator, the gap area is reduced, it is easier 

to remove heat from the stator, and the temperature rise in the magnet can be controlled 

by a suitable cooling system. In addition, because the armature windings, the flux path 

generated by the PM are connected magnetically in parallel, and not in series like 

traditional IPMSM, the effect of the armature reaction field at the PM operating point 

is almost eliminated. And to that, the electrical load and torque of PMFSM can be 
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increased. On top of that, high pre-unit winding inductance can be easily obtained. 

Therefore, such a machine is very suitable for running with constant power operation 

strength at various speed range, that is, it can have a high flux-weakening ability [32]. 

Just like fractional PM motors without overlapping windings, spare pole wound 

windings can also be used in the three-phase PMFSM 12S-10P to achieve tolerable 

PMFSM. The armature windings from Fig.  2.4 (a) are reduced by releasing A2, B2 

and C2 to form a total of 6 armature windings as shown in Fig. 2.2(b) [33].  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

Figure 2.4: Examples of PMFSMs (a) 12S-10P PMFSM (b) Fault-tolerance PMFSM 

(c) E-core PMFSM (d) C-core PMFSM  
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