
PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

i 

 

 

 

ENERGY ABSORPTION PERFORMANCE OF BRAIDED BASALT 

REINFORCED COMPOSITE TUBES UNDER AXIAL LOADS  

MOHD NAZRUL BIN ROSLAN 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy  

Faculty of Mechanical Engineering 

Universiti Teknologi Malaysia 

JUNE 2018



PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

iii 

 

 

 

 

DEDICATION 

 

 

 

 

 

 

Specially dedicated to both of Ayah, Mama, and Emak, as well as beloved wife, and 

children for supporting my entire PhD study 

May Allah bless all of you  

 

  



PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

iv 

 

 

 

 

ACKNOWLEDGEMENT 

Alhamdulillah, praise be to Allah, for gave me healthy and strong heart to 

finish this thesis.   

Firstly, I would like to express my sincere gratitude to my advisor Assoc.  Prof. 

Dr. Mohd Yazid bin Yahya for the continuous support of my PhD study and related 

research, for his patience, motivation, and immense knowledge.  His guidance helped 

me in all the time of research and writing of this thesis.  I could not have imagined 

having a better advisor and mentor for my PhD study.  Besides my main advisor, I 

would like to thank the rest of my thesis committee: Assoc. Prof. Ir. Dr. Zaini bin 

Ahmad, and Dr. Azrin Hani binti Abdul Rashid for their insightful comments and 

encouragement, but also for the thoughtful question which enlighten me to widen my 

research from various perspectives.   

My sincere thanks also goes to Assoc.  Prof. Dr. Wen-Xue Wang, from Kyushu 

University, Japan, who provided me an opportunity to join their team as intern, and 

who gave access to the laboratory and research facilities.  Without they precious 

support it would not be possible to conduct a few parts of this research.  I thank my 

fellow labmates in for the stimulating discussions, for the sleepless nights we were 

working together before deadlines, and for all the fun we have had in the last four 

years.  Also I thank my friends in the following institution Centre for Composite (CfC), 

Universiti Teknologi Malaysia.   

Last but not the least, my special gratitude to Ministry of Education Malaysia, 

and Universiti Tun Hussein Onn Malaysia (UTHM) through Skim Latihan Akademik 

Bumiputera (SLAB) fund. 

. 



PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH

v 

 

 

 

ABSTRACT 

The thin-walled composite tube is recognised as a potential replacement for 

thin-walled metal tubes in light-weight structures.  In higher load-bearing structures, 

thick-walled composite tubes have more advantages compared to thin-walled 

composite tubes.  However, thick-walled composite tubes use more material, thus 

resulting in additional weight to the structure.  Therefore, a decent design of fibre 

reinforced sandwich composite tube with polymer foam-core could have a higher 

potential to provide both demands of high energy absorption capacity as well as light-

weighting structure.  Due to the recent environmental awareness, natural basalt fibre 

has been getting more demand and interest from preform manufacturers.  Hence, the 

aim of this research is devoted to the investigation of energy absorption performance 

of novel and eco-friendly braided basalt composite tubes associated with axial 

crushing loadings.  A series of thin-walled and sandwich composite tubes were 

fabricated using braided basalt/epoxy composite and expanded polyurethane foam. 

The axial crushing tests of these tubes under quasi-static and impact loads were carried 

out.  A numerical model of sandwich tube with the highest energy absorption 

capability obtained experimentally was developed and validated with the experimental 

result.  The main finding shows that sandwich tubes have better crushing control than 

thin-walled tubes under a dynamic impact loading. The result implies that there is an 

approximately 30% drop in value of crush force efficiency of thin-walled tubes under 

quasi-static compared to dynamic crushing, while sandwich tubes have sustained 

values.  The experimental result also reveals that the basalt composite tube with a ±45º 

braid angle has the highest crushing performance compared to other braid orientations.  

The numerical model of sandwich tube (±45º/core/±45º) was validated with 

experimental result in accordance to the scopes and parameters used in this study.  
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ABSTRAK 

Tiub komposit berdinding nipis merupakan salah satu struktur ringan yang 

berpotensi tinggi bagi menggantikan struktur tiub logam berdinding nipis. Manakala, 

struktur tiub komposit berdinding tebal mempunyai kelebihan yang lebih banyak 

dalam menahan bebanan yang besar berbanding tiub komposit berdinding nipis. 

Namun, tiub komposit berdinding tebal menggunakan bahan yang lebih banyak 

menyebabkan pertambahan berat kepada struktur binaan tersebut. Oleh itu, reka 

bentuk komposit susunan serat diperkuatkan dengan teras busa polimer berbentuk 

sandwic mempunyai kedua-dua potensi menyerap tenaga yang tinggi dan struktur yang 

ringan. Kesedaran tentang alam sekitar masa kini menyebabkan serat semulajadi basalt 

mendapat permintaan yang tinggi dalam kalangan pengeluar bahan prabentuk. Maka, 

tujuan kajian ini dijalankan adalah untuk menyelidiki prestasi penyerapan tenaga 

melalui pembebanan penghancuran berpaksi terhadap tiub komposit yang diperbuat 

daripada jalinan basalt yang mesra alam.  Satu siri tiub berdinding nipis dari komposit 

sandwic telah dihasilkan menggunakan teknik campuran jalinan tiub komposit 

basalt/epoksi bersama busa polyurethane terkembang. Model berangka tiub sandwic 

dengan keupayaan penyerapan tenaga tertinggi diperolehi secara eksperimen telah 

dibangunkan dan ditentusahkan dengan hasil eksperimen. Hasil penemuan utama 

menunjukkan bahawa tiub sandwic mempunyai kawalan penghancuran yang lebih 

baik berbanding dengan tiub berdinding nipis di bawah beban impak dinamik. 

Hasilnya menunjukkan bahawa terdapat kira-kira 30% penurunan nilai kecekapan 

daya penghancuran tiub berdinding nipis di bawah ujian kuasi-statik berbanding 

dengan ujian dinamik. Manakala, tiub sandwic mengekalkan nilainya dalam kedua-

dua ujian tersebut. Keputusan ujian juga membuktikan bahawa tiub komposit basalt 

dengan sudut jalinan sebesar ±45º memperoleh prestasi penghancuran tertinggi 

berbanding sudut jalinan bagi tiub yang lain. Model berangka tiub sandwic 

(±45º/core/±45º) telah ditentusahkan dengan keputusan eksperimen selaras dengan 

skop dan parameter yang digunakan dalam kajian ini.  
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1INTRODUCTION 

1.1 Background and Motivations 

Major changes of structural materials have been implemented in the high 

technology development of future vehicles.  One of the reasons is the demand for a 

light-weighting vehicle that might consume less fuel and faster movement.  As an 

example, in the automotive industry, Lotus started composite cars longer than any 

other car manufacturer, with Lotus Elite in 1957.  Meanwhile, Aston Martin launched 

its carbon fibre body named Vanquish V12, which weighed not more than 2 tonnes.  

A report claimed that the assembly's weight is only 22.5 kg yet it can absorb a 

maximum of 140 kJ of energy in a 16 ms-1 impact  [1].  On the other hand, a recent 

event by Composites UK has set out the new composite material to their rail industry, 

High Speed 2.  The automotive pioneer industries, Voith [2] launched their new energy 

absorber that used glass fibre reinforced plastic (GFRP) composite in their new Galea 

vehicle on the head-front of the crash energy systems, as illustrated in Figure 1.1.  
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Figure 1.1: Voith Turbo’s in new Galea vehicle head and front end systems [2] 

With an increase in public and personal transportation, more safety concerns 

have been highlighted by vehicle manufacturers.  As there are trends toward the use of 

composite materials in vehicle components, manufacturers must ensure that composite 

structures are capable of absorbing impact during an accident.  Vehicle collisions can 

be classified into frontal, side, rear, and rollover crashes.  The frontal crash is the most 

unsafe impact situation, and the front structure is the most exposed to absorb the crash 

kinetic energy and prevent intrusion into the occupant compartment.  Therefore, it is 

crucial for the design of the frontal structure of vehicles to have a stable and 

controllable energy dissipation [3].   

The most important goal in designing light-weighting crashworthy structures 

is to absorb maximum energy with minimum mass.  Thin-walled tubes are being 

widely explored and used as energy-absorbing members in many fields due to their 

high strength-to-weight ratio, good energy absorption performance, and capability of 

controlling crush progression.  Thus, the thin-walled cylindrical structure has been 

extensively studied by numerous researchers [4–6].  An energy-absorbing structure 

under crush demonstrated various interaction effects, for example nonlinearity of 

geometry,  strain-hardening influences, and rate sensitivity effect are tangled with each 

Pillar 

Aluminum honeycomb 
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Safety glass 

Shell 

Scharffenberger Coupler  
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other and associated to plastic deformation and failure mechanism in crushing 

history  [7–10].  The ductility of metals can absorb the impact energy by buckling and 

deforming.  However, most of the composites are brittle, reinforced by relatively 

strong fibres surrounded with a weaker matrix and some of them are relatively infused 

with ductile matrix.  A fibre reinforced polymer (FRP) composite absorbs impact crash 

energy principally by debonding or delaminating at the fibre-matrix interface, crushing 

into fragments and creating large amounts of new surface area.  Thus, a successful 

composite design can accomplish impact energy absorptions much greater than metals.   

Practically, due to the higher load bearing and impact resistance applications, 

thin-walled tubular structures filled with polymer foams have garnered attention 

among researchers and high-end industries such as automotive and aircraft.  Compared 

to thin-walled composite tubes, the foam-filled thin-walled tube offers higher local 

flexural stiffness and impact energy absorption efficiency.  However, without proper 

design, the foam-filled composite tube encounters a low specific energy absorption 

problem.  For many years, sandwich structures have recognised applications in the 

aerospace and automotive industries.  A sandwich panel typically consists of two thin 

skins, stiff FRP composite facings detached by a light-weight polymer foam-core.  The 

structure is proven to provide extremely efficient light-weighting structures.  Many 

studies conducted in collapsible sandwich structure through the years were subjected 

to wide range loadings such as those associated with quasi-static [11–15], 

impact [5,16,17], and blast loadings [18,19].  Only a few of those works reported that 

FRP composite plays an important role as skins in a sandwich structure for a crashing 

performance [14,15,19].  A good design of a sandwich structure probably could 

improve the specific energy absorption capacity better than having a thin-walled 

structure.   

Continuous improvement from the production technology has improved the 

fibre tailoring process in composite tube manufacturing.  Several of the textiles 

preform techniques, for example filament winding, unidirectional and braiding, are 

often adopted in orienting the fibrous yarn for the cylindrical composite fabrications.  

From those techniques, braiding is the most cost effective and well-performance 

among them  [20–22].  Braided composite particularly offers many advantages such 
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as excellent impact resistance and high interlaminar shear strength due to their locking 

mechanism and continuously oriented to any kind of shape.  Owing to their good 

impact resistance and interlaminar shear properties, braided composites have been 

continuously explored by researchers around the world as one of the good potential 

candidates for energy absorber devices.  Previous studies  [23–27] indicated that the 

crushing performance of energy absorber made with braided composite significantly 

depends on its fibre/matrix material properties, fabrication conditions, braid angle and 

dimensions of the structural components. 

To date, considerable interest in environmental issues has encouraged the 

amount of literature focusing on the use of natural fibres in composite reinforcing 

polymer [28,29].  Most kinds of plant fibres such as flax, sisal and kenaf have been 

studied and used.  Unfortunately, those fibres are very delicate to thermal and 

hygroscopic load.  Moreover, it shows imperfect mechanical properties due to the fibre 

removal system, the difficulty in fibre placement, low interfacial strength and the non-

homogenous fibre dimensional.  Fortunately, one type of mineral natural fibre known 

as basalt has been successfully made with continuous filament yarn type which is 

available in the market nowadays.  The basalt fibre has many advantages such as high 

modulus and strength, high temperature resistance, good chemical resistance, non-

toxic, eco-friendly and inexpensive.  The density of the basalt fibre is the same as that 

of the glass fibre, but the specific modulus and strength of the basalt fibre are higher 

than general glass fibre.   

Several important views and advantages had been addressed on the usage of 

thin-walled FRP composite associated with crashing performance.  Even though the 

sandwich tube structure is highly potential in a high load-bearing capacity, the 

quantification studies of the usage of natural FRP composite as sandwich skins are less 

in numbers.  There is a shortfall on a well-established composite of basalt material 

which is important to be known for critical applications as an alternative material to 

synthetic glass fibre.  Therefore, the motivation of the current research is to establish 

a novel braided basalt reinforced polymer sandwich composite tube with expanded 

polyurethane (EPU) foam-core for energy-absorbing applications throughout the axial 

crushing experiments and simulation.    
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1.2 Problem Statements  

In the past reports, thin-walled metal tubes have been highlighted for its 

crushing performance  [30,31].  However, the new era of transportation technology is 

demanding light-weighting body parts, and new material with comparable or higher 

strength is needed.  Thus, new material fibre reinforced polymer (FRP) composite had 

been extensively studied for their capabilities.  The energy-absorbing structures are 

expected to absorb the maximum crash energy with minimum unit of weight.  A few 

research groups claimed the energy absorption of a well-designed thin-walled FRP 

composite achieved better than metals [8–10].  The ideal phenomena would be the 

composite structure being fragmented into small pieces where the crush happens, yet 

everything else is still intact [32].  Consequently, some researchers attempted to 

increase the energy absorption capacity by increasing the thickness of the tube 

wall [32,33].  As a result, a thick-walled tube consumes higher local stiffness but gives 

significant additional weight to the structure.  Meanwhile, cellular materials such as 

polymer foams exhibited superior performance for absorbing impact energy as they 

can withstand large deformation at nearly a constant load.  However, the strength of 

polymer foam itself is low, thus the quantity of energy absorption is very restricted.  

Although polymer foams are not recommended to use unaided for an energy-absorbing 

unit, they can be taken as a filler material in thin-walled structures.   

By introducing either a thick-walled, or thin-walled with foam filler in a 

composite tube, the energy absorption capacity is eventually increased.  However, the 

specific weight unit of the energy absorption response is unknown but important to be 

discovered.  Palanivelu et al.  [34] has reported that the usage of polyurethane foam 

increased thin-walled tube strengthening and steadiness for progressive crushing; but 

the usage of foams has reduced the specific energy absorption capacity.  A report 

claimed that foams with higher density has higher compression strength, contrarily the 

range of the plateau relative density is reduced [35].  Thus, the choice of suitable foam 

parameters and thin-walled tube walls are vital for energy-absorbing structure.   

 

Besides that, the capability of a braided composite as an energy absorber unit 

is significantly dependent on their materials and properties, fabrication conditions, and 
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geometry and dimensions of the structural components [23,26,27].  Each of the fibre 

materials have different strain sensitivity rates at higher impact energy. Even with the 

same fibre tow direction, early prediction on their energy-absorbing behaviour could 

be misled.  Therefore, the role of a braided FRP composite tube as the backbone of a 

sandwich skin structure is still much unknown and yet to be discovered especially on 

the usage of natural fibre reinforcement.  Hence, the braided parametric studies on 

sandwich skins structure is crucial to the new contribution of knowledge.   

 

Subsequently, due to the life cycle of a synthetic fibre reflecting to the 

ecological issues, in the last couple of decades natural fibres have come into 

consideration in reducing the dependency of synthetic fibres for high-end composite 

applications.  Natural fibres have been grouped in three which are plant, animal, and 

mineral.  Natural plant fibres such as flax, kenaf, coir, or sisal have lighter weight as 

compared to natural mineral fibres.  However, plant fibres are susceptible to thermal 

and hygroscopic load, besides showing limited mechanical properties with different 

fibre dimension and have uneven interface strength [36].  So, plant fibres are not 

feasible to be used in fibre placement and fibre extraction system.  Thus, manmade 

glass fibre was continuously leading the low-cost fibre reinforcement as compared 

with natural plant fibres.  However, one of limitation of glass fibre is low on chemical 

resistance, as result limited to be part of certain application [37].  As an alternative, 

natural and eco-friendly fibre called basalt had paid attention as the best choice in 

replacing glass fibre due to their comparative performance and good in chemical 

resistance.  The capability of basalt fibre reinforcement in energy absorption 

performance is still unknown yet to be discovered. Hence, the combination of braided 

basalt reinforcement in sandwich composite study is another new exploration of 

knowledge.  
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1.3 Research Objectives 

The aim of this research is to investigate the energy absorption performance 

and deformation mechanism of thin-walled and sandwich tube of braided basalt 

reinforced polymer composite subjected to axial crushing loadings.  To achieve this 

aim, the research objectives are set as follows:  

 

1. To evaluate the mechanical properties of thin-walled composite tube, expanded 

polyurethane foam, and in-plane shear properties of sandwich tube of basalt 

reinforced composite tube.   

2. To identify the effect of different braid angle and braided materials of thin-

walled, and sandwich composite tube subjected to quasi-static and dynamic 

crushing experiments.     

3. To examine the energy absorption performance of different foam thickness on 

sandwich basalt composite tubes under quasi-static crushing experiment.   

4. To develop the finite element models to represent the optimised braided basalt 

of thin-walled and sandwich composite tube, and validate these models with 

experimental results.  

1.4  Research Scope and Limitations 

The research scope and limitations of this study are listed as follows: 

• All tested tube specimens were consisting of two types geometries; thin-walled 

tube, and sandwich composite tube. The thin-walled composite tubes consist 

of braided basalt and glass reinforcement materials, and epoxy as a matrix. 

Meanwhile, the sandwich composite tubes consist of thin-walled basalt 

composite tube as skins and expanded polyurethane foam (EPU) as foam-core. 

• Thin walled composite tubes are fabricated using hand-layup and thermal 

shrink method with three layers, and three types of braid angle, θ; ±30º, ±45º, 

and ±60º.  Consequently, sandwich composite tubes are fabricated using 
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