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PENGESAN DAN PENGELASAN DELAMINASI DISEBABKAN OLEH 

IMPAK PADA GENTIAN KACA PREPREG KOMPOSIT BERLAPIS 

DARIPADA ISYARAT ULTRASONIK IMBASAN-A                       

MENGGUNAKAN KECERDASAN BUATAN  

ABSTRAK 

Delaminasi disebabkan oleh impak pada gentian kaca komposit berlapis 

(GKKB) merupakan mod kegagalan yang penting. Selain memberi kesan terhadap 

kekuatan bahan dan kebolehpercayaan struktur, mod kegagalan ini biasanya 

memaparkan kerosakan yang kecil pada bahagian permukaan tetapi mungkin merebak 

pada kerosakan bahagian dalam. Kaedah pengesanan yang sedia ada menggunakan 

tindak balas beban statik dan dinamik mempunyai batasan yang dianggap pemantauan 

tidak boleh-alih dan memerlukan penderia yang dilekatkan pada permukaan bahan 

ujikaji. Teknik ini tidak sesuai kerana kerosakan yang disebabkan oleh hentakan yang 

biasanya berlaku secara tidak sengaja di kawasan tertentu secara rawak. Oleh itu, 

pengesan dan pengelasan delaminasi disebabkan oleh hentakan dengan menggunakan 

rangkaian saraf buatan daripada isyarat ultrasonik mempunyai potensi yang baik untuk 

digunakan, namun tiada percubaan dibuat untuk mengesan and mengelaskan mod 

kegagalan ini pada bahan GKKB. Pengelasan delaminasi terhadap hentakan bukan 

sahaja boleh diaplikasikan sebagai alat ramalan untuk mencirikan delaminasi, ia juga 

boleh digunakan sebagai rujukan semasa memeriksa bahan GKKB di dalam keadaan 

tertentu. Dalam kajian ini, potensi menggunakan ujian ultrasonik secara rendaman 

untuk mengesan delaminasi akibat hentakan pada bahan GKKB jenis kain 7781 E-

Kaca dikaji. Beberapa penemuan dan pembangunan telah dicapai dalam kajian ini 

seperti hubungan di antara kawasan delaminasi dan peningkatan tenaga hentakan, di 

mana kadarnya adalah di antara 23 ke 45 peratus. Selain itu, diameter bagi kerosakan 

yang disebabkan oleh hentakan meningkat secara langsung terhadap peningkatan 
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tenaga hentakan iaitu dalam lingkungan 21 hingga 46 peratus manakala bagi kawasan 

kerosakan yang disebabkan oleh hentakan pula adalah di antara 24 hingga 42 peratus. 

Di samping itu, algoritma pembahagian yang dinamik telah berjaya dibangunkan di 

dalam kajian ini untuk membahagi isyarat ultrasonik imbasan-A secara automatik 

tanpa mengira perbezaan jarak jurang antara penderia dan permukaan bahan ujikaji. 

Berdasarkan hasil pemeriksaan ultrasonik, didapati bahawa delaminasi merebak 

sehingga 35.90 peratus di bahagian dalam dan purata peratus berbezaan hasil 

pengukuran yang diambil dari ujian musnah dan ujian tanpa musnah adalah hanya 4.72 

peratus dan boleh diterima. Oleh kerana keputusan pengelasan yang dicapai adalah 

sangat tepat, iaitu melebihi 99.29 peratus, dapat disimpulkan bahawa ciri-ciri yang 

dipilih sebagai input pengelasan telah berjaya dan penggunaan rangkaian saraf buatan 

dari isyarat A-scan ultrasonik telah menunjukkan kebolehgunaan untuk mengelaskan 

perbezaan jenis delaminasi yang disebabkan oleh hentakan dalam plat GKKB.  
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DETECTION AND CLASSIFICATION OF IMPACT-INDUCED 

DELAMINATION IN FIBERGLASS PRE-IMPREGNATED LAMINATED 

COMPOSITES FROM ULTRASONIC A-SCAN SIGNAL                                 

USING ARTIFICIAL INTELLIGENCE 

ABSTRACT  

Impact-induced delamination (IID) in fiberglass pre-impregnated laminated 

composites (FGLC) is an important failure mode. Besides affected the material 

strength and structural reliability, this failure mode normally present minor damage on 

the surface but the internal damage may extensive. Existing detection method using 

static and dynamic load response have limitations that are considered static based 

monitoring and require the sensor to be attached to the test specimen surface. This 

technique is not suitable as the damage caused by the impact normally occurred by 

accident at random location. Thus, detection and classification of IID using artificial 

neural network from ultrasonic signal has great potential to be applied, but no attempt 

has been made to detect and classify this failure mode in FGLC material. The 

classification of delamination against impact not only applicable as prediction tool to 

characterise the delamination, it also can be used as reference during inspecting the 

FGLC under specific conditions. In this study, the potential of using ultrasonic 

immersion testing for detecting the IID in FGLC type 7781 E-Glass fabric is studied. 

Several findings and development have been achieved in this study such as the 

relationship between delamination area and the increasing of an impact energy, where 

the rate is between 23 to 45 percent. Besides, it was found that the diameter of the 

impact damage is directly increase with the increasing of the impact energy in the 

range of 21 until 46 percent while for the impact damage area is between 24 until 42 

percent. In addition, the dynamic segmentation algorithm has been successfully 

developed in this study to automatically segment the A-scan signal with regardless the 
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variation of gap distance between transducer and specimen surface. Based on the 

ultrasonic inspection result, it was found that the delamination is extend internally up 

to 35.90 percent and the average percentage different of the measurement result which 

is taken from DT and NDT is just 4.72 percent and acceptable. Since the achieved 

classification result is highly accurate, which is exceeded 99.29 percent, it can be 

concluded that the selected features for the classification input is successful and the 

use of artificial neural network from ultrasonic A-scan signal has shown its 

applicability to classify the different type of the impact-induced delamination in FGLC 

plates. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of study  

Fiberglass pre-impregnated laminated composites (FGLC) is the reinforced 

glass fabric which has been pre-impregnated with a resin system, typically ready for 

lay into the mold and require pressure and heat during curing process (FAA, 2012). 

FGLC structures have been developed and widely implemented in manufacturing and 

advanced industries including automotive, military, sport and aerospace over the 

decades. The advantages of FGLC prepregs over other hand lay-up laminated 

composites are higher the strength properties by minimizing the excess resin problem 

and balance the distribution of resin which is significantly reduced the damage from 

resin problem; either resin-rich area or dry spot area. Also, it required less curing time, 

whose allow the part for service once the curing time has completed (Hubert et al., 

2017). Although advances in the FGLC manufacturing technology has improved much 

on the strength properties and manufacturing time, recent studies have found that 

delamination, fiber breakage and matric crack are typically occurred in laminated 

composites (Perez et al., 2014; Ambu et al., 2006). However, based on these failure 

modes, delamination is the most commonly found in laminated composites by 

separated layer parallel to the surface  of the  structure (Adam and Cawley, 1989). In 

the recent years, delamination growth and structural integrity behaviour in laminated 

composites has receive much attention in the research community. According to Ng et 

al. (2012), there are three main factors can cause the presence of delamination in 

laminated composites which are, (i) trapped air due to poor lay-up procedures,               
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(ii) unremoved prepreg backing film during stacking process, and (iii) external force 

during in-service. However, the first and second factor of delamination can be avoided 

throughout robust standard of procedure (SOP) with help in-process quality control. 

In contrast, the delamination which is caused by an external force such as an impact 

that has been occurred when the tool accidently drop to the structural surface during 

maintenance is difficult to prevent (Nikfar and Njuguna, 2014). The delamination 

induced by low-velocity impact (LVI) during manufacturing or in-service cause severe 

stiffness and reduction of compressive strength that potentially lead to catastrophic 

failure for the whole structures (Perez et al., 2014; Lin and Chang, 2002). LVI has 

been determined based on an impact velocity in the range of 1 to 10 m/s depending on 

the material properties, the projectile mass and the target stiffness (Sjoblom et al., 

1988).  

The detection of delamination are quit challenging since this failure mode 

cannot be observed by naked eyes on the surface. Thus, several researches have been 

carried out in developing extensive method of detection the delamination induced by 

impact for laminated composites. Although delamination cannot be observed by naked 

eyes, Sayer et al. (2012) applied high end vision system to investigate the effect of 

temperature in hybrid laminated composites to the impact induced delamination area. 

The similar experiment has been conducted later by Liu et al. (2014) but using different 

type of laminated composites, namely pyramidal truss core sandwich. Moreover, 

detailed result from cross section view image of delamination area was captured using 

scanning electron microscope (SEM) equipment. However, this technique will damage 

the structure and not applicable to detect delamination on working parts. Alternatively, 

another non-destructive testing (NDT) technique based on static and dynamic force 

response for various geometric boundary condition using piezoelectric (PZT) sensor 
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and strain gauges was developed to obtain force and micro strain (Watkins et al., 2007; 

Jang and Kim, 2017), modal characteristic of delamination growth (Valdes and Soutis, 

1999; Perez et al., 2014), statistical pattern recognition (Sohn et al., 2001) and mean 

of Auto Regressive from time histories of the acquired response (Nardi et al., 2016). 

Besides, advance type of sensor, namely fiber Bragg grating sensing system (FBG) 

also been used by many researchers (Koh et al., 2005; Ling et al., 2005; Jang and Kim, 

2017; Chandarana et al., 2017; Xu, 2014; Wu et al., 2015; Yu et al., 2016) due to its 

advantages of lightweight, small size, resistance electromagnetic interference and 

large target area. Since these technique required multiple sensor with complicated 

wiring installation during data acquisition, other researchers used scanning laser 

Doppler vibrometry (LDV) technique, where the laser beam is directly measure the 

vibration on the targeted surface such as delamination detection in thin laminated 

composites plate (Kudela et al., 2016; An, 2016) or at T-join plate (Geetha et al., 2016). 

The delamination image obtained from this technique is useful to locate and determine 

the size of the delamination.  

Although most of the work reported in the literature able to monitor 

delamination along full life cycle of the structure, these techniques required PZT 

sensor to be attached on the surface of the targeted area and leaves footprint on the 

plate surface after removing the PZT sensor. Thus, non-contact based technique such 

as ultrasonic testing (UT), thermography and X-radiography were the alternative 

approach that meet the criteria. Several researches attempted to investigate the impact 

induced delamination behaviour using these techniques such as done by Mitrevski et 

al.(2005) and Mitrevski et al.(2006), who used UT scanned image to identify the 

relation between designed indenter shape and delamination area in CFRP thin plates. 

However, the scanned image was inadequate and difficult to identify the size of 
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