DETECTION AND CLASSIFICATION OF IMPACT-INDUCED DELAMINATION IN FIBERGLASS PRE-IMPREGNATED LAMINATED COMPOSITES FROM ULTRASONIC A-SCAN SIGNAL USING ARTIFICIAL INTELLIGENCE

by

MUHAMMAD FAISAL BIN MAHMOD

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

February 2018

ACKNOWLEDGEMENT

I would like to convey my greatest gratitude to my supervisor, Assoc. Prof Dr Elmi bin Abu Bakar and Dr Inzarulfaisham bin Abd. Rahim for supervising me towards the completion of the PhD degree at Universiti Sains Malaysia. This special gratitude is also dedicated to Universiti Tun Hussein Onn Malaysia (UTHM) and The Malaysian Government for sponsoring during the period of PhD programme.

My thanks to USM's staff, Mr. Shukri, Mr. Nazir, Mr. Hisham, Mr. Mahmod, my research colleagues, Ahmad Raiminor, CY Goh, Mohamad Nizar, Muhammad Zaim, Azizul, YC Koo, Siti Nur Hanisah, Nurul Aida, Nur Syazwani and Zuliani. Also, Mr. Fadzlee from SIRIM-AMREG, Kulim High Tech, Malaysia, Mr Nooruladha from TWI Technology (S.E.Asia) Sdn. Bhd, Mr. Salleh from Altec Industrial and Engineering Supply Sdn. Bhd. and Mr Lee Deng from US UltraTek Inc for their intention and advice during experimental works.

Also special thanks are dedicated to my mother, my wife and family for their everlasting love, patience and supports during the period of my studies. I believe not to have enough time to repay all the love they have provided.

TABLES OF CONTENTS

Page

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xvi
ABSTRAK	xviii
ABSTRACT	XX
CHAPTER ONE: INTRODUCTION	
1.1 Background of study	1

CHAPTER ONE: INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	5
1.3	Objectives	7
1.4	Scope of study	7
1.5	Research approach	8
1.6	Organization of thesis	9

CHAPTER TWO: LITERATURE REVIEW

2.1	Introd	uction	11
2.2	Impact-induced delamination in laminated composites		15
2.3	2.3 Detection of the impact-induced delamination in laminated composites		17
	2.3.1	Detection of the impact-induced delamination using static and dynamic load response method	18

	2.3.2	Detection of the impact-induced delamination using laser Doppler vibrometry method	21
	2.3.3	Detection of the impact-induced delamination using ultrasonic testing method	25
2.4	Wave	let function analysis	31
2.5	Featur	re extraction using wavelet transform approach	38
2.6	Classi	fication of defect using neural network approach	43
	2.6.1	Network generalization for for artificial neural network (ANN) method	48
2.7	Chapt	er summary	49

CHAPTER THREE: METHODOLOGY

3.1	Introdu	action	51
3.2	Low-ve	elocity impact test in fiberglass prepregs laminated composites	54
	3.2.1	Experimental setup of LVI test	56
	3.2.2	Grid mark on test specimen for ultrasonic scanning guide	58
3.3	Ultrasc	onic pulse-echo immersion testing experimental setup	60
	3.3.1	Design and development of ISI i-Inspex TWO	60
	3.3.2	System architecture of ISI i-InspeX TWO	62
	3.3.3	Calibration of transducer before inspection	65
	3.3.4	Parameter setup during inspection	69
3.4	Signal	acquisition of delamination induced by impact in FGLC	72
3.5	Signal	pre-processing of ultrasonic A-scan signal	74
	3.5.1	Signal segmentation	75
	3.5.2	Signal de-noising	76
3.6	Destru	ctive testing after scanning inspection of FGLC plates	78
3.7	Feature	extraction	79

	3.7.1 Delamination features	79
	3.7.2 Feature selection	81
3.8	Classification of the impact-induced delamination in fiberglass laminated composites using artificial neural network approach	84
	3.8.1 Training, testing and validation the network	86
3.9	Chapter summary	88

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1	Introduction	90
4.2	Low-velocity impact test in FGLC plates	91
4.3	Calibration result of ultrasonic transducer	98
4.4	Detection of the impact-induced delamination using ultrasonic immersion testing method	100
	4.4.1 Signal acquisition result	100
	4.4.2 Dynamic signal segmentation result	102
	4.4.3 Signal de-noising result	105
	4.4.4 Visualized of delamination from re-plotted ultrasonic A-scan signals	110
4.5	Comparison of delamination measurement between destructive test and non-destructive test method	115
4.6	Feature extraction of ultrasonic A-scan signal for delamination	117
	4.6.1 Feature selection result	118
4.7	Classification result of the impact-induced delamination in FGLC	125
4.8	Chapter summary	130

CHAPTER FIVE: CONCLUSIONS AND FUTURE RESEARCH

5.1	Introduction	133
5.2	Conclusions	133
5.3	Contributions of study	135
5.4	Future recommendations	136

REFERENCES

137

APPENDICES

Appendix A	[Prototype development]
Appendix B	[Theoretical of material sound velocity]
Appendix C	[Coefficient of reconstruction low pass filter of different wavelet families]
Appendix D	[Cross-correlation analysis of different wavelet families]
Appendix E	[Cross-correlation analysis of different level of decomposition]
Appendix F	[Impact damage diameter against impact energy of each test specimens]
Appendix G	[Percentage different between delamination and impact damage area of each test specimens]
Appendix H	[Feature extraction of each test specimens]

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 3.1	List of initial height of impactor, impact energy and impact	
	velocity in different impact test class	58
Table 3.2	Computer-based control setup for FGLC panels	69
Table 3.3	Manual adjustable setup for FGLC panels	71
Table 3.4	List of extracted delamination features	80
Table 4.1	Thickness measurement result of aluminium calibration block	99
Table 4.2	Sound velocity of aluminium between theory and experiment	99
Table 4.3	Correlation analysis of different wavelet families	107
Table 4.4	Correlation analysis different level of decomposition	109
Table 4.5	Comparison analysis between the size of impact damage and the size of delamination which is obtained from ultrasonic A-scan signal	113
Table 4.6	Comparison analysis between the size of horizontal delamination diameter taken from NDT and DT	116
Table 4.7	Extracted feature of the impact-induced delamination in FGLC plates from ultrasonic A-scan signal	117
Table 4.8	Classification result of the impact-induced delamination in FGLC plates	125

vii

LIST OF FIGURES

Figure 2.1	Delamination occurred between adjacent plies in laminated composites (Riccio, 2008)	12
Figure 2.2	Delamination caused by by drilling process in laminated composites (Riccio, 2008)	13
Figure 2.3	Tapered laminate geometry terminology (Leslie et al., 2016)	14
Figure 2.4	Damage pattern for thin and thick laminated composites (Riccio, 2008)	14
Figure 2.5	Typical damage caused by impact in laminated composite (Shyr and Pan, 2003)	16
Figure 2.6	Configuration of strain sensor on the laminated composites test specimen. (Watkins et al., 2007)	18
Figure 2.7	Experimental setup of laser Doppler vibrometry technique	
	al., 2016)	21
Figure 2.8	Experimental setup of ultrasonic immersion testing (ASTM E1065, 2003)	25
Figure 2.9	Ultrasonic A-scan signal display (National Instruments, 2016)	26
Figure 2.10	Signal waveform (a) Sinusoid waveform (b) Wavelets waveform (Fugal, 2009)	32
Figure 2.11	The constituent of wavelets (Fugal, 2009)	32
Figure 2.12	Wavelet Decomposition Analysis (Weeks, 2007)	36
Figure 3.1	The overall process flow of this research	53
Figure 3.2	Typical failure caused by LVI in laminated composites	54
Figure 3.3	Experimental setup of LVI test for FGLC plates	56
Figure 3.4	Close-up front view of the LVI test during pre-loaded test specimen	57
Figure 3.5	Grid mark of 10 mm x 10 mm for each test specimen edge	59

Figure 3.6	CAD drawing of ISI i-InspeX TWO	61
Figure 3.7	System Architecture of ISI i-InspeX TWO	63
Figure 3.8	Developed GUI for motion control	63
Figure 3.9	Experimental setup of ISI i-InspeX TWO	64
Figure 3.10	Aluminium block for thickness calibration	65
Figure 3.11	Illustration of the identified point on the aluminium block	66
Figure 3.12	GUI for ultrasonic thickness measurement	67
Figure 3.13	Illustration of scanning envelop during inspecting FGLC plates on the impact area	72
Figure 3.14	Illustration of re-plotted ultrasonic A-scan signal for impact–induced delamination in FGLC plates	73
Figure 3.15	Simplified flowchart of signal pre-processing	74 AH
Figure 3.16	ROI of overall ultrasonic A-scan signal	75
Figure 3.17	Illustration of FGLC plates with cross-section view of delamination	78
Figure 3.18	Measurement of delamination (ASTM D7136, 2012)	81
Figure 3.19	Generic example of a box plot distribution (a) different range of features, (b) similar range of features	83
Figure 3.20	Overall classification structure for detecting various type of the impact-induced delamination in FGLC using ultrasonic testing method	84
Figure 3.21	Network architecture of the proposed classification system	85
Figure 2.22	5 fold areas validation took sizes	05
Figure 5.22	5-101d cross-validation technique	87
Figure 4.1	Impact damage of FGLC plate batch C3.1 (a) Centre of impact and virtual scanning envelop area, and (b) close-up image of specimen with impact damage area	92
Figure 4.2	Visible impact damage of FGLC plates for each LVI test class (a) specimen C1, (b) specimen C2, (c) specimen C3, (d) specimen C4, (e) specimen C5 and (f) specimen C6	94

Figure 4.3	Influence of the impact energy to the diameter of impact damage	95
Figure 4.4	Determination of impact damaged area in FGLC plates using image processing software namely 'imageJ'	96
Figure 4.5	Influence of the impact energy to the area of impact damage	97
Figure 4.6	Ultrasonic A-scan signal (a) Signal pattern of non-damage while (b) is the signal pattern of damage	101
Figure 4.7	Ultrasonic A-scan signal obtained from different gap distance. (a) 5 mm, (b) 7 mm, (c) 9 mm, (d) 10 mm, (e) 11 mm and (f) 13 mm	103
Figure 4.8	Ultrasonic A-scan signal after processed by dynamic signal segmentation system with different gap distance (a)	
	5 mm, (b) 7 mm, (c) 9 mm, (d) 10 mm, (e) 11 mm and (f) 13 mm	104
Figure 4.9	De-noised signal from various type of wavelet families at fourth level of decomposition for delamination. (a) Raw signal, (b) Haar, (c) Daubechies 2 and (d) Coiflets 2, (e) Symlets 2, (f) Biorthogonal 2.2 and (g) Biorthogonal 4.4	105
Figure 4.10	De-noised signal of delamination from various decomposition level. (a) raw signal, (b) first level, (c) third level, (d) fourth level, (e) fifth level and (f) sixth level	108
Figure 4.11	Illustration of the process to visualize the delamination induced by an impact for FGLC plates	110
Figure 4.12	Visualized image of delamination growth with impact energy as detected by ultrasonic A-scan signal	111
Figure 4.13	Influence of the impact energy to the area of delamination	114
Figure 4.14	Cross-section image of delamination in C2.1 FGLC plate	115
Figure 4.15	The boxplot distribution of mean features for defect points	119
Figure 4.16	The boxplot distribution of variance features for defect points	120
Figure 4.17	Boxplot distribution of standard deviation for defect points	121
Figure 4.18	Boxplot distribution for percentage of delamination area	122

Figure 4.19	Boxplot distribution for delamination diameter in horizontal direction	123
Figure 4.20	Boxplot distribution for delamination diameter in vertical direction	124
Figure 4.21	Classification performance with difference no of neurons	126
Figure 4.22	4.22 MSE vs number of epoch for different fold. (a) Network Fold-1, (b) Network Fold-2, (c) Network Fold-3, (d) Network Fold-4, (e) Network Fold-5	

LIST OF ABBREVIATIONS

ID	One dimensional
2D	Two dimensional
3D	Three dimensional
3D-SEM	3D spectral element method
A1	Approximate level one
A2	Approximate level two
A3	Approximate level three
A4	Approximate level four
ACT	Air coupled transducer
AE	Acoustic emission
AMREC	Advance materials research centre
ANN	Artificial neural network
ANOVA	Analysis of variance
AR	Auto-regressive
AR ASTM	Auto-regressive American society for testing and materials
AR ASTM BPN	Auto-regressive American society for testing and materials Back-propagation neural network
AR ASTM BPN BVID	Auto-regressive American society for testing and materials Back-propagation neural network Barely visible impact damage
AR ASTM BPN BVID BWE	Auto-regressive American society for testing and materials Back-propagation neural network Barely visible impact damage Back wall echoes
AR ASTM BPN BVID BWE C1	Auto-regressive American society for testing and materials Back-propagation neural network Barely visible impact damage Back wall echoes Specimen class number one
AR ASTM BPN BVID BWE C1 C2	Auto-regressive American society for testing and materials Back-propagation neural network Barely visible impact damage Back wall echoes Specimen class number one Specimen class number two
AR ASTM BPN BVID BWE C1 C2 C3	Auto-regressive American society for testing and materials Back-propagation neural network Barely visible impact damage Back wall echoes Specimen class number one Specimen class number two Specimen class number three
AR ASTM BPN BVID BWE C1 C2 C3 C4	Auto-regressive American society for testing and materials Back-propagation neural network Barely visible impact damage Back wall echoes Specimen class number one Specimen class number two Specimen class number three Specimen class number four
AR ASTM BPN BVID BWE C1 C2 C3 C4 C5	Auto-regressive American society for testing and materials Back-propagation neural network Barely visible impact damage Back wall echoes Specimen class number one Specimen class number one Specimen class number three Specimen class number three Specimen class number four

- CCF Cross-correlation function
- CFRP Carbon fiber reinforced polymer
- CP Central peak
- D1 Detail level one
- D2 Detail level two
- D3 Detail level three
- D4 Detail level four
- DGT Discrete Gabor transform
- DT Destructive test
- DWE Defect wall echoes
- DWT Discrete wavelet transform
- EEG Electroencephalogram
- FBG Fiber Bragg grating
- FE Finite element
- FEM Finite element method
- FGA _____ Fiberglass aluminium
- FGLC Fiberglass pre-impregnated laminated composites
- FSH Full screen height
- FWE Front wall echoes
- GF/EP Glass fiber reinforced epoxy
- GFRP Glass fiber reinforced polymer
- GUI Graphical user interface
- HPF High pass filter
- IID Impact-induced delamination
- ISI Innovative system of instrumentation

- LDA Linear discriminant analysis
- LDV Laser Doppler vibrometry
- LM Levenberg-Marquardt
- LPF Low pass filter
- LVI Low-velocity impact
- MATLAB Matrix laboratory
- ME Main energy computing
- MFDWC Mel-frequency discrete wavelet coefficients
- MLP Multilayer perceptron
- MSE Mean square error
- NDT Non-destructive test
- OM Orientation map
- OOA Out-of-autoclave
- PAUT Phased array ultrasonic testing
- PCA Principle component analysis
- PRF Pulse repetition frequency
- PZT Piezoelectric
- RA Random positioning
- RF Radio frequency
- ROI Region of interest
- ROIL Region of interest line
- RSGW Redundant second generation wavelet
- SEM Scanning electron microscope
- SHM Structural health monitoring
- SIRIM Scientific and Industrial Research Institute of Malaysia

- **SLDV** Scanning laser Doppler vibrometry
- SNR Signal-to-noise-ratio
- SO Systematic echo capturing and preservation of original neighbouring grass
- SOP Standard of procedure
- SVM Support vector machine
- SWT Stationary wavelet transform
- SZ Systematic echo capturing method with zero-padding
- US United states
- UT Ultrasonic testing
- PERPUSTAKAAN TUNKU TUN AMINA WPT
- WT
- ZLCC

LIST OF SYMBOLS

A_d	Delamination area
A_i	Impact damage area
$A_{\%}$	Percentage area of delamination over total scanning envelop size
D_{dx}	Horizontal delamination diameter
D_{dy}	Vertical delamination diameter
D_{ix}	Horizontal diameter of impact damage
D_{iy}	Vertical diameter of impact damage
DT_D_{dx}	Horizontal delamination diameter from destructive test method
E_i	Impact energy
g	Acceleration due to gravity
H_i	Initial height of the impactor
H _{ts}	Gap distance between transducer and specimen
k	Iteration
т	Mean
Mi	Mass of impactor
N	Number of sample
N_{pw}	Numbers of pulse width
p	Statistical significant
P_w	Pulse width
$ ho_y$	Cross-correlation estimation
r_{xy}	Estimate of the cross-covariance
S	Standard deviation
T_x	Total thickness of specimen
V	Variance

- *V*_{al} Theoretical of aluminium sound velocity
- *V_i* Impact velocity
- x_k Data in sequence
- $\frac{1}{x}$ Data in average
- ∞ Infinity
- % Percentage

PENGESAN DAN PENGELASAN DELAMINASI DISEBABKAN OLEH IMPAK PADA GENTIAN KACA PREPREG KOMPOSIT BERLAPIS DARIPADA ISYARAT ULTRASONIK IMBASAN-A MENGGUNAKAN KECERDASAN BUATAN

ABSTRAK

Delaminasi disebabkan oleh impak pada gentian kaca komposit berlapis (GKKB) merupakan mod kegagalan yang penting. Selain memberi kesan terhadap kekuatan bahan dan kebolehpercayaan struktur, mod kegagalan ini biasanya memaparkan kerosakan yang kecil pada bahagian permukaan tetapi mungkin merebak pada kerosakan bahagian dalam. Kaedah pengesanan yang sedia ada menggunakan tindak balas beban statik dan dinamik mempunyai batasan yang dianggap pemantauan tidak boleh-alih dan memerlukan penderia yang dilekatkan pada permukaan bahan ujikaji. Teknik ini tidak sesuai kerana kerosakan yang disebabkan oleh hentakan yang biasanya berlaku secara tidak sengaja di kawasan tertentu secara rawak. Oleh itu, pengesan dan pengelasan delaminasi disebabkan oleh hentakan dengan menggunakan rangkaian saraf buatan daripada isyarat ultrasonik mempunyai potensi yang baik untuk digunakan, namun tiada percubaan dibuat untuk mengesan and mengelaskan mod kegagalan ini pada bahan GKKB. Pengelasan delaminasi terhadap hentakan bukan sahaja boleh diaplikasikan sebagai alat ramalan untuk mencirikan delaminasi, ia juga boleh digunakan sebagai rujukan semasa memeriksa bahan GKKB di dalam keadaan tertentu. Dalam kajian ini, potensi menggunakan ujian ultrasonik secara rendaman untuk mengesan delaminasi akibat hentakan pada bahan GKKB jenis kain 7781 E-Kaca dikaji. Beberapa penemuan dan pembangunan telah dicapai dalam kajian ini seperti hubungan di antara kawasan delaminasi dan peningkatan tenaga hentakan, di mana kadarnya adalah di antara 23 ke 45 peratus. Selain itu, diameter bagi kerosakan yang disebabkan oleh hentakan meningkat secara langsung terhadap peningkatan

tenaga hentakan iaitu dalam lingkungan 21 hingga 46 peratus manakala bagi kawasan kerosakan yang disebabkan oleh hentakan pula adalah di antara 24 hingga 42 peratus. Di samping itu, algoritma pembahagian yang dinamik telah berjaya dibangunkan di dalam kajian ini untuk membahagi isyarat ultrasonik imbasan-A secara automatik tanpa mengira perbezaan jarak jurang antara penderia dan permukaan bahan ujikaji. Berdasarkan hasil pemeriksaan ultrasonik, didapati bahawa delaminasi merebak sehingga 35.90 peratus di bahagian dalam dan purata peratus berbezaan hasil pengukuran yang diambil dari ujian musnah dan ujian tanpa musnah adalah hanya 4.72 peratus dan boleh diterima. Oleh kerana keputusan pengelasan yang dicapai adalah sangat tepat, iaitu melebihi 99.29 peratus, dapat disimpulkan bahawa ciri-ciri yang dipilih sebagai input pengelasan telah berjaya dan penggunaan rangkaian saraf buatan dari isyarat A-scan ultrasonik telah menunjukkan kebolehgunaan untuk mengelaskan PERPUSTAKAAN perbezaan jenis delaminasi yang disebabkan oleh hentakan dalam plat GKKB.

DETECTION AND CLASSIFICATION OF IMPACT-INDUCED DELAMINATION IN FIBERGLASS PRE-IMPREGNATED LAMINATED COMPOSITES FROM ULTRASONIC A-SCAN SIGNAL USING ARTIFICIAL INTELLIGENCE

ABSTRACT

Impact-induced delamination (IID) in fiberglass pre-impregnated laminated composites (FGLC) is an important failure mode. Besides affected the material strength and structural reliability, this failure mode normally present minor damage on the surface but the internal damage may extensive. Existing detection method using static and dynamic load response have limitations that are considered static based monitoring and require the sensor to be attached to the test specimen surface. This technique is not suitable as the damage caused by the impact normally occurred by accident at random location. Thus, detection and classification of IID using artificial neural network from ultrasonic signal has great potential to be applied, but no attempt has been made to detect and classify this failure mode in FGLC material. The classification of delamination against impact not only applicable as prediction tool to characterise the delamination, it also can be used as reference during inspecting the FGLC under specific conditions. In this study, the potential of using ultrasonic immersion testing for detecting the IID in FGLC type 7781 E-Glass fabric is studied. Several findings and development have been achieved in this study such as the relationship between delamination area and the increasing of an impact energy, where the rate is between 23 to 45 percent. Besides, it was found that the diameter of the impact damage is directly increase with the increasing of the impact energy in the range of 21 until 46 percent while for the impact damage area is between 24 until 42 percent. In addition, the dynamic segmentation algorithm has been successfully developed in this study to automatically segment the A-scan signal with regardless the

variation of gap distance between transducer and specimen surface. Based on the ultrasonic inspection result, it was found that the delamination is extend internally up to 35.90 percent and the average percentage different of the measurement result which is taken from DT and NDT is just 4.72 percent and acceptable. Since the achieved classification result is highly accurate, which is exceeded 99.29 percent, it can be concluded that the selected features for the classification input is successful and the use of artificial neural network from ultrasonic A-scan signal has shown its applicability to classify the different type of the impact-induced delamination in FGLC plates.

CHAPTER ONE

INTRODUCTION

1.1 Background of study

Fiberglass pre-impregnated laminated composites (FGLC) is the reinforced glass fabric which has been pre-impregnated with a resin system, typically ready for lay into the mold and require pressure and heat during curing process (FAA, 2012). FGLC structures have been developed and widely implemented in manufacturing and advanced industries including automotive, military, sport and aerospace over the decades. The advantages of FGLC prepregs over other hand lay-up laminated composites are higher the strength properties by minimizing the excess resin problem and balance the distribution of resin which is significantly reduced the damage from resin problem; either resin-rich area or dry spot area. Also, it required less curing time, whose allow the part for service once the curing time has completed (Hubert et al., 2017). Although advances in the FGLC manufacturing technology has improved much on the strength properties and manufacturing time, recent studies have found that delamination, fiber breakage and matric crack are typically occurred in laminated composites (Perez et al., 2014; Ambu et al., 2006). However, based on these failure modes, delamination is the most commonly found in laminated composites by separated layer parallel to the surface of the structure (Adam and Cawley, 1989). In the recent years, delamination growth and structural integrity behaviour in laminated composites has receive much attention in the research community. According to Ng et al. (2012), there are three main factors can cause the presence of delamination in laminated composites which are, (i) trapped air due to poor lay-up procedures,

1

(ii) unremoved prepreg backing film during stacking process, and (iii) external force during in-service. However, the first and second factor of delamination can be avoided throughout robust standard of procedure (SOP) with help in-process quality control. In contrast, the delamination which is caused by an external force such as an impact that has been occurred when the tool accidently drop to the structural surface during maintenance is difficult to prevent (Nikfar and Njuguna, 2014). The delamination induced by low-velocity impact (LVI) during manufacturing or in-service cause severe stiffness and reduction of compressive strength that potentially lead to catastrophic failure for the whole structures (Perez et al., 2014; Lin and Chang, 2002). LVI has been determined based on an impact velocity in the range of 1 to 10 m/s depending on the material properties, the projectile mass and the target stiffness (Sjoblom et al., 1988).

The detection of delamination are quit challenging since this failure mode cannot be observed by naked eyes on the surface. Thus, several researches have been carried out in developing extensive method of detection the delamination induced by impact for laminated composites. Although delamination cannot be observed by naked eyes, Sayer et al. (2012) applied high end vision system to investigate the effect of temperature in hybrid laminated composites to the impact induced delamination area. The similar experiment has been conducted later by Liu et al. (2014) but using different type of laminated composites, namely pyramidal truss core sandwich. Moreover, detailed result from cross section view image of delamination area was captured using scanning electron microscope (SEM) equipment. However, this technique will damage the structure and not applicable to detect delamination on working parts. Alternatively, another non-destructive testing (NDT) technique based on static and dynamic force response for various geometric boundary condition using piezoelectric (PZT) sensor and strain gauges was developed to obtain force and micro strain (Watkins et al., 2007; Jang and Kim, 2017), modal characteristic of delamination growth (Valdes and Soutis, 1999; Perez et al., 2014), statistical pattern recognition (Sohn et al., 2001) and mean of Auto Regressive from time histories of the acquired response (Nardi et al., 2016). Besides, advance type of sensor, namely fiber Bragg grating sensing system (FBG) also been used by many researchers (Koh et al., 2005; Ling et al., 2005; Jang and Kim, 2017; Chandarana et al., 2017; Xu, 2014; Wu et al., 2015; Yu et al., 2016) due to its advantages of lightweight, small size, resistance electromagnetic interference and large target area. Since these technique required multiple sensor with complicated wiring installation during data acquisition, other researchers used scanning laser Doppler vibrometry (LDV) technique, where the laser beam is directly measure the vibration on the targeted surface such as delamination detection in thin laminated composites plate (Kudela et al., 2016; An, 2016) or at T-join plate (Geetha et al., 2016). The delamination image obtained from this technique is useful to locate and determine the size of the delamination.

Although most of the work reported in the literature able to monitor delamination along full life cycle of the structure, these techniques required PZT sensor to be attached on the surface of the targeted area and leaves footprint on the plate surface after removing the PZT sensor. Thus, non-contact based technique such as ultrasonic testing (UT), thermography and X-radiography were the alternative approach that meet the criteria. Several researches attempted to investigate the impact induced delamination behaviour using these techniques such as done by Mitrevski et al.(2005) and Mitrevski et al.(2006), who used UT scanned image to identify the relation between designed indenter shape and delamination area in CFRP thin plates. However, the scanned image was inadequate and difficult to identify the size of

REFERENCES

- Adams R.D., & Cawley P. (1989) Defect types and non-destructive testing techniques for composites and bonded joints. *Constructions and Building Materials*, 3:170–183.
- Adeli H., Zhou Z., & Dadmehr N. (2003). Analysis of EEG records in an epileptic patient using wavelet transform. *Journal of Neuroscience Methods*, 123:69–87.
- Al-Qazzaz N. K., Ali M.S.H., Ahmad S.A., Islam M.S., & Escudero J. (2015). Selection of Mother Wavelet Function for Multi-Channel EEG Signal Analysis during a Working Memory Task. *Sensors*, 15:29015–29035.
- Amaro A.M., Reis P.N.B., Moura M.F.S.F., & Neto M.A. (2013) Influence of open holes on composites delamination induced by low velocity impact loads. *Composite Structures*, 97:239–244.
- Ambu R., Aymerich F., Ginesu F., & Priolo P. (2006) Assessment of NDT interferometrictechniques for impact damage detection in composite laminates. *Composites Science and Technology*, 66:199–205.
- An Y.K. (2016) Impact-induced delamination detection of composites based on laser ultrasonic zero-lag cross-correlation imaging. *Advances in Materials Science and Engineering* 2016:1–8.
- Aoki S., Hirai S., & Nishimura T. (2005) Prevention of delamination during drilling of composite material using vibration. *Key Engineering Materials*, 291-292:465–470.
- ASTM D7136. (2012) Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International: West Conshohocken, Pennsylvania.
- ASTM E1065. (2003) Standard Guide for Evaluating Characteristics of Ultrasonic Search Units. ASTM International: West Conshohocken, Pennsylvania.
- Aymerich F., Dore F., & Priolo P. (2007) Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. *Composite Science and Technology*, 68:2383–2390.
- Bajric R., Zuber N., Skrimpas G.A., & Mijatovic N. (2016). Feature extraction using discrete wavelet transform for gear fault diagnosis of wind turbine. *Shock and Vibration*, 2016:1–10.
- Beale M.H., Hagan M.T., & Demuth H.B. (2015) *Neural Network Toolbox User's Guide R2015a*. The Mathwork Inc: Natick, Massachusetts.

- Bettayeb F., Rachedi T., & Benbartaoui H. (2004). An improved automated ultrasonic NDE system by wavelet and neuron networks. *Ultrasonics*, 42:853–858.
- Bucher J.L. (2006). *The Quality Calibration Handbook Developing and Managing A Calibration Program*. ASQ Quality Press: Milwaukee, USA.
- Cacciola M., Calcagno S., Morabito F.C., & Versaci M. (2008) Computational intelligence aspects for defect classification in aeronautic composites by using ultrasonic pulses. *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, 55:870–878.
- Caminero M.A., Garcia-Monero I., & Rodriguez G.P. (2017) Damage resistance of carbon fibre reinforced epoxy laminates subjected to low velocity impact: Effects of laminate thickness and ply-stacking sequence. *Polymer Testing*, 63:530–541.
- Caprino G., Spataro G., & Luongo S.D. (2004) Low-velocity impact behaviour of fiberglass-aluminium laminates. *Composites Part A: Applied Science and Manufacturing*, 35:605-616.
- Caprino G., Lopresto V., & Laccarino P. (2007) A simple mechanistic model to predict the macroscopic response of fibreglass–aluminium laminates under low-velocity impact. *Composites Part A: Applied Science and Manufacturing*, 38:290–300.
- Chandarana N., Sanchez D.M., Soutis & C., Gresil M. (2017) Early damage detection in composites during fabrication and mechanical testing. *Material*, 685:1–16.
- Chen H., & Zuo, M. J. (2009) Ultrasonic material crack detection with adaptive LMSbased wavelet filter. Paper presented at SOPO 2009: IEEE Symposium on Photonics and Optoelectronics 2009, Wulan China
- Chen Y., & Oyadiji S.O. (2017) Damage detection using modal frequency curve and squared residual wavelet coefficients-based damage indicator. *Mechanical Systems and Signal Processing*, 83:385–405..
- Cicco D.D., Asaee Z., & Taheri F. (2017) Low-velocity impact damage response of fiberglass/magnesium fiber-metal laminates under different size and shape impactors. *Mechanics of Advanced Materials and Structures*, 24:545–555.
- D'Orazio T., Leo M., Distante A., Guaragnella C., Pianese V., & Cavaccini G. (2008) Automatic ultrasonic inspection for internal defect detection in composite materials. *NDT & E International*, 41:145–154.
- Demuth H., & Beale M. (2002) *Neural Networks Toolbox User's Guide*. Mathwork inc: Natick, Massachusetts.

- Dong J., Kim B., Locquet A., McKeon P., Declercq N., & Citrin D.S. (2015) Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. *Composites Part B: Engineering*, 79:667–675.
- Dua R., Watkins S.E., Wunsch D.C., Chandrashekhara K., & Akhavan F. (2001) Detection and classification of impact-induced damage in composite plates using neural networks. Paper presented at IJCNN 2001: IEEE International Joint Conference on Neural Networks. Washington USA.
- Durão L.M.P., Tavares J.M.R.S., Albuquerque V.H.C., Marques J.F.S., & Andrade O.N.G. (2014) Drilling dmagae in composite material. *Materials*, 7:3802–3819.
- Elanchezhian C., Ramnath B.V., & Hemalatha J. (2014) Mechanical behaviour of glass and carbon fibre reinforced composites at varying strain rates and temperatures. *Procedia Materials Science*, 6:1405–1418.
- Emmanuel C.I., & Barrie W. J. (1994). *Digital Signal Processing A Practical Approach*. Addison-Wesley: Wokingham, England.
- Ensminger D., & Bond L.J. (2012) Ultrasonics fundamentals, technologies, and application. CRC Press: Bota Racon, Florida.
- Federal Aviation Administration (FAA) (2012) Aviation maintenance technician handbook Volume 1. Aviation Supplies & Academics (ASA), Oklahoma.
- Filho E.F.S., Souza Y.N., Lopes J.L.S., Farias C.T.T., & Albuquerque M.C.S. (2013) Decision support system for ultrasound inspection of fiber metal laminates using statistical signal processing and neural networks. *Ultrasonics*, 53:1104–1111.
- Fugal D.L. (2009) Conceptual Wavelets In Digital Signal Processing An In-Depth Practical Approach for the Non-Mathematician. Space and Signals Technical Publishing: San Diego, California.
- Gan K.W., Allegri G., & Hallett S.R. (2016) A simplified layered beam approach for predicting ply drop delamination in thick composite laminates. *Materials & Design*, 108:570–580.
- Gaudenzi P., Nardi D., Chiappetta I., Atek S., Lampani L., Pasquali M., Sarasini F., Tirilló J., & Valente T. (2017) Sparse sensing detection of impact-induced delamination in composite laminates. *Composite Structures*, 133:1209–1219.
- Gayathri D.T.M., Sudha S., & Suraj P. (2015) *Glaucoma detection from retinal images*. Paper presented at ICECS 2015: IEEE 2nd International Conference on Elevtronics and Communication Systems, Coimbatore, India.

- Geetha G.K., Mahapatra D.R., Gopalakrishnan S., & Hanagud S. (2016) Laser Doppler imaging of delamination in a composite T-joint with remotely located ultrasonic actuator. *Composite Structures* 147:197–210.
- George C.J., John F.F., Srdan S., & Starbuck J.M. (2002) Energy absorption in polymer composites for automotive crashworthiness. *Journal of Composite Materials*, 36:813–850.
- Guyon I., & Elisseeff A. (2008) An introduction to feature extraction: Feature Extraction Foundations and Applications. Springer: New York
- Harb M.S., & Yuan F.G. (2016) Non-contact ultrasonic technique for Lamb wave characterization in composite plates. *Ultrasonics*, 64:162–169.
- Harizi W., Chaki S., Bourse G., & Ourak M. (2015) Mechanical damage characterization of glass fiber-reinforced polymer laminates by ultrasonic maps. *Composites: Part B*, 70:131–137.
- Hasiotis T., Badogiannis E., & Tsouvalis N.G. (2011) Application of ultrasonic C-Scan techniques for tracing defects in laminated composite materials. *Journal of Mechanical Engineering*, 57:192–203.
- Hassan M., Hoque M.E., & Sapuan S.M. (2010). Application of artificial neural network in composites materials: Composite Materials Technology Neural Networks Applications. Taylor & Francis Group: Boca Raton, Florida
- Hoseini M.R. Zuo M.J., & Wang X. (2012) Denoising ultrasonic pulse-echo signal using two-dimensional analytic wavelet thresholding. *Measurement*, 45:255–267.
- Hubert P., Centea T., Grunefelder L., Nutt S., Kratz J., & Levy A. (2017) *Out-of-Autoclave Prepreg Processing. Comprehensive Composite Materials II.* Elsevier: Amsterdam UK.
- Janeliukstis R., Rucevskis S., Wesolowski M., & Chate A. (2017) Experimental structural damage localization in beam structure using spatial continuous wavelet transform and mode shape curvature method. *Measurement*, 102:253–270..
- Jang B.W., & Kim C.G. (2017) Real-time detection of low-velocity impact-induced delamination onset in composite laminates for efficient management of structural health. *Composites Part B*, 123:124–135.
- Jang B.W., & Kim C.G. (2017) Real-time detection of low-velocity impact-induced delamination onset in composite laminates for efficient management of structural health. *Composites Part B* 123:124–135.

- Junliang D., Byungchil K., Alexandre L., Peter M., Nico D., & Citrin D.S. (2015) Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. *Composites Part B*, 79:667–675.
- Katunin A. (2015). Impact damage assessment in composite structures based on multiwavelet analysis of modal shapes. *Indian Journal of Engineering & Materials Sciences*, 22:451–459.
- Klepka A., Pieczonka L., Staszewski W.J. & Aymerich F. (2014) Impact damage detection in laminated composites by non-linear vibro-acoustic wave modulations. *Composites Part B:Engineering*, 65:99–108.
- Koh J.I., Bang H.J., Kim C.G., & Hong C.S. (2005) Simultaneous measurement of strain and damage signal of composite structures using a fiber Bragg grating sensor. *Smart Material Structure*, 14:658–663.
- Kudelaa P., Wandowskia T., Malinowskia P., & Ostachowicza W. (2017) Application of scanning laser Doppler vibrometry for delamination detection in composite structures. *Optics and Lasers in Engineering*, 99:46–57.
- Kudelaa P., Radzienski M., & Ostachowicza W. (2018) Impact induced damage assessment by means of Lamb wave image processing. *Mechanical Systems and Signal Processing*, 102:23–36.
- Lee K., & Vladimir E.C. (2007). Feature extraction and gating techniques for ultrasonic shaft signal classification. *Applied Soft Computing*, 7:156–165.
- Leslie A.J., Bailey R., & Moore A. (2016) An analysis of the effect that global taper ratio variations have upon compressively loaded asymmetric non-crimp fabric laminates incorporating realistically modelled transverse tapers. *Composites Part B: Engineering*, 96:264–273.
- Lin M., & Chang F. (2002) The manufacture of composite structures with a built-in network of piezoceramics. *Composites Science and Technology*, 62:919–939.
- Ling H.Y., Lau K.T., Cheng L., & Jin W. (2005) Utilization of embedded fibre optic sensors for delamination characterization in composite laminates using a static strain method. *Smart Material Structures*, 14:1377–1386.
- Liu J., Zhu X., Li T., Zhou Z., Wu L., & Ma L., (2014) Experimental study on the low velocity impact responses of all-composite pyramidal truss core sandwich panel after high temperature exposure. *Composite Structures*, 116:670–681.
- Long S., Yao X., & Zhang X. (2015) Delamination prediction in composite laminar under low velocity impact. *Composite Structures* 132: 290–298.

- Mahzan S., & Staszewski W.J. (2010). Impact damage detection in a composite structure using artificial neural network: Composite Materials Technology Neural Networks Applications. Taylor & Francis Group: Boca Raton, Florida.
- Malhotra A., & Guild F.J (2014) Impact damage to composite laminates: effect of impact location. Springer: New York
- Mallat S. (2008). A Wavelet Tour of Signal Processing. Academic Press: Burlington, Massachusetts.
- Manders P.W., Harris W.C., (1986) A parametric study of composite perforamance in compression after impact testing. *Society for the Advancement of Material and Process Engineering (SAMPE)* 22: 47–51.
- Meng M., Chua Y.J., Wouterson E., & Ong C.P.K. (2017) Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. *Neurocomputing*, 257:128–135.
- Meola C., Boccardi S., Carlomagno G.M., Boffa N.D., Monaco E., & Ricci F. (2015) Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics. *Composite Structures*, 134:845–853.
- Michael N. (2005) Artificial intelligence: A guide to intelligent systems. Wesley Publisher Ltd: Harlow, England.
- Mitrevski T., Marshalla H., Thomson R., Jones R., & Whittingham B. (2005) The effect of impactor shape on the impact response of composite laminates. *Composite Structures*, 67:139–148.
- Mitrevski T., Marshalla H. & Thomson R. (2006) The influence of impactor shape on the damage to composite laminates. *Composite Structures* 76:116–122.
- Moore D.S., McCabe G.P., & Craig B.A. (2014) Introduction to the Practice of Statistics. W. H. Freeman, Virginia, U.S.A.
- Nakatani H., Kosaka T., Osaka K., & Sawada Y. (2011) Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact. *IComposites Part A: Applied Acience and Manufacturing*, 42:772–781.
- Nardi D., Lampani L., Pasquali M., & Gaudenzi P. (2016) Detection of low-velocity impact-induced delaminations in composite laminates using Auto-Regressive models. *Composite Structures*, 151:108–113.

- Nassr A.A., Yagi T., Maruyama T., & Hayashi G. (2018) Damage and wave propagation characteristics in thin GFRP panels subjected to impact by steel balls at relatively low-velocities. *International Journal of Impact Engineering*, 111:21–33.
- National Instruments. (2016) Ultrasonic Nondestructive Testing Advanced Concepts and Applications [Online]. [Accessed 28th May 2016]. Available from World Wide Web: http://www.ni.com/white-paper/5369/en/
- Nazarko P., & Ziemiański L. (2017) Anomaly detection in composite elements using Lamb waves and soft computing methods. *Procedia Structural Integrity*, 5:131– 138.
- Ng S.C., Ismail N., Ali A., Sahari B., & Yusof J.M. (2012) Experimental investigation on effective detection of delamination in GFRP composites using Taguchi method. *Advance in Material Science*, 12:16–24.
- Nikfar B., & Njuguna J. (2014) Compression-after-impact (CAI) performance of epoxy-carbon fibre-reinforced nanocomposites using nanosilica and rubber particle enhancement. *IOP Conf Series: Material Science and Engineering*, 64:1–6.
- Panettieri E., Fanteria D., & Danzi F. (2016) Delaminations growth in compression after impact test simulations: Influence of cohesive elements parameters on numerical results. *Composite Structures* 137:140–147.
- Pathak A.P., & Majumder D.K.D. (1994) Approaches to supervised learning for pattern recognition. *Indian Journal of Pure Applied Mathematics* 25:1–38.
- Paul, S.A. (2017). The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. CRC Press: Philadelphia, USA.
- Perez M., Gil L., & Oller S. (2014) Impact damage identification in composite laminates using vibration testing. *Composite Structures*, 108:267–276.
- Pieczonka L., Ambrozinski L., Staszewski W.J., Barnoncel D., & Peres P. (2017) Damage detection in composite panels based on mode-converted Lamb waves sensed using 3D laser scanning vibrometer. *Optics and Lasers in Engineering*, 99:80–87.
- Pinnoji P.K., & Mahajan P. (2010) Analysis of impact-induced damage and delamination in the composite shell of a helmet. *Materials & Design*, 31:3716– 3723.

- Pradhan B., & Panda S.K., (2006) Effect of material anisotropy and curing stresses on interface delamination propagation characteristics in multiply laminated FRP composites. *Journal of Engineering Materials and Technology*, 128:383–392.
- Qihui C., Ting L., Yingju G., Zhi W., Yaqing L., Ruikui D., & Guizhe Z. (2017) Mechanical properties in glass fiber PVC-foam sandwich structures from different chopped fiber interfacial reinforcement through vacuum-assisted resin transfer molding (VARTM) processing. *Composites Science and Technology*, 144:202–207.
- Rajanna, U., Erol, A., & Bebis, G. (2010). A comparative study on feature extraction for fingerprint classification and performance improvements using rank-level fusion. *Pattern Analysis and Applications*, 13:263–272.
- Ren J. (2012) ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. *Knowledge-Based Systems*, 26:144–153.
- Rodrigues A.P., D'Mello G., & Srinivasa P.P (2016) Selection of mother wavelet for wavelet analysis of vibration signals in machining. *Journal of Mechanical Engineering and Automation*, 6:81–85.
- Riccio A. (2008) Delamination in the context of composite strutural design: Delamination behaviour of composites. Woodhead Publishing Limited: Cambridge, England.
- Sadeghpour E., Afshin M., & Sadighi M. (2015) A theoretical investigation on lowvelocity impact response of a curved sandwich beam. *International Journal of Mechanical Sciences*, 101-102:21–28
- Samantha S., Mandal A., & Singh T.J. (2014) Application of ANN in identifying defects in impacted composite. *Procedia Materials Science*, 6:926–930.
- Sambath S., Nagaraj P., & Selvakumar, N. (2011) Automatic defect classification in ultrasonic NDT using artificial intelligence. *Journal of Nondestructive Evaluation*, 30:20–28.
- Sarego G., Cappellini L., Zaccariotto M., & Galvanetto U. (2017) Impact force reconstruction in composite panels. *Procedia Structural Integrity*, 5:107–114.
- Sayer M., Bektas M.B., Demir E., s& Calliog`lu F. (2012) The effect of temperatures on hybrid composite laminates under impact loading. *Composites Part B: Engineering*, 43:2152–2160.
- Shyr T.W., & Pan Y.H. (2003) Impact resistance and damage characteristics of composite laminates. *Composite Structures* 6: 193–203.

- Simone G., Morabito F.C., Polikar R., Ramuhalli P., Udpa L., & Udpa S. (2002) Feature extraction techniques for ultrasonic signal classification. *International Journal of Applied Electromagnetics and Mechanics*, 15:291–294.
- Sjoblom P.O., Hartness J.T., & Cordell T.M. (1988) On low-velocity impact testing of composite materials. *Composites Material*, 22:30–52.
- Skjelvareid M.H. (2012) Systhetic aperture ultrasound imaging with application to interior pipe inpection. University of Tromsø: Norway
- Slattery P.G., McCarthy C.T., & O'Higgins R.M. (2016) Assessment of residual strength of repaired solid laminate composite materials through mechanical testing. *Composite Structures*, 147:122–130.
- Sohn H., Farrar C., Hunter N., & Worden K. (2001) Structural health monitoring using statistical pattern recognition techniques. *Trans ASME*, 123:706–711.
- Solis M., Algaba M., & Galvin P. (2013) Continuous wavelet analysis of mode shapes differences for damage detection. *Mechanical Systems and Signal Processing*, 40:645–666..
- Soutis C., (2005) Fibre reinforced composites in aircraft construction. *Progress in* Aerospace Sciences, 41:143–151.
- Staszewski W. J., (2002). Intelligent signal processing for damage detection in composite materials. *Composites Science and Technology*, 62:941–950.
 - Sung D.U., Oh J.H., & Hong C.S. (2000) Impact monitoring of smart composite laminates using neural network and wavelet analysis. *Journal of Intelligent Material Systems and Structures*, 11:180–190.
 - Tian Z., Yu L., Leckey C., & Seebo J. (2015) Guided wave imaging for detection and evaluation of impact-induced delamination in composites. *Smart Materials and Structures*, 24:1–13.
 - Toyama N., & Takatsubo J. (2004) Lamb wave method for quick inspection of impactinduced delamination in composite laminates. *Composites Science and Technology*, 64:1293–1300.
 - Tufekci Z. & Gowdy J.N. (2000) *Feature extraction using discrete wavelet transform for speech recognition*. Paper presented at Southeastcon 2000: Proceeding of the IEEE Southeastcon 2000, Nashville, Tennessee.

- Vachon P.L., Brailovski V., & Terriault P. (2013) Prediction of the propagation of impact-induced delamination in carbon/epoxy laminates. *Composites Structures*, 95:227–235.
- Valdes S.H.D., & Soutis C. (1999) Delamination detection in composite laminates from variations of their modal characteristics. *Journal of Sound and Vibration*, 228:1–9.
- Wang Y. (2014) Wavelet transform based feature extraction for ultrasonic flaw signal classification. *Journal of Computers*, 9:725–732.
- Watkins S.E., Akhavan F., Dua R., Chandrashekhara K., & Wunsch D.C. (2007) Impact-induced damage characterization of composite plates using neural networks. *Smart Materials and Structures*, 16:515–524.
- Weeks M. (2007) *Digital Signal Processing using MATLAB and Wavelets*. Infinity Science Press: Hingham, Massachusetts.
- Wu Q., Yu F., Okabe Y., Kobayashi S. (2015) Application of a novel optical fiber sensor to detection of acoustic emissions by various damages in CFRP laminates. *Smart Material Structure*, 24:1–10.
- Xiang L., Xuefeng C., Zhibo Y., & Xiaojun Z. (2012). Composite Damage Identification Based on Lamb Wave and Redundant Second Generation Wavelet. Paper presented at I2MTC 2012: IEEE International Instrumentation and Measurement Technology Conference, Graz, Austria.
- Xu Y. (2014) Delamination detection at web/ flange junction of I-section composite beam with fiber optical interferometer sensor. *Composite Part B:Engineering* 58:140–146.
- Yang P., & Li Q. (2014) Wavelet transform-based feature extraction for ultrasonic flaw signal classification. *Neural Computing and Applications*, 24:817–826.
- Yu F., Wu Q., Okabe Y., Kobayashi S., & Saito K. (2016) The identification of damage types in carbon fiber-reinforced plastic cross-ply laminates using a novel fiber-optic acoustic emission sensor. *Structure Health Monitoring* 15:93–103.
- Zhang D., Fei Q., & Zhang P. (2017) Drop-weight impact behaviour of honeycomb sandwich panels under a spherical impactor. *Composite Structures* 168:633–645.
- Zhang D., Sun Y., Chen L., & Pan N. (2013) A comparative study on low-velocity impact response of fabric composite laminates. *Materials & Design*, 50:750–756.

- Zhang J., & Zhang X. (2015) Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact. *Composite Structures*, 125:51–57.
- Zhang Z., Zhan C., Shankar K., Morozov E.V., Singh H.K., & Ray T. (2017) Sensitivity analysis of inverse algorithms for damage detection in composites. *Composite Structures*, 176:844–859.
- Zhao G., Hu H., Li S., Liu L., & Li K. (2017) Localization of impact on composite plates based on integrated wavelet transform and hybrid minimization algorithm. *Composite Structures*, 176:234–243.