SIMULATION, FABRICATION AND CHARACTERIZATION OF NMOS TRANSISTOR

DAMHUJI B. RIFAI

This thesis is submitted in partial to fulfillment of the requirement for the Master of Electrical Engineering

> Faculty of Electrical And Electronic Engineering Tun Hussien Onn University College of Technology

> > DECEMBER, 2006

To my parents; for your love and support

ACKNOWLEDGEMENTS

All praises be to Allah SWT. Without His *hidayah*, *'inayah and ri'ayah*, the study would not come to completion. Peace and blessings be upon the beloved Prophet SAW, with his *Risalah* and teaching the study has become meaningful to me.

I express my gratitude and thanks from the deepest of my heart to Professor Dr. Hashim Saim for his wonderful, resourceful and enlightening supervision. His wisdom, patient and support have been the courage and motivation of my challenging and tiring work.

To Mohd Zainizan Sahdan, I would like to express my utmost appreciation for his strong commitment in assisting me for the eventual completion of my work.

Many thanks I dedicate to technician in KUITTHO Microfabrication Cleanroom, Ramlan bin Ralim for his lovely cooperation in my various laboratory tasks. I also would like to appreciate all my friends and colleagues in KUITTHO for the friendship and the sincere cooperation.

Lastly but not least, I would like to express my great thanks to those who have contributed directly or indirectly in the completion of my studies. I should admit and submit that the completion of this study owes to the contributions from all the parties above regardless of any forms.

ABSTRACT

V

This thesis explains the recipe module development for the first Long Channel NMOS transistor device fabrication process at cleanroom laboratory of KUITTHO. A recipe for the NMOS transistor fabrication process has been successfully produced. Threshold Voltage and Leakage Current, with different channel length and oxide gate for the Long Channel NMOS transistor too has been investigated. The data from the experiment conducted have shown that the threshold voltage is more influenced by the thickness of the oxide gate as compared with the channel length. The threshold voltage increased in linear form with the increase of the oxide gate thickness; and there is almost no change for different channel length. Leakage Current reduces exponentially with the increase of the oxide gate thickness and the channel length.

ABSTRAK

Tesis ini menerangkan pembangunan modul resepi bagi proses fabrikasi peranti transistor kesan medan logam-oksida semikonduktor salur panjang (*Long Channel NMOS transistor*) yang pertama kali di makmal bilik bersih KUiTTHO. Resepi bagi proses fabrikasi peranti transistor kesan medan logam-oksida semikonduktor telah berjaya dihasilkan. Voltan ambang dan arus bocor salir, dengan panjang salur dan oksida get yang berbeza bagi transistor kesan medan logam-oksida semikonduktor salur panjang telah di kaji. Data dari eksperimen yang telah dilakukan menunjukkan voltan ambang banyak di pengaruhi oleh ketebalan oksida get berbanding dengan panjang salur. Voltan ambang naik secara *linear* dengan kenaikan ketebalan oksida get dan hampir tidak ada perubahan bagi panjang salur yang berbeza. Arus bocor salir berkurangan secara eksponen dengan kenaikan ketebalan oksida get dan panjang salur.

CONTENTS

CHAPTER

I

TITLE

PAGE

vii

TITI	LE	i
DEC	LARATION	ii
DED	ICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACK	v
ABS	TRAK	vi
TAB	LE OF CONTENT	vii
LIST	OF TABLES	xi
LIST	OF FIGURES	xii
LIST	OF SYMBOLS	xvii
LIST	OF APPENDIX	xx
PRO	JECT OVERVIEW	1
1.1	Overview	1
1.2	Introduction	1
1.3	Problem Aspire	4
1.4	Objectives	4
1.5	Project Scope	5

II	LITE	RATU	RE REVII	EW – MOS TRANSISTOR	6	
	2.1	Introd	uction		6	
	2.2	The №	IOS Transi	istor	9	
		2.2.1	The NM	OS Transistor	10	
		2.2.2	The PMC	DS Transistor	12	
	2.3	Electr	ical Charad	cteristics Of The MOS Transistor	13	
		2.3.1	The MOS	S System under External Biased		
			Voltage.		13	
		2.3.2	The MOS	SFET Operation	15	
	2.4	Fabric	ation proc	ess	23	
		2.4.1	Lithogra	phy	23	
			2.4.1.1	The Wafer with the substrate		
				Film	24	
			2.4.1.2	Photo Resist Deposition	24	
			2.4.1.3	Softbake	25	
			2.4.1.4	The Mask Alignment	26	
			2.4.1.5	Ultra Violet Radiation Exposure	26	
			2.4.1.6	Development	26	
			2.4.1.7	Photoresist strip	26	
		2.4.2	Diffusion	l	27	
		2.4.3	Ion Impla	antation	30	
		2.4.4	Metalliza	tion	32	
		2.4.5	Depositio	on	33	
			2.4.5.1	Silicon Dioxide Deposition	34	
		2.4.6	Etching		35	
			2.4.6.1	Wet etching	36	
III	NMO	S TRA	NSISTOR	SIMULATION	37	
	3.1	Overv	iew		37	

viii

3.2	NMOS	5 Transistor Simulation	37
3.3	Linux	Operating System	38
3.4	Integra	ated System Engineering Technology	
	Comp	uter Aided Design (ISE TCAD)	38
	3.4.1	GENESISe	41
	3.4.2	Ligament Flow Editor	42
	3.4.3	Ligament Layout Editor	43
	3.4.4	Floops-Ise	44
	3.4.5	Dessis Programming Code	46
	3.4.6	Tecplot-ISE	49
	3.4.7	Inspect	50

ix

IV CLEANROOM

V

4.1	Overv	iew	53
4.2	KUiT	THO Microfabrication Cleanroom	53
4.3	Water	Purification System	56
4.4	Equip	ment Process	58
	4.4.1	Oxidation and Diffusion furnace	58
	4.4.2	Photolithography module	61
	4.4.3	Wet Etching Modules	64
	4.4.4	Wafer Test Module	65
	4.4.5	Consumable	68
THE I	FABRI	CATION PROCESS OF NMOS	
TRAI	VSIST	OR	69

5.1	Overv	iew	69)
5.2	Prelim	inary research	69)
	5.2.1	Dry oxidation	70)
	5.2.3	Wet oxidation	71	L

		5.2.4 Aluminum Deposition	73
	5.3	Mask Design	74
	5.4	Fabrication Process of NMOS Transistor	77
VI	RESI	ULT AND DISCUSSION	87
	6.1	Overview	87
	6.2	NMOS transistor Simulation	87
		6.2.1 Channel length effect	88
		6.2.2 Oxide gate thickness effect	93
	6.3	NMOS Transistor Fabrication	97
		6.3.1 Preliminary Research	97
		6.3.2 Fabrication Process	100
VII	CON	CLUSION	112
	7.1	Overview	112
	7.2	Conclusion	114
	7.3	Problem	113
	7.4	Future suggestion	114
	REFI	ERENCES	116

х

LIST OF TABLES

TITLE

TABL	E NO. TITLE	PAGE
1.1	Technology Development Forecast By Semiconductor	
	Industry Association (SIA)	3
2.1	Voltage-current equations for the MOSFET n-channel	22
2.2	Voltage-current equations for the MOSFET p-channel	22
2.3	Resistivity and Metal workfunction usually use in the	
	Metallization process.	33
4.1	Consumable used in NMOS Fabrication	69
5.1	Steps in designing mask sets using Turbo CAD	77
6.1	Device and process parameter for long NMOS transistor	
	with different gate oxide thickness	107
6.2	Device and process parameter for long NMOS transistor	
	with different channel length.	109
6.3	Complete NMOS Transistor Fabrication Process	110

LIST OF FIGURES

FIGURE NO

TITLE

PAGE

1.1	Prediction Formula of Moore's Law	2
2.1	The Family of transistor	8
2.2	Cross Section of NMOS Transistor	10
2.3	Cross Section of PMOS Transistor	10
2.4	Schematic Cross Section of the n-type channel MOSFET	11
2.5	Schematic Cross Section of the p-type channel MOSFET	13
2.6	Cross section of MOS structure and Energy Band during	
	accumulations	14
2.7	Cross section of the MOS structure and the energy band during	
	depletion mode	15
2.8	Cross section of the MOS structure and the energy band to	
	the inversion surface	15
2.9	Cross section of the NMOS operating in linear mode	16
2.10	Cross section of the NMOS operating in the pinch-off point	17
2.11	Cross section of the NMOS operating at the saturated mode	18
2.12	The graph of the drain current (I_D) against the drain voltage (V_D)	
	for NMOS transistor	18
2.13	The graph of the drain current (I_D) against gate voltage (V_G)	
	for NMOS transistor	19
2.14	The graph of the drain current (I_D) against the drain voltage (V_D)	19
	for the PMOS.	

2.15	The graph of the drain current (I_D) against the gate voltage (V_G)	
	for the PMOS.	20
2.16	Current-voltage characteristics of the MOS transistors	
	n-channel including the effect of the length channel modulation	21
2.17	Patterns Transferring on the Wafer	24
2.18	Positive and negative photoresist	25
2.19	Ion distribution towards distance from the surface.	21
3.1	Process of NMOS transistor simulation using ISETCAD	41
3.2	GENESISe Window	42
3.3	Ligament Flow Editor window.	43
3.4	Ligament Layout Editor Window	45
3.5	Channel length of NMOS transistor to be developed	46
3.6	Tecplot-ISE window	51
3.7	INSPECT Window	52
3.8	Steps for obtaining the treshold voltage	53
3.8	Steps for obtaining the drain leakage current.	53
4.1	The Micro fabrication cleanroom layout,KUITTHO	55
4.2	Front view of micro fabrication cleanroom	56
4.3	View inside micro fabrication cleanroom	56
4.4	Water purification system, KUITTHO	58
4.5	Deionised water purification equipment	58
4.6	Switches Panel for Furnace Exhaust	61
4.7	Furnace Heat Exhaust System	61
4.8	Furnace Control Panel	62
4.9	The Programmable spin coater	63
4.10	The Aligner and Exposure system.	63
4.11	The Hot plate	64
4.12	Waste container and vacuum pump.	64
4.13	Wet etching module controller	65
4.14	The Spin dryer	66

4.15	The Wafer test system	67
4.16	The Capacitance measurement system	68
4.17	The 4-Point Probe	68
4.18	The H-150 Microprobe Station	69
5.1	Source/drain and gate masks	78
5.2	Contact and Metal masks	78
5.3	P-type Si wafer	81
5.4	Oxide Grown	81
5.5	Photoresist Applied	82
5.6	Photoresist Developed	82
5.7	Etch windows	82
5.8	Strip the resists with Acetone	83
5.9	N-type diffusion for P-type substrate	83
5.10	Wet Oxidation (2500Å)	83
5.11	Photolithography for 2nd photo mask (gate)	84
5.12	Photoresist Developed	84
5.13	Etch Windows for Gate	84
5.14	Dry Oxidation for Gate	85
5.15	Photolithography for 3rd photo mask (Contact)	85
5.16	Photoresist Developed	85
5.17	Etch Windows for Contacts	86
5.18	Photoresist Removed	86
5.19	Metal Deposition	86
5.20	Photoresist Applied	87
5.21	Photoresist Developed	87
5.22	Etch Metal	87
5.23	Completion of NMOS Fabrication	88
6.1	Graph of VTHgm vs. channel length	90
6.2	Graph of VTHlin vs. channel length	91
6.3	Graph of drain leakage current vs. channel length	91
6.4	$I_D V_D$ characteristics of NMOS transistor with different channel	

	length (Tox = 2.2 nm , VG = 1.0V }	92
6.5	I_DV_G characteristics of NMOS transistor at HIGH V_{DS} with	
	different channel length	93
6.6	Log I_DV_G characteristic at HIGH V_{DS} of NMOS transistor with	
	different channel length	93
6.7	NMOST transistor mesh profile with different channel length	94
6.8	NMOST transistor phosphorus doping profile with different	
	channel length	95
6.9	Graph of VTHgm vs Gate Oxide Thickness	96
6.10	Graph of VTHlin vs Gate Oxide Thickness	96
6.11	Graph of drain leakage current vs. gate oxide thickness	97
6.12	I_DV_D characteristics of NMOS transistor (L= 5 um, Tox = 1.8 nm,	
	VG = 1.0V)	97
6.13	I_DV_D characteristics of NMOS transistor (L=5um, Tox = 1.6 nm,	
	VG = 1.0V)	98
6.14	I_DV_G characteristics of NMOS transistor at HIGH V_{DS} (L=5 um,	
	Tox = 1.8 nm)	98
6.15	I_DV_G characteristics of NMOS transistor at HIGH VDS (L=5 um,	
	Tox = 1.6 nm	99
6.16	The growth rates of silicon oxide for dry oxidation process	100
6.17	The growth rates of silicon oxide for wet oxidation process	101
6.18	Graph of aluminium vs. size of aluminium	102
6.19	The inspection outcome in source/drain masking	103
6.20	The inspection outcome in gate masking process	103
6.21	The inspection outcome in contact masking process	104
6.22	The inspection outcome in metal masking process	104
6.23	I_DV_D characteristics of Long Channel NMOS transistor.	
	(V _{DS} =5V, L=320um, Tox=720A)	105
6.24	$I_D V_D$ characteristics of Long channel NMOS transistor	
	. (V_{DS} =5V, L=290um, Tox = 650Å)	106
< .		

 $6.25 \hspace{0.5cm} I_D V_D \hspace{0.1cm} characteristics \hspace{0.1cm} of \hspace{0.1cm} Long \hspace{0.1cm} Channel \hspace{0.1cm} NMOS \hspace{0.1cm} transistor.$

$$(V_{DS}=5V, L= 160um, Tox=650)$$
 108
6.26 I_DV_D characteristics of Long Channel NMOS transistor

$$(V_{DS}=5V, L=270um, Tox=650A)$$
 108

LIST OF SYMBOLS

А	Area
Å	Symbol for 10 ⁻¹⁰ cm or 10 ⁻⁸ m
С	Speed of light in vacuum
С	Capacitance
C_j	Junction capacitance per unit area
C_{ox}	Oxide capacitance per unit area
D	Diffusion coefficient
Е	Electric field
E_a	Acceptor energy
E_c	Conduction band energy of a semiconductor
E_d	Donor energy
E_F	Fermi energy (thermal equilibrium)
E_g	Energy bandgap of a semiconductor
E_i	Intrinsic Fermi energy Joule
E_{ν}	Valence band energy of a semiconductor
F_n	Quasi-Fermi energy of electrons
F_p	Quasi-Fermi energy of holes
h	Plank's constant
Ι	Current
J	Current density
J_n	Electron current density
J_p	Hole current density
k	Boltzmann's constant

L	Length
m	Mass
п	Electron density
n _i	Intrinsic carrier density
Ν	Doping density
Na	Acceptor doping density
N _c	Effective density of states in the conduction band
N_d	Donor doping density
Q	Charge
$Q_{p,B}$	Hole charge in the base
Q_d	Charge density per unit area in the depletion layer of an MOS structure
$Q_{d,T}$	Charge density per unit area at threshold in the depletion layer of an MOS
	structure
R	Resistance
t	Thickness
t _{ox}	Oxide thickness
Т	Temperature
ν	Velocity
v_{th}	Thermal velocity
Va	Applied voltage
VB PE	Base voltage
V_D	Drain voltage
V_B	Body voltage
V_G	Gate voltage
Vt	Thermal voltage
V_{TH}	Threshold voltage
x_d	Depletion layer width
xd,T	Depletion layer width in an MOS structure at threshold
x_j	Junction depth
x_n	Depletion layer width in an n-type semiconductor
xp	Depletion layer width in a p-type semiconductor

xviii

\mathcal{E}_{ox}	Dielectric constant of the oxide F/m
\mathcal{E}_s	Dielectric constant of the semiconductor F/m
μ_n	Electron mobility
μ_p	Hole mobility
$arPsi_M$	Workfunction of a metal V
$arPhi_{MS}$	Workfunction difference between a metal and a semiconductor V

CHAPTER I

PROJECT OVERVIEW

1.1 Overview

This chapter will explain the project overview and scopes of project.

1.2 Introduction

The history of microelectronics began on December 1947 at the Bell Labs, United States of America, when three scientists John Brdeen, Wafter Brattain and William Shockley invented the first semiconductor device which is called the transistor that was able to replace the functions of the vacuum tube as an amplifier. The said invention had opened the path in producing electronic circuitry designs that were small and cheap. Entailing the discovery, large numbers of electronics companies were incorporated including one by William Shockley himself in the year 1955 in Santa Clara Valley near San Francisco. Miniaturizing of electronics circuitry was made by assemblying the transistors and other components onto the printed circuit board (PCB) that interconnects the components.

In 1965, Gordon Moore had predicted that total number of transistors in a chip would doubled in every 12 months period. His prediction has become a polar of probablity and prediction. This prediction is known as "Moore's Law" [9]. Figure 1.1 shows the formula towards Moore's Law that gives an enormous impact to the developing world of the semiconductors and microelectronics today.

Figure 1.1 Prediction Formula of Moore's Law

Subsequence to the prediction made by Gordon Moore through Moore's Law, the fabrication technology of the integrated circuits were experiencing evolutions starting from the Small Scale Integration - SSI, Medium Scale Integration - MSI, Large Scale Integration - LSI, Very Large Scale Integration - VLSI and Ultra Large Scale Integration - ULSI [13]. In line with the development of this fabrication technology, the Semiconductor Industry Association (SIA) has issued a prediction schedule relating to the current technology development and the future one. Table 1.1 shows the technology development predictions encompassing the minimum size of transistor that can be fabricated on an integrated circuit chip. Size of this transistor is measured based on the parameter known as the channel length.

Based on the Table 1.1, it can be seen that the transistors size is expecting shrinkage from year to year and subsequently increases the number of transistors onto a chip. This matter is spurred by the size scaling of its component. The scaling of transistor ssize which has caused the size of the transistor to become smaller has in fact enable the switching time for a transisitor to decrease and subsequently enhances the operation speed of a transistor. Briefly it can be said that, the shrinking of the transistor size can enhance the speed of a transistor.

	Year						
	1999	2001	2003	2006	2009	2012	
Channel Length (um)	0.14	0.12	0.1	0.07	0.05	0.035	
Transistor /cm ² (million)	14	16	24	40	64	100	
Die Size (mm ²)	800	850	900	1000	1100	1300	

Table 1.1 Technology Development Forecast By Semiconductor Industry Association (SIA)

1.3 **Problem Aspire**

The development of microelectronic field which occurs today has given rise to competition among companies to produce transistor device which has excellent features. This in turn has made the fabrication process recipe becomes confidential. Thus, each clean room laboratory should develop its own recipe.

The reduction in threshold voltage is widely used as an indicator of evaluating technology. A lower threshold voltage means less power supplies and faster circuits. The threshold Voltage value for the NMOS transistor changes depending on the process and design parameters.

As transistor size continues to scale down, leakage current has become a critical issue of the integrated circuit design. Leakage current not only contributes to total power, but also leads to system performance.

1.4 Objectives

The project objectives are as follows:

1. To study the threshold voltage with different oxide gate thickness and channel length for Long Channel NMOS transistor.

- 2. To study the drain leakage current with different oxide gate thickness and channel length for Long Channel NMOS transistor.
- 3. To produce a recipe for NMOS transistor fabrication for Micro Fabrication Cleanroom of KUiTTHO.

1.5 **Project Scope**

This project encompasses two sections of work that were:

- MINA Design and conduct a simulation for long channel NMOS transistor by using ISE 1. TCAD in the Advanced Digital Electronic Laboratory of KUiTTHO. The simulated transistor has different channel length and oxide gate thickness.
- 2. Conduct fabrication of long channel NMOS transistor with different channel length and oxide gate thickness in the clean laboratory of KUiTTHO.
- 3. Conduct analysis for NMOS transistor characteristics obtained through simulation and fabrication.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

A transistor is an important device in the electronic circuit. It can function as an amplifier to boost the power, voltage or the current. Transistors too have been used as switches in the digital circuits and the computers.

Basically, the transistors can be divided into two main groups that are the bipolar and unipolar transistors. A bipolar transistor or in short the BJT (Bipolar Junction Transistor) uses both the electron and hole as the carrier. The BJT operation is controlled by the current. This is because of the out flowing current is depends on the inflow current.

The Field Effect Transistor – FET uses only the electron or the hole as the carrier while the FET operation is being control by the voltage. The voltage which exists at the gate will control the current that is flowing through the device [14]. In brief, the transistor family can be presented by the following Figure 2.1.

REFERENCES

- [1] Alexey V. Petrov, Evgeny A. Makarov (2003), Hot Electron Effects Modeling in Short Channel MOST Using a Program Package TCAD ISE, *Student Member*, IEEE Novosibirsk State Technical University, Novosibirsk, Russia.
- [2] Betty Lise Anderson and Richard L.Anderson "Fundamental of Semiconductor Devices", New York, McGraw Hill.
- B. Witzigmann, A. Witzig, and W. Fichtner (2000)., "A multidimensional laser simulation for edgeemitters including quantum carrier capture," *IEEE Transactions on Electron Devices*, vol. 47, no. 10, pp. 1926–1934.
- Burhanuddin Yeop Majlis (2000), "Teknologi Fabrikasi Litar Bersepadu", Bangi, Universiti Kebangsaan Malaysia.
- [5] Bisdounis,L,Nikoiladis,S and Koufopavlou,O. 'Propagation delay and shortcircuit power dissipation modeling of the CMOS inverter',*IEEE Trans.computer ided des.*,1992,28,(6), pp.259-270
- [6] C.Y Chang and S.M. Sze (1996), "ULSI TECHNOLOGY", New York, Mcgraw-Hill.
- [7] D A Pucknell, K Eshraghian, (1985), "Basic VLSI Design", Prentice Hall Of Australia Pty Ltd.

- [8] David L.Purrey and N.Garry Tarr (1989), "Introduction to Microelectronic Device", New Jersey, Prentice Hall.
- [9] Jeff Beasley and William Hudson, "Transistor Level Implementation of CMOS Combinational Logic Circuits" The *Technology Interface*, Vol. 1, Fall 1996, <u>http://www.mosis.org/</u>
- [10] Masuri Othman(2002), "Teknologi Peranti Mikroelektronik", Bangi, Universiti Kebangsaan Malaysia.
- [11] Mehdi Asheghi (2005) Impact Of Thermal Sub-Continuum Effects On Electrical Performance Of Silicon-On-Insulator Transistors Department Of Mechanical Engineering Carnegie Mellon University Pittsburgh.
- [12] M. Pfeiffer, A. Witzig, and W. Fichtner (2001), "Coupled electro-thermo-optical 3D simulation of edgeemitting lasers," *International Workshop on Numerical Simulation of Semiconductor Optoelectronic Devices*, University of California, Santa Barbara,.
- [13] M. Streiff et al.(2003), "A Comprehensive VCSEL Device Simulator," *IEEE Journal of Selected Topics in Quantum Electronics*, vol. 9, no. 3, pp. 879–891.
- [14] Neill H.E Weste, David Harris (2004), "CMOS VLSI DESIGN", Addison Wesley.
- [15] Takayasu Sakurai and Richard Newton, "Alpha-Power Law MOSFET Model And Its Applications To CMOS Inverter Delay And Other Formula". IEE J. Solid State Circuit, Vol 25, No 2, April 1990.
- [16] Thomas E.Dillinger (1988), "VLSI ENGINEERING", Englewood Cliff, Prentice Hall.

- Tsividis, Yannis (1999), "Operation and Modeling The MOS Transistor -[17] Second Edition", McGraw Hill.
- Siti Nooraya (2003), "Rekabentuk Dan Pencirian PMOS 0.25um Dengan Strukur [18] Peruang - Poli", Bangi, Universiti Kebangsaan Malaysia.
- Sze, S.M (1983), "VLSI Technology Third Edition", McGraw Hill. [19]
- Obrecht M.C. Software Package for Two-Dimensional Process and Device [20] Simulation (2001)- MicroTec-3.02 User's Manual. Waterloo, Can.
- ISE TCAD Manuals(2000), ETH Zurich,. [21]

