
A GRAPHICAL METHOD FOR AUTOMATIC CODE GENERATION 

FROM EXTENDED S-SYSTEM PETRI NET MODELS 

NG KOK MUN 

A thesis submitted in fulfillment of the requirements for the award of the Degree of 

Master of Electrical Engineering 

Department of Electrical and Electronics 

Faculty of Electrical Engineering 

Kolej Universiti Teknologi Tun Hussein Onn 

JULY, 2006 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iv 

Dedicated to my parents and siblings 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



V 

ACKNOWLEDGEMENT 

I would like to convey my appreciation to my supervisor, Associate Professor 

Dr. Zainal Alam bin Haron for introducing Petri Net and also providing the necessary 

guidance in this work. The constructive criticism, feedbacks and advice provided 

encouraged me to put more effort in this write up. 

I am also touched by the encouragement and prayers given by my church friends 

during this process of doing this research. Not to forget, the financial support and help 

given when I am in financial need during the initial stage of my course. Special thanks 

to my siblings Yee Fong, Yee Fun and Kok Kee for being my scholarship's guarantors. 

Finally, all praises and glory be to my Lord Jesus Christ for His love and 

provision of finance, wisdom and strength to complete this work. To God be the glory! PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



VI 

ABSTRACT 

This work has introduced a fast and reliable method for graphical modeling of 

discrete systems control problems using extended S-system Petri Net. By adding new 

functionalities to the extended S-System Petri Net, dynamic quantities such as 

microcontroller signals transitions, system timing, interrupts, subroutines and arithmetic 

operations could now be modeled by software. A graphical-based diagram editor has 

been developed in this work to handle the model entry, editing and visualization. The 

diagram editor contains all the basic facilities required for entering, editing, visualization 

and syntax analysis of the S-System Petri Net model. A compiler has also been built to 

compile the graphical model and generate the assembly code automatically. Together, 

the diagram editor and model compiler forms an integrated design and development tool 

called S-PNGEN. Seamless data binding between the diagram editor and the model 

compiler is achieved by using a common directed-graph framework to internally 

represent the model diagrams. Diagram syntax checking was implemented using 

attributed graph grammar. Also introduced in this work is an efficient method for 

implementing the control solutions on a microcontroller. This involves the development 

of a procedure for automatically mapping S-System Petri Net models constructed in the 

diagram editor to control flow graphs. The procedure uses a notion called graph nesting 

to help the design tool read and understand S-System model diagrams and transform 

them into control flow graphs. Conversion of an S-System Petri Net model into a control 

flow graph is an innovative approach introduced in this work for automatic code 

generation as it guarantees the production of the correct code layout and information for 

use by the compiler. By applying a syntax-directed translation on the control flow graph 

constructed, the built-in compiler then automatically generates the assembly code for the 

target microcontroller. 
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ABSTRAK 

Penyelidikan ini memperkenalkan kaedah yang effisien untuk membentuk model 

bagi sistem kawalan diskrit secara grafikal dengan menggunakan extended S-System 

Petri Net. Dengan menambahkan fungsi-fungsi baru ke atas suatu S-System Petri Net, 

kuantiti dinamik suatu pengawal mikro seperti isyarat, masa, subrutin, interrupts dan 

operasi aritmetik dapat dimodelkan oleh software. Satu diagram editor telah dibina 

untuk membolehkan pelukisan dan pengubahsuaian model. Diagram editor ini 

mempunyai kemudahan asas yang membolehkan pembentukan dan pengubahsuaian 

model serta melaksanakan analisis sintaks ke atas model S-System Petri Net yang dibina. 

Satu pengkompil telah dibangunkan untuk mengkompil model grafikal yang dibina dan 

juga untuk menjana kod assembly secara otomatik. Kedua-dua diagram editor dan 

pengkompil diintegrasikan sebagai suatu alat rekabentuk model dipanggil S-PNGEN. 

Kedua-dua diagram editor dan pengkompil berkongsi data dengan menggunakan rangka 

struktur data graf yang sama bagi mewakili model yang dilukis. Sintaks model 

diimplementasikan melaiui attributed graph grammar. Hasil kerja ini juga 

memperkenalkan suatu prosedur yang memetakan model S-System Petri Net yang dibina 

dalam diagram editor kepada control flow graphs. Prosedur ini menggunakan suatu 

konsep graph nesting yang membolehkan alat rekabentuk kami membaca dan 

memahami model S-System Petri Net dan mengubahnya kepada control flow graphs. 

Pertukaran model kepada control flow graphs merupakan satu inovasi di dalam kerja ini 

untuk menjana kod secara otomatik kerana ia dapat memberikan bentangan kod yang 

betul dan maklumat untuk kegunaan pengkompil. Dengan mengaplikasikan syntax-

directed translation ke atas control flow graphs yang dibina, pengkompil dapat 

menjanakan kod assembly untuk suatu pengawal mikro secara otomatik. 
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1 

CHAPTER I 

INTRODUCTION 

LI Background 

Since its introduction by Carl Petri in 1962, Petri net (PN) has found a 

number of important applications in the areas of modeling sequential behavior and 

process concurrency. In the manufacturing environment, the net-theoretic approach 

of PN has made it especially valuable in the modeling and design of discrete control 

and manufacturing systems (Desrochers and Al-Jaar, 1995) (Zhou and Venkatesh, 

1999). In the area of control system modelling, the ordinary PN of Carl Petri has 

been subject to numerous simplifications on the one hand, and extensions on the 

other hand, tailored according to the level of sophistication expected of the formal 

model. In general, the simplifications have been intended to result in a simple 

formal model for the complex systems studied, while the extensions have been used 

to add functionalities to the net which would widen the scope of applications, such as 

for developing a full model of the hardware and software characteristics of logic and 

digital controllers. Also, the extended PNs have been used as formal models for 

developing^ more systematic and structured controller programs (Frey and Litz, 

2000). 

Grafcet which is a subset of PN is a notable example of an extended PN. 

Drawing its inspiration from PN, Grafcet has been used as the basis for the 

international standard Sequential Function Chart (SFC), a graphical language for 

specifying programmable logic controllers (PLC) (David, 1995). Another example 
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of extended PN is Signal Interpreted PN (SIPN), which allows explicit description of 

input/output in a well defined way; its application in specifying PLC is found in 

(Frey and Minas, 2000) and (Minas and Frey, 2002). 

Encouraging results have been obtained in the areas of specifying digital 

controllers and automatic code generation by extending the features of PN. 

(Machado, Fernandes and Proenca, 1997) for example, has used shobi-PN (a PN 

extension approach based on SIPN) to specify logic control in programmable logic 

device^PLD). Their work resulted in automated VHDL code for PLDs. Petri Net for 

Digital Systems (PNDS) proposed by (Oliveira and Marranghello, 2000) contains 

most of the features needed for a methodical modeling of digital systems. 

An Extended Quasi-Static Scheduling (EQSS) method for formally 

synthesizing and automatically generating code for embedded software using the 

Complex-Choice Petri Nets (CCPN) models has been proposed in (Su and Hsiung, 

2002). Their work resulted in generation of POSIX based multi-threaded embedded 

software program in the C programming language. The C code generated is 

applicable for hardware platform such as Application Specific Integrated Circuits 

(ASICs), Application Specific Instruction Set Processors (ASIPs) and PLDs. Another 

approach using PN extension called Timed Free Choice Petri Nets (TFCPN) to 

model embedded real time software (ERTS) is found in (Hsiung, Lee and Su, 2002). 

The objective of the work is to synthesize complex ERTS to meet up limited 

embedded memory requirements and to satisfy hard real-time constraints. 

In the area of control system design, current design requirements and 

practices have reached a high degree of complexify that prevents their efficient 

realization without sophisticated computer-aided specification and implementation 

tools (Fernandes, Adamski and Proenca, 1997) (Frey and Minas, 2000) (Minas and 

Viehstaedt, 1995). Specification here is concerned with the description of the PN 

model and its attributes, which can be specified either textually through textual 

editors or graphically through CAD tools. The word implementation in the software 

context refers to the generation of a piece of code written in some computer 

programming language. This code should be ready to use when a low-level language 
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is employed, or directly convertible to a machine understandable one when a high-

level programming language is used. 

It has been realized from early on, a user-friendly means of controller 

specifications-writing is a graphical-based CAD tools which provide all the basic 

functions required by a user to draw the PN model and define its attributes. To this 

end, a number of customized diagram editors have been developed which allow the 

user to draw and edit the PN models on the computer screen. A notable example is 

DlAGEN, the diagram editor in (Frey and Minas, 2000) and (Minas and Frey, 2002). 

DlAGEN allows the user to specif}' PLC from SIPN specifications by providing the 

necessary drawing tools and facilities, such the free-hand editing facility, which thus 

allows the user to freely create, delete and modify diagram components (places, 
s 

transitions and tokens for the SIPN). Other examples of PN diagram editorjsuch as 

SOPHIA is found in (Fernandes, Adamski and Proenca, 1997) and EnVisAge 

(Extended Coloured Petri-Net Based Visual Application Generator Tool) in 

(Kurdthongmee, 2003). SOPHIA is used to specify shobi-PN while EnVisAge is used 

to construct Color Petri Net (CPN) to specify a microcontroller. 

In all the tools reported in the literature, conversion of the PN model into 

object code for the target system is carried by a customized compiler. In the work 

reported by (Frey and Minas, 2000) and (Minas and Frey, 2002), for example, a 

customized compiler was used to generate the PLC's Instruction List (IL) code 

directly from the SIPN model. In SOPHIA (Fernandes, Adamski and Proenca, 1997), 

VHDL code for PLD was automatically generated by the compiler from the shobi-

PN model. In (Melzer, 1997), a code generator is specifically developed to translate 

the B(PN)2 notations into C language for a UNIX multiprocessor platform. 

The extensions added have all been inspired by the applications intended for 

the PN. Extended PNs such as SIPN and Grafcet, have been derived from the need to 

design and specifiy PLC programs and also hybrid systems (Guillemaud and 

Gueguen, 1999). Both Grafcet and SIPN are naturally suited for modeling and 

simulating the PLC hardware and control characteristics. In particular, the 

functionalities available in Grafcet have a very important industrial application in 

the area of PLC programs specifications and design while the peculiar structure of 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



4 

SIPN allows it to be directly translated to the instruction list (IL) code of a PLC 

(Frey, 2000). Another type of extended PN, namely the CPN, has been used to 

develop a code generator from the given specifications of a security access system 

(Mortenson, 1999). Similar work adopting CPN such as Color Timed Petri Nets 

(CTPN) (Gau and Hsiung, 2002) and Extended Color Petri Nets (ECPN) 

(Kurdthongmee, 2003) had contributed to synthesis of software code for embedded 

system. 

Research works mentioned above have shown a wide applicability of PN and 

its extensions in specifying controllers. Most of the work carried out aim to provide 

solutions in programming controllers such as PLCs, ASICs, ASIPs, PLDs and even 

general microprocessor platform such as UNIX. There is without doubt that the 

methodologies developed resulted in specification and implementation tools to 

generate a piece of code for such controllers. However, the application of PNs in 

specifying microcontrollers is not widely studied. Motivated by the fact that PN is a 

useful modeling tool, this work proposes the usage of PN to specify a type of 

microcontroller. 

1.2 Problem statement 

In the area of microcontroller modeling and program design, however, 

extended PNs such as Grafcet and SIPN are simply inapplicable. Microcontrollers, 

because of their very different architecture from PLCs, are predicated on a platform 

that strictly executes programs in a sequential manner. Because of this characteristic, 

Grafcet and SIPN are simply incompatible for microcontroller modeling and 

program specifications; the main limitation being their tendency to over-describe (or 

under-describe) the characteristics of a microcontroller's program. For instance, 

SIPN, which allows explicit description of input/output signals, though having the 

ability to fully describe a microcontroller's output/input behavior, is incapable of 

describing characteristics such as subroutines, interrupts, time delays and arithmetic 

operations. 
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Approaches such as CCPN in (Hsiung and Su, 2002), TFCPN in (Hsiung, 

Lee and Su, 2002) and CTPN (Hsiung and Gau, 2002) have proposed methods to 

generate embedded software with multiple threads, which can be processed for 

dispatch by a real-time operating system. These PN extensions are also used to solve 

memory size constraint and concurrent task requirements in embedded systems (e.g. 

PLDs, ASICs and ASIPs). The methods developed suited devices with "hardwired" 

architecture and microprocessors that operate with an operating system. This again 

hinders direct applications of these extensions to specify microcontroller as the 

microcontroller possesses a single-threaded architecture. Multi-threading activities 

are not supported in microcontrollers due to the absence of an operating system. 

In (Kurdthongmee, 2003), CPN has been used to specify MCS-51 family of 

microcontrollers. The work had achieved a few envisaged end-points such as the 

ability to perform model execution analysis and generation of C code for the MCS-

51 microcontrollers. Some drawbacks of the work are found in its inability to 

describe hierarchy functions which makes the model more difficult to read and 

interpret. Besides, the method introduced does not indicate how interrupts are 

handled. The author himself stated that the user needs to go through a steep learning 

curve in using CPN to specify MCS-51. This will somehow affect the user-

friendliness of the prototype developed. 

In the light of the deficiencies highlighted above, a different type of PN is 

needed which can satisfactorily address the following requirements: 

It must be able to describe control flow characteristics of a microcontroller 

program. 

It must be capable in handling routines such as subroutines, timing routines and 

interrupt handling routines. 

It must be capable of specifying input/output signals of a microcontroller, and 

It must be capable of describing arithmetic operations. 
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1.3 Research objectives 

Based on requirements highlighted in section 1.2, this work has sought to 

develop a PN model which would satisfactorily address the above-listed modeling 

requirements. Literature survey carried out at the start of the work by the author has 

^per-ehante introduced him to the work of (Jorg and Ezparza, 1995) on S-System PN. 

By imposing the requirement of having only one input and one output arc at every 

transition, the authors have enabled the PN to model asynchronous control systems. 

The objective of the research is to further enhance the S-System PN of (Jorg 

and Ezparza, 1995) by using some of the extensions introduced by others elsewhere 

in the literature. We report in this work the details of the enhancements added to the 

S-System model of (Jorg and Ezparza, 1995) and benefits brought about by the 

extension in modeling the hardware and software characteristics of the chosen 

microcontroller. 

Another objective of this work is the development of a prototype tool that 

comprises of a CAD tool (diagram editor) that allows specification of extended S-

System PN models and a compiler that implements the specified model to 

automatically generate the assembly code for the target microcontroller. 

1.4 Research scope 

The target microcontroller used in this work is PIC 16F84 which is an 8-bit, 

RISC type, Harvard architecture mid-range microcontroller from the PIC micro 

family. Sample application of the extended S-System PN model to selected control 

problems and the method of their specifications and solutions are shown as a guide 

to its application procedures. These include^ modeling of input/output signals, 

arithmetic operations, interrupts, serial peripheral interface communication and 

delays in the PIC 16F84. 
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Towards this end a basic prototype tool comprising of a diagram editor and a 

compiler has been developed. The design of the diagram editor is on graphs and 

graph grammars (Minas 1998) (Minas 1999) (Minas 2002) and it allows on-screen 

model entry and editing. Also provided in this tool are facilities for text parsing with 

context-free string grammars; diagram parsing with attributed graph grammars and 

syntax-directed assembly code generation. Also explained in this work is the 

simulation method used to verify and validate the assembly code generated by the 

compiler. 

1.5 Thesis outline 

This thesis comprises of six chapters. Chapter 2 provides reviews of related 

works to substantiate the details of the functionalities added to the S-System PN for 

describing a microcontroller program. Besides, it also reviews works related to the 

development of the prototype tool. 

Chapter 3 is dedicated to explain the modeling and design of the prototype 

tool which comprises of a diagram editor and a compiler in detail. This chapter 

explains the function of the graphical editor and model editor that helps to construct 

the PN model of the controller graphically and to define the properties or attributes 

of the model. Also explained is the design and working principle of the compiler's 

parsing and code generation operations. 

Chapter 4 describes the implementation of the prototype tool. Here, methods 

on code generation are presented in detail. Chapter 5 serves as a testing platform for 

the prototype tool. It provides details of the simulation work conducted on samples 

of assembly code generated by the code generator. Finally, chapter 6 provides the 

conclusion and discussions on the limitations identified with the model and modeling 

approaches adopted in this work. Also discussed here are recommendations for 

future work. 
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