
A GRAPHICAL METHOD FOR AUTOMATIC CODE GENERATION

FROM EXTENDED S-SYSTEM PETRI NET MODELS

NG KOK MUN

A thesis submitted in fulfillment of the requirements for the award of the Degree of

Master of Electrical Engineering

Department of Electrical and Electronics

Faculty of Electrical Engineering

Kolej Universiti Teknologi Tun Hussein Onn

JULY, 2006

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iv

Dedicated to my parents and siblings

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

V

ACKNOWLEDGEMENT

I would like to convey my appreciation to my supervisor, Associate Professor

Dr. Zainal Alam bin Haron for introducing Petri Net and also providing the necessary

guidance in this work. The constructive criticism, feedbacks and advice provided

encouraged me to put more effort in this write up.

I am also touched by the encouragement and prayers given by my church friends

during this process of doing this research. Not to forget, the financial support and help

given when I am in financial need during the initial stage of my course. Special thanks

to my siblings Yee Fong, Yee Fun and Kok Kee for being my scholarship's guarantors.

Finally, all praises and glory be to my Lord Jesus Christ for His love and

provision of finance, wisdom and strength to complete this work. To God be the glory! PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

VI

ABSTRACT

This work has introduced a fast and reliable method for graphical modeling of

discrete systems control problems using extended S-system Petri Net. By adding new

functionalities to the extended S-System Petri Net, dynamic quantities such as

microcontroller signals transitions, system timing, interrupts, subroutines and arithmetic

operations could now be modeled by software. A graphical-based diagram editor has

been developed in this work to handle the model entry, editing and visualization. The

diagram editor contains all the basic facilities required for entering, editing, visualization

and syntax analysis of the S-System Petri Net model. A compiler has also been built to

compile the graphical model and generate the assembly code automatically. Together,

the diagram editor and model compiler forms an integrated design and development tool

called S-PNGEN. Seamless data binding between the diagram editor and the model

compiler is achieved by using a common directed-graph framework to internally

represent the model diagrams. Diagram syntax checking was implemented using

attributed graph grammar. Also introduced in this work is an efficient method for

implementing the control solutions on a microcontroller. This involves the development

of a procedure for automatically mapping S-System Petri Net models constructed in the

diagram editor to control flow graphs. The procedure uses a notion called graph nesting

to help the design tool read and understand S-System model diagrams and transform

them into control flow graphs. Conversion of an S-System Petri Net model into a control

flow graph is an innovative approach introduced in this work for automatic code

generation as it guarantees the production of the correct code layout and information for

use by the compiler. By applying a syntax-directed translation on the control flow graph

constructed, the built-in compiler then automatically generates the assembly code for the

target microcontroller.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

V l l

ABSTRAK

Penyelidikan ini memperkenalkan kaedah yang effisien untuk membentuk model

bagi sistem kawalan diskrit secara grafikal dengan menggunakan extended S-System

Petri Net. Dengan menambahkan fungsi-fungsi baru ke atas suatu S-System Petri Net,

kuantiti dinamik suatu pengawal mikro seperti isyarat, masa, subrutin, interrupts dan

operasi aritmetik dapat dimodelkan oleh software. Satu diagram editor telah dibina

untuk membolehkan pelukisan dan pengubahsuaian model. Diagram editor ini

mempunyai kemudahan asas yang membolehkan pembentukan dan pengubahsuaian

model serta melaksanakan analisis sintaks ke atas model S-System Petri Net yang dibina.

Satu pengkompil telah dibangunkan untuk mengkompil model grafikal yang dibina dan

juga untuk menjana kod assembly secara otomatik. Kedua-dua diagram editor dan

pengkompil diintegrasikan sebagai suatu alat rekabentuk model dipanggil S-PNGEN.

Kedua-dua diagram editor dan pengkompil berkongsi data dengan menggunakan rangka

struktur data graf yang sama bagi mewakili model yang dilukis. Sintaks model

diimplementasikan melaiui attributed graph grammar. Hasil kerja ini juga

memperkenalkan suatu prosedur yang memetakan model S-System Petri Net yang dibina

dalam diagram editor kepada control flow graphs. Prosedur ini menggunakan suatu

konsep graph nesting yang membolehkan alat rekabentuk kami membaca dan

memahami model S-System Petri Net dan mengubahnya kepada control flow graphs.

Pertukaran model kepada control flow graphs merupakan satu inovasi di dalam kerja ini

untuk menjana kod secara otomatik kerana ia dapat memberikan bentangan kod yang

betul dan maklumat untuk kegunaan pengkompil. Dengan mengaplikasikan syntax-

directed translation ke atas control flow graphs yang dibina, pengkompil dapat

menjanakan kod assembly untuk suatu pengawal mikro secara otomatik.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

viii

TABLE OF CONTENTS

CHAPTER ITEMS PAGE

TITLE i

STUDENT'S DECLARATION ii

ESAMINERS' DECLARATION iii

DEDICATION iv

ACKNO WLEDEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xiii

LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xviii

LIST OF APPENDIXES xix

I INTRODUCTION 1

1.1 Background 1

1.2 Problem statement 4

1.3 Research objectives 6

1.4 Research scope 6

1.5 Thesis outline 7

II LITERATURE REVIEW 8

2.1 Introduction 8

2.2 A brief overview of the S-System PN 8

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER ITEMS PAGE

2.2.1 Adding extended functionalities to the 9

S-System PN

2.2.1.1 Practical implications of the S- 9

System PN components

2.2.1.2 Describing hierarchy and subroutines 11

using macro places

2.2.1.3 Describing logic states and arithmetic 11

operations

2.2.1.4 Handling interrupts in microcontroller 13

2.2.1.5 Describing timing in microcontrollers 15

with timed transitions

2.2.1.6 Token in the S-System PN 16

2.2.2 Application of the extended S-System PN 17

2.3 Control flow graph and the S-System PN 20

2.4 A brief review of specification tools 27

2.4.1 Directed graphs 28

2.5 A brief review of diagram parsers 32

2.6 A brief review on text parsing and code 33

Generation methods

2.7 Summary 34

III MODELING THE PROTOTYPE TOOL 36

3.1 Introduction 36

3.2 An overview of prototype tool 37

Development

3.3 Conceptual framework adopted for 42

prototype tool

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER ITEMS PAGE

3.3.1 Diagram editor 43

3.3.2 Compiler 43

3.3.2.1 Parser 44

3.3.2.2 Code generator 45

3.4 Diagram editor design 46

3.4.1 The graphical editor 47

3.4.2 The model editor 49

3.4.2.1 Variables declaration 50

3.4.2.2 Updating place or transition properties 52

or attributes

3.4.2.3 I/O pins direction 55

3.4.2.4 EEPROM settings 55

3.4.3 Data structures 56

3.4.3.1 Directed graph construction via 57

diagram drawing

3.4.3.2 Symbol table (Hash-table) 59

3.4.3.3 Other data structures 60

3.4.4 Other functions in the diagram editor 61

3.5 Parser design 62

3.5.1 Text and diagrams syntax parsing 63

3.5.1.1 Parsing text language with context-free 63

grammars

3.5.1.2 Using context-free grammars to parse 66

text into parse trees

3.5.2 Parsing diagrams 71

3.5.2.1 Parsing diagrams with attributed graph 74

Grammar

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

XI

CHAPTER ITEMS PAGE

3.5.2.2 Detecting subnets for macro places 79

3.5.3 Creating abstract representations from 82

graph transformation

3.6 Summary 87

IV IMPLEMENTATION OF THE PROTOTYPE 89

4.1 Introduction 89

4.2 The target machine architecture 91

4.3 Code selection 91

4.3.1 Code selection for I/O port and 93

EEPROM initialization

4.3.2 Code selection for expressions and 95

assignments

4.3.3 Overall code generation 101

4.3.3.1 Code generation for port variables 104

4.3.3.2 Subroutines code generation 105

4.3.3.3 Code generation for control and 109

branching instructions for the main

program

4.4 Registers and memory allocation 110

4.5 Discussion 114

4.6 Summary 115

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER ITEMS PAGE

V APPLICATIONS OF THE PROTOTYPE 117

5.1 Introduction 117

5.2 Results 118

5.3 The assembler / simulation tool 119

5.4 Assembly code verification and 121

validation

5.4.1 Assembling the assembly code 121

5.4.2 Simulation on assembly code 123

5.4.2.1 Simulating the mixing cycle 125

5.4.2.2 Simulating the wash cycle 128

5.5 Further simulations 129

5.6 Summary 130

VI CONCLUSION AND

RECOMMENDATIONS 131

6.1 Introduction 131

6.2 Benefits 131

6.3 Drawbacks 132

6.4 Recommendations 135

6.4.1 Code optimizations 135

6.4.2 Retargetable compiler 137

6.4.3 Upgrading the prototype tool 138

6.5 Conclusion 139

REFERENCES

APPENDIXES

141

147

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Places in the main net 19

2.2 Transitions in the main net 19

2.3 Places in the subnet 20

2.4 Transitions in the subnet 20

2.5 Representations by PN for a block node 23

2.6 Representations by PN for a switch node 24

2.7 Methods in the ASDigraph class 30

2.8 Accessor methods 30

2.9 Iteration methods 31

3.1 Input sentences 68

3.2 Evaluation conditions 76

3.3 Semantic rules violation 78

3.4 Attributes in RegionNode objects that describe 86

the main net

3.5 Attributes of RegionNode associated to a subnet 87

4.1 Nodes of parse tree of figure 4-7 and the 96

associated code templates

4.2 Nodes of parse tree of figure 4-11 and their 100

associated code templates

5.1 Inputs and outputs of the mixing operation 123

6.1 Optimizations methods (adapted from (Muchnick, 137

1997))

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2-1 Macro place 11

2-2 S-System PN model for a switch press 12

mechanism

2-3 Handling PORT B bit 0 interrupt 14

2-4 Timed transition 16

2-5 A mixing operation 17

2-6 S-System PN model for the mixing operation 18

2-7 Control flow graph of a microcontroller program 22

2-8 Basic blocks terminology 23

2-9 Derivation of the S-System model into control 25

flow graph

2-10 Control flow graph with the respective algebraic 25

assignments and expressions

2-11 Assembly code generated 26

2-12 Adjacency-set representation of a directed graph 29

3-1 Design flow of the prototyping tool 38

3-2 An overview of the diagram editor 39

3-3 The Parser module 40

3-4 MPLAB IDE 41

3-5 Absolute assembly-level code translation 42

3-6 Assembly code arrangement within basic blocks 45

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

FIGURE NO. TITLE PAGE

3-7 S-PNGEN's diagram editor 47

3-8 Graphical editor menus and sub-menu functions 48

3-9 Model editor's menus and functions 49

3-10 Project Variables dialog 50

3-11 Dialog to update variable's attributes 51

3-12 Transition Attributes dialog 52

3-13 Place Attributes dialog 53

3-14 Place Settings dialog 54

3-15 Port Setting dialog 55

3-16 EEPROM Settings dialog 56

3-17 EEPROM contents 56

3-18 A Petri Net model drawn on the drawing area 58

3-19 Associated adjacency set of the model in figure 58

3-18

3-20 Symbol table (hash-table) 59

3-21 Array structure to represent I/O pin direction 60

3-22 Backus-Naur Form production rules 64

3-23 PN model with assignments and expressions 67

3-24 Parse tree for the assignment: PORTA = 69

b"01001100'

3-25 Parse tree for expression b*c < x-y 69

3-26 Parse tree for assignment y = m*x+c 70

3-27 Parse tree for expression x+y-c > b+ 70

3-28 A sample text parsing report displayed by 71

S-PNGEN

3-29 Attributed graph grammars 73

3-30 A PN model in the S-PNGEN 77

3-31 Diagram parsing report 77

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xvi

FIGURE NO. TITLE PAGE

3-31 Macro place p201 and its related subnet 79

3-33 A Subnet associated with 2 identical macro places 80

3-34 A PN model 81

3-35 Parsing report of the PN model in figure 3-34 81

3-36 Graph transformation rules 83

3-37 Graph transformation on a PN model of a mixing 85

operation

4-1 Code Generator module 89

4-2 Organization of instructions in a standard 92

template

4-3 Array structure and pin directions 93

4-4 A code template for I/O pins direction 94

initialization

4-5 Hash-table structure that organizes an EEPROM 94

4-6 A code template for EEPROM initialization 95

4-7 Visiting nodes of a parse tree 96

4-8 Structure of a simulated stack 97

4-9 Parse tree for expression b*c < x-y 98

4-10 Evaluation on the left hand side of the expression 99

4-11 Evaluation of the right hand side of the 99

expression

4-12 PN model of mixing operation and its abstract 102

representation

4-13 Places and transitions with their associated 103

assignments and expressions

4-14 Port variables declaration 105

4-15(a) Assembly code for mixing operation 106

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

FIGURE NO. TITLE PAGE

4- 15(b) Assembly code for mixing operation 107

4-15(c) Assembly code for mixing operation 108

4-16 Mid-range PIC memory map 111

4-17 Organization of a symbol table 112

4-18 Registers allocation 113

4-19 Registers allocation for mixing operation 114

5-1 Assembler / simulator tool 118

5-2 Code buffer 118

5-3 MPLAB DDE 120

5-4 Assembly code in text editor of the MPLAB 122

5-5 Build Results window 122

5-6 Asynchronous stimulus dialog and watch window 124

in the MPLAB IDE

5-7 Input stimulus buttons 124

5-8 Bits status of PORTA and PORTB 125

5-9 Valve 1 and valve 2 activated 126

5-10 Liquid level reaches sensor2 and motor starts 126

spinning

5-11 Motor stops spinning and valve 3 activated 127

5-12 Controller back to the initial logic state 127

5-13 Valve 4 activated 128

5-14 Water level reaches sensor2 and motor starts 128

spinning

5-15 Motor stops spinning and valve 3 activated 129

6-1 Assembly code for assignment 133

counter = counter + 1

6-2 Assembly code for assignment 133

counter = counter + 1

6-3 Assembly code for expression count >2 134

6-4 Code optimizer module 136

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

LIST OF ABBREVIATIONS

ABBREVIATIONS MEANING

B(PN)2 Basic Petri Net Programming Notations

CAD Computer-aided Design

DLL Doubly Linked-List

EEPROM Electrically Erasable Programmable Read Only Memory

IDE Integrated Development Environment

lhs Left-Hand Side

OOP Object-Oriented Approach

PLC Programmable Logic Controllers

PLD Programmable Logic Devices

PN Petri Net

rhs Right-Hand Side

RISC Reduced Instruction Set Computer

SDK Standard Development Kit

SFC Sequential Function Chart

SDPN Signal Interpreted Petri Net

SLL Singly Linked-List

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

xix

LIST OF APPENDIXES

APPENDIX NO. TITLE PAGE

A The PIC Microcontroller Architecture 147-152

B The PIC Microcontroller's Instruction Set 153-154

C Simulation Results 155-199

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

1

CHAPTER I

INTRODUCTION

LI Background

Since its introduction by Carl Petri in 1962, Petri net (PN) has found a

number of important applications in the areas of modeling sequential behavior and

process concurrency. In the manufacturing environment, the net-theoretic approach

of PN has made it especially valuable in the modeling and design of discrete control

and manufacturing systems (Desrochers and Al-Jaar, 1995) (Zhou and Venkatesh,

1999). In the area of control system modelling, the ordinary PN of Carl Petri has

been subject to numerous simplifications on the one hand, and extensions on the

other hand, tailored according to the level of sophistication expected of the formal

model. In general, the simplifications have been intended to result in a simple

formal model for the complex systems studied, while the extensions have been used

to add functionalities to the net which would widen the scope of applications, such as

for developing a full model of the hardware and software characteristics of logic and

digital controllers. Also, the extended PNs have been used as formal models for

developing^ more systematic and structured controller programs (Frey and Litz,

2000).

Grafcet which is a subset of PN is a notable example of an extended PN.

Drawing its inspiration from PN, Grafcet has been used as the basis for the

international standard Sequential Function Chart (SFC), a graphical language for

specifying programmable logic controllers (PLC) (David, 1995). Another example

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2

of extended PN is Signal Interpreted PN (SIPN), which allows explicit description of

input/output in a well defined way; its application in specifying PLC is found in

(Frey and Minas, 2000) and (Minas and Frey, 2002).

Encouraging results have been obtained in the areas of specifying digital

controllers and automatic code generation by extending the features of PN.

(Machado, Fernandes and Proenca, 1997) for example, has used shobi-PN (a PN

extension approach based on SIPN) to specify logic control in programmable logic

device^PLD). Their work resulted in automated VHDL code for PLDs. Petri Net for

Digital Systems (PNDS) proposed by (Oliveira and Marranghello, 2000) contains

most of the features needed for a methodical modeling of digital systems.

An Extended Quasi-Static Scheduling (EQSS) method for formally

synthesizing and automatically generating code for embedded software using the

Complex-Choice Petri Nets (CCPN) models has been proposed in (Su and Hsiung,

2002). Their work resulted in generation of POSIX based multi-threaded embedded

software program in the C programming language. The C code generated is

applicable for hardware platform such as Application Specific Integrated Circuits

(ASICs), Application Specific Instruction Set Processors (ASIPs) and PLDs. Another

approach using PN extension called Timed Free Choice Petri Nets (TFCPN) to

model embedded real time software (ERTS) is found in (Hsiung, Lee and Su, 2002).

The objective of the work is to synthesize complex ERTS to meet up limited

embedded memory requirements and to satisfy hard real-time constraints.

In the area of control system design, current design requirements and

practices have reached a high degree of complexify that prevents their efficient

realization without sophisticated computer-aided specification and implementation

tools (Fernandes, Adamski and Proenca, 1997) (Frey and Minas, 2000) (Minas and

Viehstaedt, 1995). Specification here is concerned with the description of the PN

model and its attributes, which can be specified either textually through textual

editors or graphically through CAD tools. The word implementation in the software

context refers to the generation of a piece of code written in some computer

programming language. This code should be ready to use when a low-level language

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

is employed, or directly convertible to a machine understandable one when a high-

level programming language is used.

It has been realized from early on, a user-friendly means of controller

specifications-writing is a graphical-based CAD tools which provide all the basic

functions required by a user to draw the PN model and define its attributes. To this

end, a number of customized diagram editors have been developed which allow the

user to draw and edit the PN models on the computer screen. A notable example is

DlAGEN, the diagram editor in (Frey and Minas, 2000) and (Minas and Frey, 2002).

DlAGEN allows the user to specif}' PLC from SIPN specifications by providing the

necessary drawing tools and facilities, such the free-hand editing facility, which thus

allows the user to freely create, delete and modify diagram components (places,
s

transitions and tokens for the SIPN). Other examples of PN diagram editorjsuch as

SOPHIA is found in (Fernandes, Adamski and Proenca, 1997) and EnVisAge

(Extended Coloured Petri-Net Based Visual Application Generator Tool) in

(Kurdthongmee, 2003). SOPHIA is used to specify shobi-PN while EnVisAge is used

to construct Color Petri Net (CPN) to specify a microcontroller.

In all the tools reported in the literature, conversion of the PN model into

object code for the target system is carried by a customized compiler. In the work

reported by (Frey and Minas, 2000) and (Minas and Frey, 2002), for example, a

customized compiler was used to generate the PLC's Instruction List (IL) code

directly from the SIPN model. In SOPHIA (Fernandes, Adamski and Proenca, 1997),

VHDL code for PLD was automatically generated by the compiler from the shobi-

PN model. In (Melzer, 1997), a code generator is specifically developed to translate

the B(PN)2 notations into C language for a UNIX multiprocessor platform.

The extensions added have all been inspired by the applications intended for

the PN. Extended PNs such as SIPN and Grafcet, have been derived from the need to

design and specifiy PLC programs and also hybrid systems (Guillemaud and

Gueguen, 1999). Both Grafcet and SIPN are naturally suited for modeling and

simulating the PLC hardware and control characteristics. In particular, the

functionalities available in Grafcet have a very important industrial application in

the area of PLC programs specifications and design while the peculiar structure of

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

4

SIPN allows it to be directly translated to the instruction list (IL) code of a PLC

(Frey, 2000). Another type of extended PN, namely the CPN, has been used to

develop a code generator from the given specifications of a security access system

(Mortenson, 1999). Similar work adopting CPN such as Color Timed Petri Nets

(CTPN) (Gau and Hsiung, 2002) and Extended Color Petri Nets (ECPN)

(Kurdthongmee, 2003) had contributed to synthesis of software code for embedded

system.

Research works mentioned above have shown a wide applicability of PN and

its extensions in specifying controllers. Most of the work carried out aim to provide

solutions in programming controllers such as PLCs, ASICs, ASIPs, PLDs and even

general microprocessor platform such as UNIX. There is without doubt that the

methodologies developed resulted in specification and implementation tools to

generate a piece of code for such controllers. However, the application of PNs in

specifying microcontrollers is not widely studied. Motivated by the fact that PN is a

useful modeling tool, this work proposes the usage of PN to specify a type of

microcontroller.

1.2 Problem statement

In the area of microcontroller modeling and program design, however,

extended PNs such as Grafcet and SIPN are simply inapplicable. Microcontrollers,

because of their very different architecture from PLCs, are predicated on a platform

that strictly executes programs in a sequential manner. Because of this characteristic,

Grafcet and SIPN are simply incompatible for microcontroller modeling and

program specifications; the main limitation being their tendency to over-describe (or

under-describe) the characteristics of a microcontroller's program. For instance,

SIPN, which allows explicit description of input/output signals, though having the

ability to fully describe a microcontroller's output/input behavior, is incapable of

describing characteristics such as subroutines, interrupts, time delays and arithmetic

operations.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

5

Approaches such as CCPN in (Hsiung and Su, 2002), TFCPN in (Hsiung,

Lee and Su, 2002) and CTPN (Hsiung and Gau, 2002) have proposed methods to

generate embedded software with multiple threads, which can be processed for

dispatch by a real-time operating system. These PN extensions are also used to solve

memory size constraint and concurrent task requirements in embedded systems (e.g.

PLDs, ASICs and ASIPs). The methods developed suited devices with "hardwired"

architecture and microprocessors that operate with an operating system. This again

hinders direct applications of these extensions to specify microcontroller as the

microcontroller possesses a single-threaded architecture. Multi-threading activities

are not supported in microcontrollers due to the absence of an operating system.

In (Kurdthongmee, 2003), CPN has been used to specify MCS-51 family of

microcontrollers. The work had achieved a few envisaged end-points such as the

ability to perform model execution analysis and generation of C code for the MCS-

51 microcontrollers. Some drawbacks of the work are found in its inability to

describe hierarchy functions which makes the model more difficult to read and

interpret. Besides, the method introduced does not indicate how interrupts are

handled. The author himself stated that the user needs to go through a steep learning

curve in using CPN to specify MCS-51. This will somehow affect the user-

friendliness of the prototype developed.

In the light of the deficiencies highlighted above, a different type of PN is

needed which can satisfactorily address the following requirements:

It must be able to describe control flow characteristics of a microcontroller

program.

It must be capable in handling routines such as subroutines, timing routines and

interrupt handling routines.

It must be capable of specifying input/output signals of a microcontroller, and

It must be capable of describing arithmetic operations.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

6

1.3 Research objectives

Based on requirements highlighted in section 1.2, this work has sought to

develop a PN model which would satisfactorily address the above-listed modeling

requirements. Literature survey carried out at the start of the work by the author has

^per-ehante introduced him to the work of (Jorg and Ezparza, 1995) on S-System PN.

By imposing the requirement of having only one input and one output arc at every

transition, the authors have enabled the PN to model asynchronous control systems.

The objective of the research is to further enhance the S-System PN of (Jorg

and Ezparza, 1995) by using some of the extensions introduced by others elsewhere

in the literature. We report in this work the details of the enhancements added to the

S-System model of (Jorg and Ezparza, 1995) and benefits brought about by the

extension in modeling the hardware and software characteristics of the chosen

microcontroller.

Another objective of this work is the development of a prototype tool that

comprises of a CAD tool (diagram editor) that allows specification of extended S-

System PN models and a compiler that implements the specified model to

automatically generate the assembly code for the target microcontroller.

1.4 Research scope

The target microcontroller used in this work is PIC 16F84 which is an 8-bit,

RISC type, Harvard architecture mid-range microcontroller from the PIC micro

family. Sample application of the extended S-System PN model to selected control

problems and the method of their specifications and solutions are shown as a guide

to its application procedures. These include^ modeling of input/output signals,

arithmetic operations, interrupts, serial peripheral interface communication and

delays in the PIC 16F84.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

7

Towards this end a basic prototype tool comprising of a diagram editor and a

compiler has been developed. The design of the diagram editor is on graphs and

graph grammars (Minas 1998) (Minas 1999) (Minas 2002) and it allows on-screen

model entry and editing. Also provided in this tool are facilities for text parsing with

context-free string grammars; diagram parsing with attributed graph grammars and

syntax-directed assembly code generation. Also explained in this work is the

simulation method used to verify and validate the assembly code generated by the

compiler.

1.5 Thesis outline

This thesis comprises of six chapters. Chapter 2 provides reviews of related

works to substantiate the details of the functionalities added to the S-System PN for

describing a microcontroller program. Besides, it also reviews works related to the

development of the prototype tool.

Chapter 3 is dedicated to explain the modeling and design of the prototype

tool which comprises of a diagram editor and a compiler in detail. This chapter

explains the function of the graphical editor and model editor that helps to construct

the PN model of the controller graphically and to define the properties or attributes

of the model. Also explained is the design and working principle of the compiler's

parsing and code generation operations.

Chapter 4 describes the implementation of the prototype tool. Here, methods

on code generation are presented in detail. Chapter 5 serves as a testing platform for

the prototype tool. It provides details of the simulation work conducted on samples

of assembly code generated by the code generator. Finally, chapter 6 provides the

conclusion and discussions on the limitations identified with the model and modeling

approaches adopted in this work. Also discussed here are recommendations for

future work.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

141

REFERENCES

Aho, A.V., Sethi, R. and Ullman, J.D. (1986). "Compilers: Principles,

Techniques and Tools." Addison-Wesley.

Ammeraal, L. (1998). "Computer Graphics For Java Programmers." England.

John Wiley & Sons Ltd.

Amroun, A. and Bolton, M. (1990). "Synthesis Of Controllers From Petri Net

Descriptions And Application Of ELLA." In Claesen, L.J.M. (Ed.). "Formal

VLSI Specification And Synthesis." VLSI Design Methods I. North

-Holland.Elsevier Science Publishers, pp 291-308.

Bates, M. (2000) "The PIC 16F84 Microcontroller." Arnold.

David, R. (1995) "Grafcet: A Powerful Tool for Specification of Logic

Controllers." IEEE Transactions on Control System Technology Vol. 3. No. 3.

Desroches, A. A. and Al-Jaar, R.Y. (1995). "Application of Petri Nets in

Manufacturing Systems." IEEE Press marketing.

Drewes, F., Hoffmann, B. and Plump, D. (2000). "Hierarchical graph

transformation, "in Foundation of Software Science and Computation

Structures (FOSSACS 2000),

Duesterwald, E. (2003). "Dynamic Compilation." In Srikant, Y.N. and Shankar,

P.(Eds). " The Compiler Design Handbook: Optimizations and Machine

Code Generation," USA. CRC Press LLC. pp. 739-762.

Fernandes, J.M, Adamski, M. and Proenca, A.J. (1997)."VHDL Generation

From Hierarchical Petri Net Specifications of Parallel Controllers." IEEE

Proceedings-E Computers and Digital Techniques, pp 127-137.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

142

Frey, G. (2000). "Automatic Implementation of Petri Net based Control Algorithms

on PLC." Proceedings of the American Control Conference ACC2000, Chicago.

Frey, G. and Litz, L. (2000). "Formal methods in PLC programming."

Proceedings of the IEEE Conference on Systems Man and Cybernatics SMC

2000, Nashville.

Frey, G. and Minas, M. (2000) "Editing,Visualizing, and Implementing Signal

Interpreted Petri Nets." Proceedings of the AWPN 2000. pp 57-62.

Ganapathi, M., Fischer, C.N. and Henessy, J.L. (1982) "Retargetable compiler

code generation", Computing Sun>eys 14. pp 573-592.

Gau, C.H. and Hsiung, P.A. (2002) "Time-memoiy scheduling and code generation

of real-time embedded softw are," In Proc. of the 8th International Conference on

Real-Time Computing Systems and Applications (RTCSA'2002).

Graham, S.L. and Glanville, R.S. (1978). "A new method for compiler code

generation." Fifth Symposium on Principles of Programming Languages.

231-240.

Guillemaud, L. and Gueguen, H. (1999). "Extending Grafcet for the specification

of control hybrid systems." IEEE SMC'99, Tokyo.

Hoffmann, B. and Minas, M. (2000) "A generic model for diagram syntax and

semantics." Proceedings of the Satellite Workshops of the 27th International

Colloqium on Automata, Languages and Programming. No.8. pp 443-450.

Hsiung, P.A., Lee, T.Y. and Su, F.S. (2002). "Formal Synthesis and Code Generation

of Real-Time Embedded Software using Time-Extended Quasi-Static

scheduling," apsec, p. 395, Ninth Asia-Pacific Software Engineering Conference

(APSEC'02).

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

143

Jorg, D. and Esparza, J. (1995). "Free Choice Petri nets." Cambridge University

Press.

Lee, G.B., Han, Z. and Lee, J.S. (2004)."Automatic generation of ladder diagram

with control Petri Net." Journal of Intelligent Manufacturing, Vol. 15, No. 2,

pp.245-252.

Machado, R.J., Fernandes, J.M. and Proenca, A.J. (1997) "Specification of

Industrial Digital Controllers with Object-Oriented Petri Nets", IEEE

International Symposium on Industrial Electronics (ISIE '97). pp 78-83.

Katzen, S. (2003). "The Quintessential PIC Microcontroller." 2nd Edition.

London. Springer-Verlag Ltd.

Kurdthongmee, W. (2003). "ertCPN: The adaptations of the coloured Petri-Net

theory for real-time embedded system modeling and automatic code generation."

Songklanakarin Journal of Science & Technology, 2003, 25(3): pp 381-394

Mak, R. (1996). "Writing Compilers and Interpreters: An Applied Approach

Using C++." 2nd Edition. John Wiley & Sons.

Melzer, S. (1997) "Design and Implementation of a C-Code Generator for

B(PN)2." Institut fur Informatik, Univesitat Hildesheim.

Michel, G. (1990). "Programmable Logic Controllers: Architecture and

Applications." England. John Wiley & Sons Ltd.

Minas, M. (1998). "Hypergraphs as a Uniform Diagram Representation Model",

In Proc. 6th International Workshop on Theory and Application of Graph

Transformations (TAGT '98), Germany.

Minas, M. (1999). "Creating Semantics Representation of Diagrams." Int.

Workshop on Applications of Graph Transformation with Industrial

Relevance (AGTIVE '99) At Monastery Rolduc, NL.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

144

Minas, M. (2002). "Specifying Graph-like Diagrams with DIAGEN." Electronic

Notes in Theoretical Computer Science 72. No. 2.

Minas, M. and Frey, G. (2002). "Visual PLC-Programming using Signal

Interpreted Petri Nets." Proceedings of the American Conference 2002

(ACC2002), Anchorage, Alaska, pp. 5019-5024.

Minas, M. and Viehstaedt, G. (1995). "A Generator for Diagram Editor

Providing Direct Manipulation and Execution of Diagrams." IEEE Proc.of

VL'95.

Mortenson, K.H. (1999). "Automatic Code Generation from Coloured Petri Nets

for an Access Control System." Second Workshop on Practical Use of

Coloured Petri Nets and Design, pages 41-58.

Mirkowski, J. and Yakovlev, A. (1998). "A Petri Net Model for Embedded

Systems. " Proceedings of the Workshop on Design and Diagnosis of

Electronic Circuits and Systems Szrzyck. Poland.

Muchnick, S.S. (1997) "Advanced Compiler Design and Implementation."

USA. Academic Press.

Oliveira, W.L.A. and Marranghello, N. (2000). "A High-level Petri Net for

Digital Systems." Proceedings of the XV SBMicro - International

Conference on Microelectronics and Packaging, pp.220-225.

Predko, M. (2002). "Programming and Customizing the PIC Microcontroller."

McGraw-Hill.

Proth, J.M. and Xie, X. (1996). "Petri Nets: A tool for design and management of

manufacturing systems." England. John Wiley & Sons Limited. ()

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

145

Qin, W. and Malik, S. (2003). "Architecture Description Languages for

Retargetable Compilation." In Srikant, Y.N. and Shankar, P.(Eds). " The

Compiler Design Handbook: Optimizations and Machine Code Generation."

USA. CRC Press LLC. pp. 535-564.

Rekers, J. and Schurr, A. (1995). "A Graph Grammar Approach to Graphical

Parsing." Proc. VL'95 - 11th Int. IEEE Symop. On Visual Languages,

Darmstadt, Germany. 195-202. IEEE CS Press, Los Alamitos, USA.

Rekers, J. and Schurr, A. (1996). "A Graph Based Framework for the

Implementation of Visual Environments." IEEE Symp. on Visual Languages.

Su, F.S. and Hsiung P.A. (2002), "Extended quasi-static scheduling for formal

synthesis and code generation of embedded software." Proc. of the 10th

IEEE/ACM International Symposium on Hardware/Software Codesign

(CODES'2002).

Tanabe, J.M. (1997). "Timed Petri Nets and Temporal Linear Logic." In Azema,

P. and Balbo, G. (Eds). " Application and Theory of Petri Nets-97 " New

York. Springer-Verlag, pp. 156-174.

Wallen, A. (1995). "Using Grafcet To Structure Control Algoritms." Proceedings
(]

of The Third European Control Conference, Rome, Italy.

Watt, D.A. and Brown, D.F. (2000). "Programming Language Processors in Java:

Compilers and Interpreters." England. Pearsons Education Ltd.

Watt, D.A. and Brown, D.F. (2001). "Java Collections : An Introduction to

Abstract Data Types, Data Structures and Algorithms." England. John Wiley

& Sons Ltd.

Zhang, K.B., Orgun, M.A. And Zhang, K. (2002). " Visual Language Semantics

Specification in the VisPro System." Pan Sydney Area Workshop on Visual

Information Processing (VIP 2002).

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

146

Zhou, M. and Venkatesh, K. (1999). "Modeling, Simulation and Control of

Flexible Manufacturing System." Singapore. World Scientific.

(1998) "MPLAB IDE, Simulator, Editor Users' Guide." Microchip Technology.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

	TABLE OF CONTENTS
	TITLE
	STUDENT'S DECLARATION
	ESAMINERS' DECLARATION
	DEDICATION
	ACKNO WLEDEMENT
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDIXES
	I INTRODUCTION
	II LITERATURE REVIEW
	III MODELING THE PROTOTYPE TOOL
	IV IMPLEMENTATION OF THE PROTOTYPE
	V APPLICATIONS OF THE PROTOTYPE
	VI CONCLUSION AND RECOMMENDATIONS
	REFERENCES
	APPENDICES

