
DESIGN AND DEVELOPMENT OF A SMALL-SCALE 12S-14P OUTER ROTOR HEFSM

GADAFI BIN M.ROMALAN

Faculty of Electrical & Electronic Engineering
Universiti Tun Hussein Onn Malaysia

AUGUST 2016

To my beloved family.

Thank you for your prayer and support.

I love you all.

ACKNOWLEDGEMENT

In the name of ALLAH, the most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah Almighty for His grace and His blessings given to me for the successful completion of my master's studies.

I also wish to express my gratitude to my supervisor, Dr. Erwan Sulaiman for his guidance, invaluable help, advice, and patience on my project research. Without his constructive and critical comments, continuous encouragement, and good humour while facing difficulties, I could not have completed this research. I am also very grateful to him for guiding me to think critically and independently.

I acknowledge, with many thanks, UTHM and KPM MyBrain15 for awarding me a scholarship for my master's programme. I am much honoured to be the recipient for this award. Receiving this scholarship has given me motivation, confidence, and willingness to achieve my goals.

Without support from technical staff and my lab fellows of FSM research group, this research would not have been undertaken. My sincere thanks to all my FSM group friends, especially Mr. Md Zarafi Ahmad, Mr. Faisal Khan, and Mr. Fairoz Omar. They helped me many times with their technical knowledge.

It has been a very pleasant and enjoyable experience to work in UTHM with a group of highly dedicated people, who have always been willing to provide help, support, and encourage me whenever needed. I would like to thank all my friends during my stay in UTHM. Life would never have been so joyful without you.

Finally, I would like to give my sincerest gratitude to my parents for their endless love, support, and for always making compromises to let me try whatever I consider worth doing.

ABSTRACT

Simulation, prototype experimental, and mathematical modelling is an essential process to provide sufficient evidence before a full-scale development or mass production. Hence, this study focuses on validating a small scale of 12S-14P outerrotor hybrid excitation flux switching motor (OR-HEFSM) through simulation, experimental, and mathematical modelling. The JMAG-Designer software as finite element solver is used to design and analyse the designed geometry structure. Throughout simulation process, the rotor design with direct drive structure as illustrated in Appendix A is chosen based on optimisation process. Thus, the generated back EMF, torque, and power through simulation at a speed of 1,200 r/min is 6.58 V, 16.4 Nm, and 12.4 kW, correspondingly. The designed model has been fabricated using actual prototype analysis (APA) approach, which is involves five stages, namely 3-D design, material selection, fabrication, assembly, and experimental test. The computer-aided software of SolidWorks is used to implement the first stage of APA while the prototype structure is fabricated using a computer numerical control (CNC) machine. The prototype has been tested experimentally using a measurement tool such as Fluke Analyser and oscilloscope. The back EMF showed a good agreement between simulation and preliminary experimental results with percentage differences approximately 5.1% at a speed of, 1,200 r/min. In contrast with the prediction results based on mathematical modelling using sizing equation, the calculated back EMF, torque, and power is 7.58%, 8.6%, and 8.4% higher than simulation results, respectively. Even so, the results had proven that the concept of three-phase working principle for small-scale 12S-14P OR-HEFSM with direct drive structure remained the same for simulation, experiment, and prediction.

ABSTRAK

Simulasi, pengujian secara eksperimen dan pemodelan matematik ialah proses penting untuk memberikan bukti yang mencukupi sebelum pembangunan berskala penuh atau pengeluaran secara besar-besaran dilakukan. Oleh itu, kajian ini memberikan tumpuan dalam mengesahkan reka bentuk 12S-14P OR-HEFSM berskala kecil melalui simulasi, eksperimen dan pemodelan matematik. Perisian JMAG Designer sebagai penyelesai unsur terbatas telah digunakan untuk mereka bentuk dan menganalisis struktur geometri yang direka bentuk. Melalui keseluruhan proses simulasi, reka bentuk rotor dengan struktur pemacu terus seperti yang ditunjukkan dalam lampiran A telah dipilih berdasarkan proses pengoptimuman. Dengan itu, hasil voltan teraruh, daya kilas dan kuasa melalui simulasi pada kelajuan 1200 r/min masing-masing ialah 6.58 V, 16.4 Nm dan 12.4 kW. Reka bentuk model telah dihasilkan menggunakan pendekatan analisis prototaip (APA) yang melibatkan lima peringkat iaitu reka bentuk 3-D, pemilihan bahan, penghasilan, penyusunan dan kerja pengujian. Perisian berbantukan komputer SolidWorks telah digunakan untuk menerapkan peringkat pertama APA dan prototaip dihasilkan menggunakan mesin kawalan komputer berangka (CNC). Prototaip telah diuji secara eksperimen menggunakan alatan pengukuran seperti *Fluke Analyser* dan osiloskop. Hasil voltan teraruh adalah sepadan dengan hasil simulasi dan eksperimen awal dengan beza peratusan kira-kira 5.1% pada kelajuan 1200 r/min. Berbeza dengan hasil ramalan berdasarkan pemodelan matematik menggunakan persamaan saiz, hasil pengiraan voltan teraruh, daya kilas dan kuasa masing-masing ialah 7.58%, 8.6% dan 8.4% lebih tinggi daripada hasil simulasi. Walau bagaimanapun, hasil ini mengesahkan konsep prinsip kerja tiga fasa untuk struktur pemacu terus 12S-14P OR-HEFSM berskala kecil adalah tetap sama untuk simulasi, pengujian secara eksperimen dan pemodelan matematik.

iv

 \mathbf{v}

vi

CONTENTS

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

	CO	NTENTS	vii
	LIS	Γ OF TABLES	X
	LIS	Γ OF FIGURES	xii
	LIS	Γ OF SYMBOLS AND ABBREVATIONS	XV
	LIS	T OF PUBLICATIONS	xvii
	LIST	T OF AWARDS	xviii
CHAPTER 1	INT	RODUCTION	1
	1.1	Background Introduction Problem Statement	1 A
	1.2	Problem Statement	2
1001	1.3	Objectives	3
PERP	1.4	Scopes	3
	1.5	Research Contribution	4
	1.6	Thesis Outline	5
CHAPTER 2	LIT	ERATURE REVIEW	7
	2.1	Flux Switching Motor	7
		2.1.1 Fundamental of Outer-Rotor HEFSM	8
		2.1.2 Outer-Rotor HEFSM Design	9
	2.2	Fabrication of Motor Design	12
		2.2.1 Prototype of Inner-Rotor Design	12
		2.2.2 Prototype of Outer-Rotor Design	17

61

	2.3	Protot	ype Experimental	19
		2.3.1	Measurement System	19
		2.3.2	Weightage in Fabrication	21
	2.4	Summ	ary	22
CHAPTER 3	DES	SIGN A	AND ANALYSIS OF SMALL SCALE	
12S-14P OR-H	HEFS:	M USI	NG JMAG DESIGNER	23
	3.1	Desig	n of Small-Scale 12S-14P OR-HEFSM	23
		3.1.1	Part 1: Main Component of Rotor and	
			Stator Design	24
		3.1.2	Part 2: Excitation Element of PM, FEC	
			and armature coil	35
		3.1.3	Part 3: Finite Element Analysis (FEA)	
			and Material Setup	37
DI		3.1.4	Part 4: Circuit Setup	37
		3.1.5	Part 5: Simulation	J38 A M F
	3.2	Simul	ation Using JMAG Designer Solver	40
- 01	15	3.2.1	No-Load Analysis of 12S-14P	
PERPU	د ر	1 / -	OR-HEFSM	40
		3.2.2	Load Analysis of 12S-14P OR-HEFSM	43
	3.2	Sumn	nary	44
CHAPTER 4	PRO	OTOTY	PE DEVELOPMENT OF THE	
DESIGNED 1	2S-14	P OR-	HEFSM USING APA	45
	4.1	Actua	l Prototype Analysis (APA)	45
		4.1.1	Gathering and Stacking Approach	45
	4.2	Devel	opment of Small Scale 12S-14P	
		OR-H	EFSM Using APA	48
		4.2.1	Stage 1 of APA: 3-D Design	48
		4.2.2	Stage 2 of APA: Material Selection	54
		4.2.3	Stage 3 of APA: Fabrication	57

4.2.4 Stage 4 of APA: Assembly

	4.3	Development of Direct Drive Prototype	68
	4.4	Summary	70
CHAPTER 5	EXI	PERIMENTAL ANALYSIS OF A SMALL	
SCALE PROT	ГОТҰ	/PE	71
	5.1	Experimental analysis	71
	5.2	Prediction of Motor Performances by	
		Analytical Sizing Equations	77
	5.3	APA Weightage (W factor)	82
	5.4	Summary	87
CHAPTER 6	CO	NCLUSION AND FUTURE WORK	88
	6.1	Conclusion	88
	6.2	Future Work	89
	REF	FERENCES	90
DT	APP	PENDIX A: Technical Drawing	99
	APP	PENDIX B: Details of Silicon Steel 35H210	JAMINA
	and	35A250	103
	APP	PENDIX C: Details of Cooper Coil	105
PERP	APP	PENDIX C: Details of Permanent Magnet	
•	Neo	dymium 35AH	106
	VIT	'A	107

LIST OF TABLES

1.1	Restriction and specification	4
3.1	Rotor design analysis	26
3.2	Analysis of rotor design D with different number	
	of rotor holders	28
3.3	Analysis of rotor holders width	32
3.4	Analysis of rotor holders height	32
3.5	Analysis of chamfer and fillet on 4 rotor holders design	33
3.6	Parameter specifications P1 to P19	35
3.7	Materials for the design of 12S-14P OR-HEFSM	37
3.8	I_a and I_e (Ampere) based on various current density	38
3.9	Condition for simulation decision	39
4.1	Example of gathering terms regarding fabrication process	46
4.2	Example of stacking process based on task	46
4.3	Legend stacking of task for APA	46
4.4	Example of material decision table for stator and rotor	55
4.5	Material list for prototype 12S-14P OR-HEFSM	56
4.6	Example of machine decision table	57
4.7	Number of turn and filling factor of armature	
	coil and FEC	63
5.1	Differences in percentage of experimental to simulation	
	back EMF	77
5. 2	Calculated magnetic flux density at various J_a	
	with constant PM and J_e	81
5.3	Division Weightage (DW) for APA	83
5.4	Division Evaluate Mark (DEM) analysis	83
5.5	Weightage stage 1 APA	85
5.6	Weightage stage 2 APA	85

5.7	Weightage stage 3 APA	86
5.8	Weightage stage 4 APA	86
5.9	Weightage stage 5 APA	86
5.10	Final weightage factor	87

LIST OF FIGURES

2.2	Fundamental electromagnetic concept	8
2.3	Principle operation of OR-HEFSM	9
2.4	Design of 8S-4P OR-HEFSM	10
2.5	Performance of 8S-4P OR-HEFSM	10
2.6	Initial design of three-phase 12S-14P OR-HEFSM	11
2.7	Torque versus J_e of initial design 12S-14P OR-HEFSM	11
2.8	Comparison of 12S-14P OR-HEFSM	11
2.9	Torque versus J_e of the improved design 12S-14P	
	OR-HEFSM	12
2.10	PM brushless prototype design using SMC	13
2.11	PM mini motor using low cost fabrication technic	14
2.12	PMSM design	14
	PM design axial-flux direct drive for scooter	15
2.14	18S-12P SRM design for EV	15
2.15	FSM design based on TSFE	16
2.16	Electromagnetic wave of FSM design based on TSFE	16
2.17	Complete fabrication of 12S-10P WFFSM	17
2.18	Complete fabrication of outer-rotor PMSM	18
2.19	Complete 3-D design of outer-rotor PMFSM	18
2.20	Complete design of outer-rotor PMSM for wind turbine	19
2.21	No-load property measurement system	20
2.22	Load property measurement system	20
2.23	Experiment set up for motor measurement system [43]	21
2.24	Equivalent block diagram motor of measurement	
	system in Figure 2.23	21
3.1	Flowchart of JMAG geometry editor and design	24
3.2	Design A with initial small scale design	25
3.3	Design B with rectangular shape rotor	25
3.5	Design D with 4 holders	26

29

3.8	Design D with six holders	30
3.9	Design D with seven holders	30
3.10	Design D with eight holders	31
3.12	Chamfer on four rotor holders design	33
3.14	Small-scale design of 12S-14P OR-HEFSM	34
3.15	Parameter P1 to P19	35
3.16	Excitation element	36
3.17	Flowchart of simulation analysis	39
3.19	Comparison of magnetic flux distribution at	
	high current	41
3.20	Flux cancelation and losses in small scale design	
	of 12S-14P OR-HEFSM	41
3.21	Fundamental and harmonic Back EMF of 12S-14P	
	OR-HEFSM	42
3.22	Cogging torque of small scale design of 12S-14P	
	OR-HEFSM	42
3.23	Torque versus FEC current density at various	IN
	armatures current densities	43
3.24	Power and Torque versus speed characteristic	44
4.1	Actual Prototype Analysis (APA) flowchart	47
4.2	Complete 3-D design flowchart	49
4.3	Rotor design	50
4.4	Stator design	51
4.5	Permanent magnet design	51
4.6	3-D design armature coil and FEC	52
4.7	Winding coil case	53
4.8	Shaft and retaining clip	53
4.9	Motor housing	54
4.10	Holder rotor to shaft	54
4.11	Silicon electric steel 35A250	57
4.12	Wire cutting machine	58
4.13	Wire cutting fabrication (a) Stator, (b) Rotor	59
4.14	Milling machine	59

3.6 Design D with three holders

xiv

4.15	Milling machine fabrication	60
4.16	3-D printer	60
4.17	Separator coil case	60
4.18	Permanent magnet NICUNI grade 35	61
4.19	Assembling process for prototype	62
4.20	Assembly flow of prototype 12S-14P OR-HEFSM	64
4.21	Full stack prototype	65
4.22	Coil case assembly	65
4.23	Finishing windings	66
4.25	Prototype assembly through step 1 to 6 for internal	
	assembly	66
4.26	Finishing step 7 and 8 for external assembly	
	generated by SolidWorks	67
4.27	Finishing prototype	67
4.28	Assembly flow for direct drive prototype 12S-14P	
	OR-HEFSM	68
4.29	Direct drive prototype 12S-14P OR-HEFSM	69
4.30	Rim to direct drive prototype application of 12S-14P OR-	1
	HEFSM TUNKU TUNKU	69
4.31	Finishing direct drive prototype	70
5.1	General experimental flowchart of stage 5 of APA	72
5.2	Block diagram motor measurement system	73
5.3	Motor measurement system	74
5.4	Experimental coil test analysis	74
5.5	Back EMF at 600 r/min	75
5.6	Back EMF at 1,200 r/min	75
5.7	Back EMF at 1,800 r/min	75
5.8	Back EMF at 2,400 r/min	75
5.9	Back EMF at 3000 r/min	76
5.11	Calculated back EMF based on Equation 5.4	78
5.12	Effective area for small scale 12S-14P OR-HEFSM	79
5.13	Calculated and simulation torque versus various	
	armature current density	81

XV

LIST OF SYMBOLS AND ABBREVATIONS

A Ampere

AC**Alternating Current**

В Flux Density [T]

f Frequency [Hz], [rad/s]

Current [A] Ι

J Current Density [A/m²]

L Length [m]

Number of turns N

P Number of Poles

S

Revolution Per Minute KU TUN AMINAH r/min

Torque [Nm]

Time [s]

V Voltage [V]

EMF Electromotive Force

FEA Finite Element Analysis

FEC Field Excitation Coil

FEFSM Field Excitation Flux Switching Machine or Motor

FSM Flux Switching Machine or Motor

HEFSM Hybrid Excitation Flux Switching Machine or Motor

HEV Hybrid Electrical Vehicles

Induction Motors IMs PM Permanent Magnet

PMFSM Permanent-Magnet Flux Switching Machine or Motor

SRM Switched Reluctance Machine or Motor

 α Filling Factor

Kp Filling Factor Effective Area

Kd Leakage Factor

Bg / Bpm Permanent-Magnet Magnetic Flux Density

Rso Stator Outer Radius

Φ Magnetic Flux

tr_{AC} Total Radial Active Component

B Magnetic Flux Density

Ae Effective Area

 $h_{PR} \hspace{1cm} Rotor \hspace{0.1cm} Pole \hspace{0.1cm} Height$

DW Division Weightage

TP Total Phase

DEM Division Evaluation Mark

Wfactor Weightage Factor

TUN AMINAH

LIST OF PUBLICATIONS

Journals

- (i) "Actual prototype analysis floor plan for general electric machine," *ARPN Journal of Engineering and Applied Sciences*, Vol. 10, No. 16, pp. 7070-7074.
- (ii) "OR-HEFSM D-rive developed structure based on actual prototype analysis (APA) process", ARPN Journal of Engineering and Applied Sciences, (submitted and accepted)
- (iii) "Development small scale direct drive 12s-14p OR-HEFSM" *Jurnal Teknologi*, *IPECS 2015*, (submitted and accepted)

Proceeding

(i) "Structural and assembly design of outer-rotor hybrid excitation flux switching motor based on finite element analysis approach," Energy Conversion (CENCON), 2015 IEEE Conference in Johor Bahru, Malaysia, 2015, pp. 305-309.

LIST OF AWARDS

- (i) Silver medal at Malaysia Technology Expo (MTE), International Invention & Innovation, Kuala Lumpur, Malaysia 18 20 February 2016.
- (ii) Silver medal at Pencipta 2015, Dewan Konvensyen Kuala Lumpur, 4 − 5 December 2015.
- (iii) Bronze medal at Seoul International Invention Fair, Korea 26 29 November 2015
- (iv) Bronze medal at Research & Innovation Festival, UTHM, Malaysia 16 17 November, 2015.
- (v) Silver medal at Post Graduate Showcase IEEE CENCON 19 21 October 2015.
- (vi) Silver medal at Poster Competition Hari Transformasi Minda FKEE, UTHM 2015.
- (vii) Bronze medal at Malaysia Technology Expo (MTE), International Invention & Innovation, Kuala Lumpur, Malaysia 12 - 14 February 2015.

CHAPTER 1

INTRODUCTION

1.1 Background Introduction

Development of direct-drive motor for in-wheel electric vehicle (EV) has grown into an interesting research topic because of their advantages of direct torque control and elimination of the transmission gear system. At present, the major types of electric motors under serious consideration for EVs are the DC motor, induction motor (IM), permanent magnet synchronous motor (PMSM), and switched reluctance motor (SRM) [1,2]. Based on the extensive review on state-of-the-art electric propulsion systems, it may be observed that investigations on cage IMs and PMSMs are highly dominant [3-5].

In fact, from various types of motors, the flux switching motor (FSM) is a good design to fulfil direct-drive application due to high starting torque, constant power over a wide speed range, low torque ripple, and high durability. The FSM operating principle is quite interesting. This is due to the flux switches from stator pole to rotor tooth and vice versa that made researchers to develop a novel FSM design for various applications ranging from domestic appliances to heavy applications such as electric traction [6, 7].

The outer-rotor hybrid excitation flux switching motor (OR-HEFSM) [8, 9] is one of the FSMs created and studied to fulfil future expectations of electric vehicles (EV) with more practical application. In this research, the development of small scale 12S-14P OR-HEFSM is guided by a full-scale 12S-14P OR-HEFSM design, which has been published and submitted for patent [10]. Moreover, the full-scale design has successfully achieved the target values and has overcome various problems in interior permanent magnet synchronous machine (IPMSM) used in EV. The full-scale 12S-

14P OR-HEFSM design generated torque and power of 335.08 Nm and 160.2 kW, respectively [11].

Theoretically, the design capability has been proven through finite element analysis (FEA) using computer-aided software, JMAG designer. Basically, the analysis is based on numerical input and operating principle without any compromise towards error factor from manufacturing such as mechanical deformation. Therefore, development and fabrication process are required to evaluate the motor performance through prototype units [12]. However, because of cost and tool constraints, the design dimension and volume have been rescaled by ratio 1:8.

To interpret the outer-rotor design into prototype unit, the design needs a few approaches to complete the whole process such as actual prototype analysis (APA) and FEA-based simulation. The APA is created to set a standard procedure to develop and fabricate the design via five stages – design, material selection, fabrication, assembly, and test. All stages of APA come with a specific objective to initiate the process guided by closed loop flow chart to reach high standards in fabrication. Through the last stage of APA, the experimental test has been conducted to finalise all aims in the AN TUNKU TUN AMINAH development and fabrication process [13].

Problem Statement 1.2

In recent research of electric motor drives for EV propulsion, in-wheel direct drive is becoming more popular in diminishing transmission gearing system, and available cabin space can be occupied by more batteries. Thus, this application does not only provide optimal torque directly to the wheel, but also contributes for light vehicle and wider driving range per charge. In considering for higher torque and power densities for the in-wheel drive motors, outer-rotor machine configuration is among the good designs compared with conventional inner-rotor [11].

In a recent review of motor design especially FSM, most researchers focused on designing the motor using computer-aided software, but which lack of experimental prototype validation because of cost and measurement tool restriction. As an example, a 12S-14P OR-HEFSM has been successfully design for in-wheel direct drive application. The performances achieved in terms of torque, speed, and power are much higher than conventional IPMSM [10]. The design has successfully countered IPMSM's drawbacks with robust rotor structure, less PM usage, and less total weight.

However, the proposed motor is yet to be validated experimentally. Thus, in this research, a complete process involving design and fabrication of a small-scale 12S-14P OR-HEFSM shall be carried out from the initial stage to the end of experimental validation before it goes for full scale or mass production.

1.3 Objectives

The objectives of this research are as follows:

- (i) To optimise and analyse a small-scale design of 12S-14P OR-HEFSM rotor for direct drive structure.
- (ii) To develop and fabricate a small-scale design of 12S-14P OR-HEFSM using actual prototype analysis (APA).
- (iii) To validate a small-scale design of 12S-14P OR-HEFSM by analytical modelling and experimentation.

1.4 Scopes

The research focuses on optimising and analysing a small-scale prototype of three-phase 12S-14P OR-HEFSM, which will be evaluated by analytical modelling and experimentation. In achieving the research objectives, the followings scopes have been selected:

- (i) Guided by a full-scale design of 12S-14P ORHEFSM [11], the design restriction and specification for a designated small-scale design of 12S-14P OR-HEFSM by a ratio of 1:8 are listed in Table 1.1. The FEA process is aided by JMAG Designer 14 software to design and analyse the load and no load conditions.
- (ii) In developing the small-scale prototype of 12S-14P OR-HEFSM, the APA approach is used. The approach uses a conversion import file format .DWG from JMAG-Designer to .SLDPRT for SolidWorks V.2014. The 2-D projection from JMAG-Geometry will be 'boss extruded' into SolidWorks to generate the 3-D projection.
- (iii) Using the motor measurement system, the finishing prototype will be evaluated by Power Flux and Futex Sensit for back EMF and cogging torque, respectively. The investigated data will be compared with simulation and analytical modelling data to prove the concept of three-phase motor characteristics.

(iv) In determining whether the APA approach is acceptable for general electric motor fabrication, the collected data of simulation analysis and five stages of APA will be evaluated using subjective evaluation method [14]. The evaluation uses numeric score as weightage factor based on data feedback from motor performance and fabrication qualities.

Table 1.1: Restriction and specification

RESTRICTION AND SPECIFICATION	DESCRIPTION	OR-HEFSM
	Max. DC-bus voltage inverter (V)	400
	Max. DC-bus voltage inverter (V)	400
	Max. inverter current (A _{rms})	50
Electric	Max. current density in armature coil, Ja (A _{rms} /mm ²)	30
	Max. current density in FEC, Je (A/mm²)	30
	Motor radius (mm)	66
	Motor stack length (mm)	35
Motor	Shaft/Inner motor radius (mm)	30
Motor	Air gap length (mm)	0.4
	PM weight (g)	17
	Total weight (kg)	T 10

1.5 Research Contribution

Research contribution throughout this research study are described as follows:

- (i) The rotor optimisation and analysis of a small-scale design of 12S-14P OR-HEFSM contributed to the idea on how the rotor design should be developed to suit with direct drive structure. Simultaneously, presenting the analysis of a small-scale 12S-14P OR-HEFSM in terms of back EMF, torque, speed, and power. (Structural and assembly design of outer-rotor hybrid excitation flux switching motor based on finite element analysis approach published in *Energy Conversion (CENCON)*, 2015 IEEE Conference)
- (ii) The APA approach contributes to the systematic flowchart to develop and fabricate the electric motor. Moreover, the APA weightage factor could be used to determine the successfulness of the fabricated prototype. (Actual prototype analysis floor plan for general electric machine, published in *ARPN Journal of Engineering and Applied Sciences*)

- (iii) The mathematical modelling for OR-HEFSM using analytical sizing equation contributes to the motor performances prediction in terms of power and torque.
- (iv) The three-phase fabricated small-scale 12S-14P OR-HEFSM working principle has been proven experimentally.

1.6 Thesis Outline

This thesis deals with the design studies on OR-HEFSM for HEV applications. The thesis is divided into five chapters. A summary of each chapter is as follows:

(i) Chapter 1: Introduction
This chapter introduces the research background of design and development of a small-scale 12S-14P OR-HEFSM. The contents focus on problems, objectives,

scopes, and contributions of the research.

experimental purpose.

(ii) Chapter 2: Literature review

The review on developing and fabricating the 12S-14P ORHEFSM was divided into three sections. The first section is the introduction of flux switching motor (FSM) while focusing on hybrid excitation FSM. It is followed by the review of fabrication process, which is already established and used by other researchers. The review covers both motor concepts, from inner to outer rotor fabrication. At the end of the chapter is the review of measurement systems and weightage for

(iii) Chapter 3: Design and analysis of small-scale 12S-14P OR-HEFSM using JMAG-Designer

This chapter presents the process before the prototype's development. The process involves the rotor optimisation and simulation process for small-scale 12S-14P OR-HEFSM using JMAG-Designer. Although the performances of a small-scale design is quite different from a full-scale analysis, the results proved that the concept of three-phase working principle concept for both designs remained the same.

(iv) Chapter 4: Prototype development of the designed 12S-14P OR-HEFSM using APA

This chapter clarifies the complete process and results based on the second research objective. It is divided into three sections namely development of APA approach, development of small-scale prototype, and development of direct drive prototype. The development of small scale and direct drive prototype has been developed by four stages of APA from 3-D design, material selection, fabrication, and assembly.

(v) Chapter 5: Experimental analysis of a small-scale prototype

This chapter elaborates the experimental analysis of a small-scale prototype of 12-14P OR-HEFSM with respect to simulation configuration. The tool and calculation process have been explained based on analysis. The analysis is divided into three sections namely experimental analysis for no load condition, prediction motor performances based on analytical sizing equation, and weightage analysis.

(vi) Chapter 6: Conclusion and future work

The final chapter discusses and concludes the process and results of the research.

This chapter also suggests future works to eliminate the drawbacks in small-scale prototype development.

CHAPTER 2

LITERATURE REVIEW

2.1 Flux Switching Motor

The flux switching motor (FSM) incorporates the features of a conventional DC motor and switch reluctance motor (SRM). Similar with conventional motor, the rotor and stator combinations of FSM play a role to drive their operating principle as well as coming out with various designs probability. In 1950, the first FSM was introduced. Structurally it had a large value of permanent magnet usage with less slot area [15]. To overcome the large value of permanent magnet usage and to improve the FSM structure topologies, researchers have tried to figure out the best combination of FSM in terms of the stator-rotor structure and excitation component.

The general classification of FSMs is demonstrated in Figure 2.1, where the permanent magnet (PM) and field excitation (FE) FSMs consist of PM and DC field excitation coil, respectively as their excitation element. The hybrid excitation (HE) FSM consists of the combination of both PM and FE for their flux excitation.

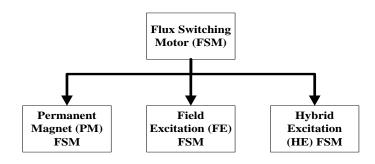


Figure 2.1: Classification of flux switching motor (FSM)

REFERENCES

- [1] Veldman E. Verzijlbergh R.A., "Distribution grid impacts of smart electric vehicle charging from different perspectives", *Smart Grid*, *IEEE Transactions*", Vol. 6, No. 1, pp. 333-342, Jan. 2015
- [2] J. Malan, M. J. Kamper, "Performance of a hybrid electric vehicle using reluctance synchronous machine technology", *IEEE Trans. Ind. Appl.*, Vol. 37, No. 5, pp. 1319-1324, Sep./Oct. 2001
- [3] M. Kamiya, "Development of traction drive motors for the Toyota hybrid systems", *IEEJ Trans. Ind. Appl.*, Vol. 126, No. 4, pp. 473-479, Apr. 2006
- [4] M.A. Rahman, "IPM motor drives for hybrid electric vehicles",

 International Aegean Conference on Electrical Machines and Power

 Electronics, Sept. 2007
- [5] Wada N., Momma, N. Miki I., "Rotor position estimation method in high speed region for 3-phase SRM used in EV," *Electrical Machines and Systems (ICEMS)*, 2012 15th International Conference, pp. 15, 21-24 Oct. 2012
- [6] E. Sulaiman, T. Kosaka, N. Matsui, "Design optimisation and performance of a novel 6-Slot 5-Pole PMFSM with hybrid excitation for hybrid electric vehicle", *IEEJ Trans. on Industry Appl.*, Vol. 132, No. 2, Sec. D, pp. 211-218, 2012
- [7] Sulaiman E., Kosaka T. Matsui., "A new structure of 12Slot-10Pole field-excitation flux switching synchronous machine for hybrid electric vehicles," *Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference*, pp. 1, Aug. 30 2011-Sept. 1 2011

- [8] E. Sulaiman, M. F. M. Teridi, Z. A. Husin, M. Z. Ahmad, T. Kosaka, "Performances comparison of 24S-10P and 24S-14P field excitation flux switching machine (FEFSM) with single DC-coil polarity", *International Journal of Energy & Power Engineering Research*, Vol. 1, pp. 24-31, Dec 2013
- [9] Ahmad M.Z., Sulaiman E., Khan F., Haron Z.A., "Design and performance analysis of 12Slot-14Pole HEFSM with outer-rotor configuration", Power *Engineering and Optimisation Conference (PEOCO)*, 2014 IEEE 8th International, pp. 369-374, 24-25 March 2014
- [10] Md Zarafi Ahmad, Erwan Sulaiman, "An Outer-Rotor Hybrid Excitation Flux Switching Machine", I.P. PI2014702932, December 2014
- [11] M. Z. Ahmad, E. Sulaiman, Z. A. Haron, T. Kosaka, "Design improvement of a new outer-rotor hybrid excitation flux switching motor for in-wheel drive EV," *Power Engineering and Optimisation Conference (PEOCO)*, 2013 IEEE 7th International, Langkawi, pp. 298-303, 2013
- [12] Zhu Z., "Switched flux permanent magnet machines-Innovation continues", *Electrical Machines and Systems (ICEMS)*, *Beijing, China*, August 20-23 2011
- [13] E. Sulaiman, "Less Rare-Earth and High Power Density Flux Switching Motor for HEV Drives", *International Conference on Electrical machine ICEM*, pp. 15-23, June 2012
- [14] G. Chen, W. Zhang, Z. Gong and W. Sun, "A new approach to vehicle shift quality subjective evaluation based on fuzzy logic and evidence theory," *4th IEEE Conference on Industrial Electronics and Applications, Xi'an*, 2009, pp. 2792-2795
- [15] Obata, M. Morimoto, S. Sanada, M. Inoue Y., "Performance of PMASynRM with ferrite magnets for EV/HEV applications considering productivity, *Industry Applications*, *IEEE Transactions*, Vol.50, no.4, pp. 2427-2435, July-Aug. 2014

- [16] Muhammad S. Syed N., Sulaiman E., Mubin M. Mazlan, A. Husin Z. A., "Initial design of 12S-10P and 12S-14P with outer- rotor field-excitation flux switching machine", *The 2nd Power and Energy Conversion Symposium (PECS). May 12. Melaka, Malaysia*, pp. 177-181, 2014
- [17] X. D. Xue, "Study of motoring operation of in-wheel switched reluctance motor drives for electric vehicles," *Power Electronics Systems and Applications, PESA 2009, 3rd International Conference on, Hong Kong*, 2009
- [18] Hansen, K. L., "The rotating magnetic field theory of AC. motors", Transactions of the American Institute of Electrical Engineers, pp. 170-178, 2013
- [19] Ahmad M.Z., Sulaiman E., Jenal M., Utomo, W.M. Zulkifli, S.A. Bakar A, "Design investigation of three phase HEFSM with outer-rotor configuration, *IEEE Conference on Clean Energy and Technology* (CEAT). November 18-20. Langkawi, Malaysia, pp. 220-225, 2013
- [20] Mazlan M.M.A., Sulaiman E., Kosaka T., "Design study of single phase outer-rotor hybrid excitation flux switching motor for hybrid electric vehicles," *Power Engineering and Optimisation Conference (PEOCO)*, 2014 IEEE 8th International, pp. 138-143, 24-25 March 2014
- [21] Aizat Mazlan M.M., Sulaiman E., Ahmad M.Z., Naufal S. Othman S.M., "Design optimisation of single-phase outer-rotor hybrid excitation flux switching motor for electric vehicles," *Research and Development* (SCOReD), 2014 IEEE Student Conference, Vol. 1, No. 6, pp. 16-17 Dec. 2014
- [22] Ahmad M.Z., Sulaiman E., Kosaka T., "Optimisation of outer-rotor hybrid excitation FSM for in-wheel direct drive electric vehicle," *Mechatronics* (*ICM*), 2015 IEEE International Conference, Vol. 691, No.696, pp. 6-8 March 2015
- [23] M. Jacobi, "Memoire Sur l'application de pelectro magnetisme au movement de machines", Book, Vol. 1, Paris 1875
- [24] Thurston, Robert Henry, "A history of the growth of the steam-engine. The International Scientific Series. New York", Book, published by D. Appleton and Company, pp. 80, 1878

- [25] Eckermann Erik, "World history of the automobile", Book, published by SAE, pp. 18-19. ISBN 0-7680-0800-X, retrieved, May 2011
- [26] Calvert, J. B., "Jacobi's theorem or the maximum power transfer theorem, misunderstanding of it retarded development of dynamos". Article, March 30, 2001
- [27] Leksono E., Haq. I.N., Iqbal M., Soelami F.X.N., Merthayasa I.G.N., "State of charge (SoC) estimation on LiFePO4 battery module using Coulomb counting methods with modified Peukert", Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T), Joint International Conference, Vol. 1, No. 4, pp. 26-28 Nov. 2013
- [28] Rasmussen P.O., Frandsen T.V., Jensen K.K., Jessen K., "Experimental evaluation of a motor integrated permanent magnet gear," *Energy Conversion Congress and Exposition (ECCE)*, 2011 IEEE, pp. 3982-3989, 17-22 Sept. 2011
- [29] T. Wang, "Design characteristics of the induction motor used for hybrid electric vehicle," *IEEE Trans. Magn.*, Vol. 41, No. 1, pp. 505-508, Jan. 2005
- [30] Yi Tang Dexuan Zhu, Chi Jin, Peng Wang, Blaabjerg F., "A three-level quasi-two-stage single-phase PFC converter with flexible output voltage and improved conversion efficiency," *Power Electronics, IEEE Transactions*, Vol. 30, No. 2, pp. 717-726, Feb. 2015
- [31] G. S. Liew, W. L. Soong, N. Ertugrul, J. Gayler, "Analysis and performance investigation of an axial-field PM motor utilising cut amorphous magnetic material," *Universities Power Engineering Conference (AUPEC)*, 2010 20th Australasian, Christchurch, pp. 1-6, 2010
- [32] Babich I.V., Chainer T., Cooper E.I., Hegde S., Horkans W.J., Jahnes C., Krongelb S., Kwietniak K.T., LaBianca N.C., O'Sullivan E.J.M., Romankiw L.T., Tornello J.A., Trouilloud P., "Variable reluctance magnetic integrated mini-motor fabrication and test results", *Magnetics Conference*, 1997. Digests of INTERMAG IEEE International, April 1997

- [33] Paitandi S., Sengupta M., "Design, fabrication and parameter evaluation of a surface mounted permanent magnet synchronous motor", *Power Electronics, Drives and Energy Systems (PEDES)*, 2014 IEEE International Conference, Vol. 1, No. 6, pp. 16-19, Dec. 2014
- [34] Caricchi F., Crescimbini F., Fedeli E., Noioa G., "Design and construction of a wheel-directly-coupled axial-flux PM motor prototype for EVs", *Industry Applications Society Annual Meeting, 1994., Conference Record of the 1994 IEEE*, Vol. 1, pp. 254-261 Oct. 1994
- [35] Kano Y., "Recent technical trends in SRM and FSM", *Power Electronics Conference (IPEC-Hiroshima 2014 ECCE-ASIA), International*, pp. 2004-2010, 18-21 May 2014
- [36] Daohan Wang, Xiuhe Wang, "Modeling and analysis on flux switching motor based on time stepping finite element", *Power and Energy Engineering Conference (APPEEC)*, 2010 Asia-Pacific, Vol. 1, No. 4, pp. 28-31, March 2010
- [37] Bin Sulaiman E., Kosaka T., Matsui, N., "Design study and experimental analysis of wound field flux switching motor for HEV applications", *Electrical Machines (ICEM)*, 2012 XXth International Conference, pp. 1269-1275, 2-5 Sept. 2012
- [38] Rasmussen P.O., Frandsen T.V., Jensen K.K., Jessen K., "Experimental evaluation of a motor integrated permanent magnet gear", *Energy Conversion Congress and Exposition (ECCE)*, 2011 IEEE, pp. 3982-3989, 17-22 Sept. 2011
- [39] Weizhong Fei, Luk P.C.K., Jian Xin Shen, Yu Wang, Mengjia Jin, "A novel permanent-magnet flux switching machine with an outer-rotor configuration for in-wheel light traction applications", *Industry Applications, IEEE Transactions*, Vol. 48, No. 5, pp. 1496-1506, Sept.-Oct. 2012
- [40] Kilk A., Kudrjavtsev Oleg, "Study and verification of a slow speed PM generator with outer rotor for small scale wind turbines", *Electric Power Quality and Supply Reliability Conference (PQ)*, pp. 1-6, June 2012

- [41] Liew G.S., Ertugrul N., Soong W.L., Gehlert D.B., "Analysis and performance evaluation of an axial-field brushless pm machine utilising soft magnetic composites", *Electric Machines & Drives Conference*, 2007. *IEMDC '07. IEEE International*, Vol. 1, pp. 153-158, May 2007
- [42] Ikeda K., Dohmeki H., "Study on improvement in the motor property by the difference in the fabrication density of the soft magnetic composite", *Electrical Machines (ICEM)*, 2012 XXth International Conference, pp. 784-788, Sept. 2012
- [43] W. Fei, P. C. K. Luk, J. Ma, J. X. Shen, G. Yang, "A high-performance line-start permanent magnet synchronous motor amended from a small industrial three-phase induction motor", *IEEE Transactions on Magnetics*, Vol. 45, No. 10, pp. 4724-4727, Oct. 2009
- [44] S. M. Chen, Y. K. Ko, Y. C. Chang, J. S. Pan, "Weighted fuzzy interpolative reasoning based on weighted increment transformation and weighted ratio transformation techniques", *IEEE Transactions on Fuzzy Systems*, Vol. 17, No. 6, pp. 1412-1427, Dec. 2009
- [45] Bouscayrol, M. Pietrzak-David, P. Delarue, R. Pena-Eguiluz, P. E. Vidal and X. Kestelyn, "Weighted control of traction drives with parallel-connected AC machines", *IEEE Transactions on Industrial Electronics*, Vol. 53, No. 6, pp. 1799-1806, Dec. 2006
- [46] S. Makita, Y. Ito, T. Aoyama, S. Doki, "The proposal of a new motor which has a high winding factor and a high slot fill factor", *Power Electronics Conference (IPEC-Hiroshima 2014 ECCE-ASIA)*, *International, Hiroshima*, pp. 3823-3827, 2014
- [47] C. Hogmark, R. Andersson, A. Reinap and M. Alaküla, "Electrical machines with laminated winding for hybrid vehicle applications", *Electric Drives Production Conference (EDPC), 2nd International, Nuremberg*, 2012
- [48] K. C. Kim, K. Y. Sung and S. J. Hwang, "A study on the performance of three phase induction motor with rectangle stator core," *Electrical Machines and Systems (ICEMS)*, 2010 International Conference on, Incheon, 2010, pp. 1443-1446

- [49] H. Park, H. Hong, Y. Oh, J. Lee and J. Lee, "Motion analysis and control of the hybrid multi-DOF motor with taking account on design of motor shape," 2015 IEEE Magnetics Conference (INTERMAG), Beijing, 2015, pp. 1-1
- [50] K. Cakir and A. Sabanovic, "In-wheel motor design for electric vehicles," *9th IEEE International Workshop on Advanced Motion Control*, 2006., *Istanbul*, 2006, pp. 613-618
- [51] C. H. Yoo, D. K. Lim, D. K. Woo, J. H. Choi, J. S. Ro and H. K. Jung, "A New Multimodal Optimization Algorithm for the Design of In-Wheel Motors," in *IEEE Transactions on Magnetics*, vol. 51, no. 3, pp. 1-4, March 2015
- [52] Xu Yafeng, Zhang Yubo and Zhao Xin, "Research on L-shaped concrete-filled steel tube core columns mechanical properties under eccentric," Electric Technology and Civil Engineering (ICETCE), 2011 International Conference on, Lushan, 2011, pp. 605-608
- [53] S. J. Pronin, "Realization of Universal Structural System of Dvornikov L.T. Concerning Solving the Problems of Structural Synthesis of Spatial Mechanisms," *Modern Technique and Technologies*, 2005. MTT 2005.

 11th International Scientific and Practical Conference of Students, Postgraduates and Young Scientists, Tomsk, 2005, pp. 65-66
- [54] Yu Wang, Huiming He, Jiayin Wang and Baodong Bai, "Research of novel water cooling jacket for explosion-proof motor," *Electrical Machines and Systems (ICEMS)*, 2013 International Conference on, Busan, 2013, pp. 691-694
- [55] B. Altinoz, D. Unsal, "Look up table implementation for IMU error compensation algorithm", *Position, Location and Navigation Symposium PLANS 2014, IEEE/ION, Monterey, CA*, pp. 259-261, 2014
- [56] S. S. Roy, P. V. Krishna and S. Yenduri, "Analyzing intrusion detection system, an ensemble based stacking approach", *Signal Processing and Information Technology (ISSPIT)*, *IEEE International Symposium*, *Noida*, pp. 000307-000309, 2014

- [57] Alali, M. Kubat, "PruDent: A pruned and confident stacking approach for multi-label classification", *IEEE Transactions on Knowledge and Data Engineering*, Vol. 27, No. 9, pp. 2480-2493, Sept. 1 2015
- [58] K. M. Rajan, K. Narasimhan, "An approach to selection of material and manufacturing processes for rocket motor cases using weighted performance index", *Journal of Materials Engineering and Performance*, Vol. 11, No. 4, pp. 444, 2012
- [59] Prasenjit Chatterjee, Vijay Manikrao Athawale, Shankar Chakraborty, "Materials selection using complex proportional assessment and evaluation of mixed data methods", *Journal Materials & Design*, 2011, Vol. 32, No. 2, pp. 85, 2011
- [60] N. Raabe, "An algorithm for the filling factor calculation of electrical machines standard slots", *Electrical Machines (ICEM)*, 2014 International Conference on, Berlin, pp. 981-986, 2014
- [61] K. Yamazaki, S. Shinfuku, "Combined 3-D-2-D finite element analysis of induction motors considering variation of neutral point potential in star connection", *IEEE Transactions on Magnetics*, Vol. 37, No. 5, pp. 3706-3710, Sep 2001
- [62] Y. Gao et al., "Loss Reduction of Reactor With Grain-Oriented Silicon Steel Plates," in *IEEE Transactions on Magnetics*, vol. 49, no. 5, pp. 1973-1976, May 2013
- [63] Fan Tao, Luo Jian, Wen Xuhui and Liao Xiaofeng, "A new sizing equation and it's application in electrical machine design," *Electric Information and Control Engineering (ICEICE)*, 2011 International Conference on, Wuhan, 2011, pp. 3890-3893
- [64] Shihua Wu, Weiwei Fan and Shumei Cui, "Sizing equations suitable for driving motor initial design," *Transportation Electrification Asia-Pacific* (ITEC Asia-Pacific), 2014 IEEE Conference and Expo, Beijing, 2014, pp. 1-3
- [65] W. Fei, P. C. K. Luk, J. Shen and Y. Wang, "A novel outer-rotor permanent-magnet flux-switching machine for urban electric vehicle propulsion," *Power Electronics Systems and Applications*, 2009. *PESA* 2009. 3rd International Conference on, Hong Kong, 2009, pp. 1-6

- [66] W. Fei, P. C. K. Luk, J. X. Shen, Y. Wang and M. Jin, "A Novel Permanent-Magnet Flux Switching Machine With an Outer-Rotor Configuration for In-Wheel Light Traction Applications," in *IEEE Transactions on Industry Applications*, vol. 48, no. 5, pp. 1496-1506, Sept.-Oct. 2012
- [67] Rowland H., Phil. Mag, "Text Book of Magnetism" by *Publishing House* (4), vol. 46, 1873, p. 140
- [68] M. Kostelníková, M. Ožvoldová and M. Ožvoldová, "Faraday's Law via e-experiments as an example of inquiry-based learning," *Interactive Collaborative Learning (ICL)*, 2012 15th International Conference on, Villach, 2012, pp. 1-5
- [69] U. Sarwar, M. B. Muhammad, Z. A. Abdul Karim, "Time series method for machine performance prediction using condition monitoring data", *Computer, Communications, and Control Technology (I4CT), International Conference on, Langkawi*, pp. 394-398, 2014

