
DEVELOPMENT OF WEB APPLICATION PACKAGE TO DESIGN AC SUBSTATION GROUNDING SYSTEM BASED ON IEEE STD. 80-2000 FOR CONTINUOUS EDUCATION AND PROFESSIONAL TRAINING

MOHAMMED ALSANOSI MOHAMMED ALDEBRY

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

December 2016

ACKNOWLEDGEMENT

First and foremost, my praise to Almighty Allah for giving me the power and persistence to complete this study and peace be upon his final Prophet and Messenger Mohammed, SAW.

I would like to express my sincere appreciation to my supervisor, Prof. Dr. Hussein Bin Ahmad for the guidance and constant given support throughout the duration for this research.

I have to thank my dearly loved parents for their love and support throughout my life. Thank you both for giving me strength to reach for the stars and chase my dreams. My sisters and little brother deserve my wholehearted thanks as well.

To my treasured wife, a very special thank you for your emotional support and unending love. I could not do it without you.

P Last but not least, my great thankful to all my friends who stood beside me and pushed me forward to complete my studies.

ABSTRACT

Substation grounding is a very important aspect in a substation design which forms a safe grounding grid system besides functioning as a means of dissipating currents to the surrounding ground during normal and fault conditions, also prevents the ground potential rise during a fault from creating dangerous potential gradients on the substation ground surface that can endanger a life of a person in the vicinity of the grounded facility. This grounding study is based on IEEE Standard 80-2000 (Revision of IEEE Std. 80-1986) which serves as a guide to the safety in ac substation grounding. With the fast growing of the use on the Internet technology and the daily use of it in all life routines including education, it will be necessary and interesting to provide a learning and educational web application for the Internet users especially the engineers of them.

v

ABSTRAK

Pembumian pada pencawang adalah aspek yang sangat penting dalam rekaan pencawang yang membentuk sistem grid asas selamat selain berfungsi sebagai satu cara untuk mengalirkan arus ke bumi pada keadaan normal dan ketika kerosakan berlaku, dan juga menghalang kenaikan potensi bumi pada ketika kerosakan dari mewujudkan kecerunan berpotensi berbahaya pada permukaan tanah pencawang yang boleh membahayakan kehidupan seseorang yang berada dalam persekitaran tempat pembumian. Kajian pembumian ini adalah berdasarkan IEEE Standard 80-2000 (IEEE Std. 80-1986) yang berfungsi sebagai panduan untuk keselamatan dalam pembumian pencawang. Dalam arus penggunaan teknologi Internet yang meningkat saban hari dan penggunaan harian dalam semua rutin kehidupan termasuk pendidikan, ia akan menjadi sesuatu keperluan serta ianya adalah menarik untuk menyediakan pembelajaran dan aplikasi laman sesawang dengan tujuan pendidikan untuk pengguna Internet terutamanya kepada golongan jurutera.

CONTENTS

	TITLE		i
	DECLA	ARATION	ii
	DEDIC	ATION	iii
	ACKNO	OWLEDGEMENT	iv
	ABSTR	ACT	v
	ABSTR	AK	vi
	CONTI	ENTS	vii
	LIST O	of TABLES	xi
	LIST O	FFIGURES	xii
	LIST O	F SYMBOLS AND ABBREVIATIONS	xiv
	LIST O	FAPPENDICES	xviii
CHAPTER	1 INTRO	F APPENDICES DUCTION Background	1
	1.1	Background	1
PER	1.2	Problem statement	2
	1.3	Objectives	3
	1.4	Scope	3
	1.5	Project outline	4
CHAPTER	2 GROU	JNDING CONCEPT AND SAFETY ASPECTS	5
REVIEW			
	2.1	Introduction	5
	2.2	Grounding standards	5
	2.2.1	IEEE Std. 80-1986	5
	2.2.2	IEEE Std. 80-2000	6
	2.2.3	BS 7430	6
	2.2.4	IEC 60050-195	7
	2.2.5	IS 3043	7
	2.2.6	DL/T 621-1997	8
	2.2.0	Grounding system design software	8
	2.5	orounding system design software	0

	2.3.1	CYMGRD	8
	2.3.2	ETAP	9
	2.4	Safety aspects	9
	2.5	Electric shock and tolerable current range	10
	2.5.1	Effects of current frequency	11
	2.5.2	Effects of current magnitude	11
	2.5.3	Effects of current exposure duration	12
	2.6	Current limits for the human body	14
	2.7	Accidental connection to ground through the	16
		human body	
	2.7.1	Human body resistance	16
	2.7.2	The accidental circuit	17
	2.7.2.1	Touch voltage accidental circuit	17
	2.7.2.2	Step voltage accidental circuit	19
	2.7.3	Thin layer of surface material effect and the	20
		derating factor	
	2.8	Tolerable voltage criteria	23
CHAPTER	3	GROUNDING SYSTEM DESIGNING	23 25 NAH
CONSIDER	ATIONS	S AND EVALUATING TECHNIQUES	
	3.1	Introduction	25
PER	3.2	Project flowchart	26
	3.3	Methodology block diagram	27
	3.4	Designing a grounding system	28
	3.4.1	Principal design considerations	28
	3.4.1.1	Ground electrode	28
	3.4.1.2	Grounding grid	29
	3.4.1.3	Ground mat	30
	3.4.2	Conductors and connections	31
	3.4.2.1	Requirements and material choice	31
	3.4.2.2	Conductor sizing	32
	3.4.2.3	Selection of connections	34
	3.4.3	Soil characteristics	35
	3.4.3.1	Outside effects on soil resistivity	36
	3.4.3.2	The surface material layer resistivity	37
	3.4.3.3	Soil resistivity measurement	37
		2.3.2 2.4 2.5 2.5.1 2.5.2 2.5.3 2.6 2.7 2.7.1 2.7.2 2.7.2.1 2.7.2.2 2.7.3 2.8 CHAPTER 3 CONSIDERATIONS 3.1 3.2 3.3 3.4 3.4.1 3.4.1.1 3.4.1.2 3.4.1.3 3.4.2 3.4.2.1 3.4.2.2 3.4.2.1 3.4.2.2	 2.3.2 ETAP 2.4 Safety aspects 2.5 Electric shock and tolerable current range 2.5.1 Effects of current frequency 2.5.2 Effects of current appoint of the human body 2.6 Current limits for the human body 2.7 Accidental connection to ground through the human body 2.7.1 Human body resistance 2.7.2 The accidental circuit 2.7.2 Step voltage accidental circuit 2.7.3 Thin layer of surface material effect and the derating factor 2.8 Tolerable voltage criteria CHAPTER 3 GROUNDING SYSTEM DESIGNING CONSIDERATIONS 3.1 Introduction 3.2 Project flowchart 3.3 Methodology block diagram 3.4 Designing a grounding system 3.4.1 Ground mat 3.4.2 Conductors and connections 3.4.3 Selection of connections 3.4.3 Selection of connections 3.4.3 Soli characteristics 3.4.3 Outside effects on soil resistivity 3.4.3 Outside effects on soil resistivity 3.4.3 The surface material layer resistivity

viii

	3.5	Evaluating the ground system design	38
	3.5.1	Ground resistance	39
	3.5.2	Methods to lower soil resistivity	40
	3.5.2.1	Soil treatment	40
	3.5.2.2	Concrete-encased electrodes	41
	3.5.3	Maximum grid current	41
	3.5.3.1	Calculating zero-sequence fault current	42
	3.5.4	Potential gradients in the grid	44
	3.5.4.1	Ground potential rise	44
	3.5.4.2	Mesh voltage	45
	3.5.4.3	Step voltage	48
	3.5.5	Evaluation of a design	48
CHAPTER 4	4 GROU	NDING SYSTEM WEB APPLICATION	51
	4.1	Introduction	51
	4.2	The development tool	51
	4.3	Programming language	52
	4.4	Overview of HAMA web application	52
	4.5	The learning material	54 NAH
4.5	4.5.1	Tolerable current range	55
	4.5.2 C	Accidental ground circuit	55
PER	4.5.3	Principal design considerations	56
	4.5.4	Selection of conductors and connections	56
	4.5.5	Soil characteristics	56
	4.5.6	Ground resistance	57
	4.5.7	Designing a grounding system	57
	4.5.8	Selected equations	57
	4.6	The calculation module	58
	4.6.1	Tolerable body current limit	59
	4.6.2	Tolerable touch voltage	59
	4.6.3	Tolerable step voltage	59
	4.6.4	Conductor sizing	59
	4.6.5	Soil resistivity	60
	4.6.6	Ground resistance	60
	4.6.7	Maximum grid current	60
	4.6.8	Mesh voltage	61

ix

	4.6.9	Step voltage	61
	4.7	The design evaluation module	61
CHAPTER 5	5 RESUI	LTS AND DISCUSSION	63
	5.1	Introduction	63
	5.2	Bir Terfas substation	63
	5.3	Comparing HAMA with CYMGRD for Bir Terfas	68
		substation grid design	
	5.4	Comparing HAMA with ETAP for Port Harcourt	69
		grid design	
CHAPTER (6 CONC	LUSION	72
	6.1	Conclusion	72
	6.2	Recommendation for future work	74
	REFER	ENCES	75
	APPEN	DIX A	78
	APPEN	DIX B	79
	APPEN	DIX C	80
	APPEN	DIX D	81
	APPEN	DIXE	A 82
	APPEN	DIX D DIX E DIX F DIX G KAAN TUNKU TUN	83
	$D \sqcup D$		84
PEK	APPEN	DIX H1	85
	APPEN	DIX H2	86
	APPEN	DIX I	87
	APPEN	DIX J	88
	APPEN	DIX K1	89
	APPEN	DIX K2	90
	APPEN	DIX K3	91
	APPEN	DIX K4	92
	APPEN	DIX K5	93
	APPEN	DIX K6	94
	APPEN	DIX K7	95
	APPEN	DIX K8	96
	APPEN	DIX K9	97
	APPEN	DIX L	98

х

LIST OF TABLES

2.1	Likely intensities of body currents when lasting for more	12
	than a heartbeat	
2.2	Time/current curves showing the effects of alternating	13
	current on humans (zones summary)	
5.1	Wenner four-pin test results	64
5.2	Data considered for Bir Terfas grid design	64
5.3	Tolerable and actual voltages in the track	68
5.4	Comparative results between CYMGRD and HAMA for Bir	69
	Terfas substation	MINAH
5.5	Data considered for Port Harcourt grid design	70
5.6	Comparative results between ETAP and HAMA for Port	71
PER	Harcourt substation	

LIST OF FIGURES

2.1	Time/current curves showing the effects of alternating	13
	current on humans	
2.2	Resistances of different body parts	16
2.3	Touch voltage current path	18
2.4	Touch voltage equivalent circuit	18
2.5	Step voltage current path	19
2.6	Step voltage equivalent circuit	19
2.7	Current reflection due to surface material layer	21
2.8	Derating factor as function of reflection factor and gravel	22INA
	layer thickness TUNKU TUNK	
3.1	The flowchart of the project	26
3.2 R	The block diagram of the project process	27
3.3	Ground electrode	29
3.4	Grounding grid	29
3.5	Ground mat	30
3.6	CADWELD Ground Rod Connections	34
3.7	Soil model	35
3.8	Effects of moisture, temperature, and salt upon soil	36
	resistivity	
3.9	Wenner four-pin method	38
3.10	Potential gradients evaluation procedure	49
4.1	HAMA home page	53
4.2	Example of a learning topic page	54
4.3	A calculation operations page	58
4.4	The design evaluation page	62
5.1	2-D Bir Terfas designed grid	65
5.2	3-D Bir Terfas designed grid	66

١

5.3	Distribution touch voltage across the grid	66
5.4	Gradient in the colors of the safety levels	67
5.5	Touch, step and surface voltages in a track across the grid	67
5.6	ETAP ground grid software output	70

LIST OF SYMBOLS AND ABBREVIATIONS

xiv

	2-D	-	Two-Dimensional
	3-D	-	Three-Dimensional
	А	-	Ampere
	А	-	Area Occupied By The Ground Grid
	AC	-	Alternating Current
	API	-	Application Programming Interface
	ASP	-	Active Server Page (Microsoft script engine)
_	AWG	-	American Wire Gauge
	A _{mm²}	-	American Wire Gauge Conductor Cross Section Metallic Disc Radius
	b	-	Metallic Disc Radius
	BS	-	British Standard
	C PE	RP	Prefix Means Centi
	C#	-	C Sharp Programming Language
	C++	-	C Programming Language
	Cs	-	Surface Layer Derating Factor
	D	-	Spacing Between Parallel Conductors
	d	-	Diameter Of Grid Conductor
	D_{f}	-	Decrement Factor
	D_m	-	Maximum Distance Between Any Two Points On The Grid
	Е	-	Phase-To-Neutral Voltage
	EDSA	-	Electrical Distribution System Analysis
	ETAP	-	Electrical Transient and Analysis Program
	E_m	-	Actual Mesh Voltage
	Es	-	Actual Step Voltage
	Estep	-	Tolerable Step Voltage
	Etouch	-	Tolerable Touch Voltage
	ft	-	Feet

	g	-	Gram
	GPR	-	Ground Potential Rise
	h	-	Depth of The Grid
	HAMA	-	Hussein Ahmad Mohammed Aldebry
	HTML	-	Hypertext Markup Language
	Hz	-	Hertz
	hs	-	Thickness of The Surface Material
	Ι	-	Symmetrical RMS Conductor Current
	IEC	-	International Electrotechnical Commission
	IEEE	-	Institute of Electrical and Electronics Engineers
	in	-	Inch
	IS	-	Indian Standard
	Io	-	Zero-Sequence Fault Current
	IB	-	Body Current
	I_{F}	-	Asymmetrical Fault Current
	I_{f}	-	Symmetrical RMS Ground Fault Current
	IG	-	Maximum Grid Asymmetrical Current
	Ig	-	Maximum Grid Asymmetrical Current Symmetrical RMS Grid Current
	J	-	Joule
	К	- 0	Reflection Factor Between Different Material Resistivities
/	k PE	RP	Prefix Means Kilo
	kcmil	-	Kilo-Circular Mils
	\mathbf{K}_0	-	Material Constant Reciprocal of α_0
	K_{f}	-	Conductor Material Constant
	K_h	-	Corrective Weighting Factor Emphasizing The Grid Depth Effects
	Ki	-	Irregularity Factor
	K _{ii}	-	Corrective Weighting Factor That Adjusts Effects Of Inner Conductors
			On The Corner Mesh
	K _m	-	Geometrical Factor
	Ks	-	Geometrical Factor
	L _C	-	Total Length of The Conductor In The Horizontal Grid
	L _M	-	Conductor Buried Length
	L _P	-	Peripheral Length of The Grid
	L _R	-	Total Length of All Ground Rods
	Lr	-	Length of Each Ground Rod

xv

	Ls	-	Conductor Buried Length
	L _T	-	Total Buried Length of Conductors
	L _x	-	Maximum Length of The Grid In The X Direction
	Ly	-	Maximum Length of The Grid In The Y Direction
	Μ	-	Prefix Means Mega
	m	-	Prefix Means Milli
	m	-	Meter
	MCM	-	Million Cubic Metre
	MVC	-	Model-View-Controller
	OWL	-	Web Ontology Language
	R	-	Resistance
	R_0	-	Zero Sequence Equivalent System Resistance
	\mathbf{R}_1	-	Positive Sequence Equivalent System Resistance
	\mathbf{R}_2	-	Negative Sequence Equivalent System Resistance
	R _B	-	Body Resistance
	R_{f}	-	Ground Resistance of One Foot
	R _g	-	Substation Ground Resistance
	R _{m(2nhs)}	-	Mutual Ground Resistance Between The Two Similar, Parallel Plates,
			Separated By A Distance (2nhs), In An Infinite Medium Of Resistivity
	S	-	Second AKAAN
/	SB PE	RY	Empirical Constant Related To The Electric Shock Energy Tolerated
	$\mathbf{S}_{\mathbf{f}}$	-	Fault Current Division Factor
	TCAP	-	Thermal Capacity Per Unit Volume
	Ta	-	Ambient Temperature
	t _c	-	Duration of Conductor Current
	T_m	-	Maximum Allowable Temperature
	Tr	-	Reference Temperature for Material Constants
	ts	-	Duration of The Current Exposure
	V	-	Volt
	W	-	Watt
	XML	-	Extensible Markup Language
	X_0	-	Zero Sequence Equivalent System Reactance
	X_1	-	Positive Sequence Equivalent System Reactance
	X_2	-	Negative Sequence Equivalent System Reactance
	X/R	-	Ratio of Reactance To Resistance

Z_{Th}	-	Thevenin Equivalent Impedance
α_0	-	Thermal Coefficient of Resistivity At 0 °C
α_r	-	Thermal Coefficient of Resistivity At Reference Temperature $T_{\rm r}$
μ	-	Prefix Means Micro
π	-	Pi
ρ	-	Soil Resistivity
$ ho_r$	-	Resistivity of The Ground Conductor At Reference Temperature $T_{\rm r}$
ρ_s	-	Surface Material Resistivity
Ω	-	Ohm
°C	-	Degree Celsius

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Potential gradient	78
В	Conductor material constants	79
С	Conductor material Kf constant	80
D	Typical surface material resistivities	81
Е	Typical grid resistances	82
F	Relationship between actual values of fault current	83 JAH
	and values of IF, If, and Df for fault duration tf	AMINA
G	Typical values of Df	84
H1	Faults within local substation	85
H2	Substation fault locations	86
Ι	Design procedure flowchart	87
J	Sitemap of HAMA web application	88
K1	Flowchart of tolerable body current limit calculation	89
	operation	
K2	Flowchart of tolerable touch voltage calculation	90
	operation	
K3	Flowchart of tolerable step voltage calculation	91
	operation	
K4	Flowchart of conductor sizing calculation operation	92
K5	Flowchart of soil resistivity calculation operation	93
K6	Flowchart of ground resistance calculation operation	94
K7	Flowchart of maximum grid current calculation	95
	operation	
K8	Flowchart of mesh voltage calculation operation	96

K9	Flowchart of step voltage calculation operation	97
L	Example of printed output for designed evaluation	98

CHAPTER 1

INTRODUCTION

1.1 Background

Grounding of high voltage substations is a very important subject in electric power technology since it is decisive when it comes to touch and step voltages that will arise within a substation area during an earth fault. High voltage substation grounding has previously been an experienced based field of work, thus it is of interest to acquire a more theoretical approach to dimensioning of high voltage substation grounding. This to ensure that safety issues are taken care of without constructing an over dimensioned, and more expensive than necessary, system [2].

In modern high voltage indoor or outdoor substation, grounding installations mainly consists of a network of a metallic conductors arranged as a grid buried underneath the surface of the substation. This grid sometimes consists of grounding rods connected to the grid which are driven into the earth mass. It is important that the substation ground has low resistance path to ground, to obtain a discharge path for short current and lightning strokes and safety features for personnel and equipment [3].

The grounding system in a substation is very important for a few reasons, all of which are related to either the protection of people and equipment and the optimal operation of the electrical system. The purpose of a grounding system at a substation can be explained as follow:

i. The grounding system provides a low resistance return path for earth faults within the substation, which protects both personnel and equipment.

- ii. For earth faults with return paths to offsite generation sources, a low resistance grounding grid relative to remote earth prevents dangerous ground potential rises (touch and step potentials).
- The grounding system provides a low resistance path (relative to remote earth) for iii. voltage transients such as lightning and surges.
- iv. Equipotential bonding helps prevent electrostatic buildup and discharge, which can cause sparks with enough energy to ignite flammable atmospheres.
- The grounding system provides a reference potential for electronic circuits and v. helps reduce electrical noise for electronic, instrumentation and communication systems [4].

The substation grounding system is connected to every individual equipment, structure and installation in the substation so that it can provide the means by which grounding currents are conducted to remote areas. The aim of the grounding design is to ensure the lowest possible and most economical resistance to earth mass for the expected fault currents flowing to earth, and to ensure that the potential difference induced by these fault currents into the grounding grid is kept within the safety margins specified by a 1.2 Problem statement AKAAN TUNKU TUN AMINAH PERPUS

People often assume that any grounded object can be safely touched. A low substation ground resistance is not, in itself, a guarantee of safety. There is no simple relation between the station ground resistance and the maximum shock current a person might be exposed to.

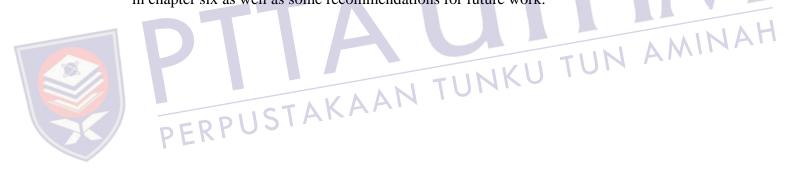
There are many calculation software available in the market at present which are mainly calculation tools that can design a safe grounding system; namely, ETAP, EDSA, CYMGRD and SKM as the most popular and most used grounding system software. However, and by examination these software, there is no one of them that combines the theoretical aspect of grounding together with the calculation method as one educational package. In addition, all of these applications are desktop applications that require the software to be installed in the computer to be used and not available online.

1.3 Objectives

The goals of this project on substation grounding are as follow:

- i. To develop web application based on IEEE Std. 80-2000 that will serve as both an educational website for the study of substation grounding principles and professional training and also as a calculation tool to help with the design and evaluation process.
- ii. To ensure that the developed site can be easily understood as an educational package and be able to use by the new users who are unfamiliar with the website (user-friendly.)
- iii. To make the users able of study the grounding requirements and practice on examples of grounding systems for some real substations that are provided within the website.

Scope 1.4



UNKU TUN AMINAH The project is executed in accordance to the followings:

- i. P The standard IEEE Std. 80-2000, which this thesis is based on, is concerned with ac substations, either conventional or gas-insulated. Therefore, grounding problems peculiar to dc substations are not covered in this thesis.
- ii. The web application will be developed using Microsoft Visual Studio for using under Windows operating systems.
- iii. The site provides a learning module which contains all the theory and principles of substation grounding that help engineers to understand the concept of grounding systems. This learning module is supported with tutorial videos about substation grounding topics, for the purposes of educate junior engineers in grounding system.
- The site contains actual ac substation grounding system designs as examples for iv. professional training purposes.

1.5 Project outline

This suction outlines the structure of the thesis and summarizes each of the chapters. The first chapter of introduction explains the problem statements, goals, scope of study, and the structure of this master project. Next is chapter two which is the chapter of literature survey. This second chapter discusses about published works by accredited scholars and researchers that associate with this project. Grounding concept and safety aspects are reviewed in this chapter. Meanwhile, the research methodology is described in chapter three. This chapter explains clearly the grounding system designing considerations and evaluating techniques. Moving to the fourth chapter which shows the details on the web application for grounding study that covers the learning theory, calculations module and the design evaluation. Chapter five is comparing the results of the designed web application with the results of other grounding designing software for some substations. Finally, a conclusion for the whole project based on the finding of the results is conducted in chapter six as well as some recommendations for future work.

CHAPTER 2

GROUNDING CONCEPT AND SAFETY ASPECTS REVIEW

2.1 Introduction

The concept of grounding systems revolves mainly on the safety of people in the vicinity of the grounded facility. The safety criteria are based on potential gradients that can exist in the area during a fault and the ability of the human body as a current path shunting those potentials to withstand the current duration and frequency.

2.2 Grounding standards

The basis of this entire thesis is on the IEEE guide for safety in ac substation grounding IEEE Std. 80-2000. However, there are other standards that are used to design safe grounding system. This section highlights some of these standards.

2.2.1 IEEE Std. 80-1986

This standard [5] is the third edition of this guide since its first issue in 1961. Major modifications involve the redefinition of simplified equations for calculating touch and

step voltages, changes in safety criteria, and expansion of examples illustrating the use of this guide. Other changes and additions concern a section on gas-insulated substations, introduction of a derating factor for crushed stone surfacing, the effects of ground rods, equations for calculation of grid resistance, current division among available ground paths, sizing of conductors of various materials, and discussion of multilayer soil models.

2.2.2 IEEE Std. 80-2000

IEEE Std. 80-2000 is the fourth edition of this guide since its first issue in 1961. It has major modifications include the further extension of the equations for calculating touch and step voltages to include L-shaped and T-shaped grids [1]. This guide is primarily concerned with outdoor ac substations, either conventional or gas-insulated. Distribution, transmission, and generating plant substations are included. With proper caution, the methods described herein are also applicable to indoor portions of such substations, or to AMINAH substations that are wholly indoors.

i.

- The specific purposes of this standard are to:
- Establish, as a basis for design, the safe limits of potential differences that can exist in a substation under fault conditions between points that can be contacted by the human body.
- ii. Review substation grounding practices with special reference to safety, and develop criteria for a safe design.
- iii. Provide a procedure for the design of practical grounding systems, based on these criteria.
- iv. Develop analytical methods as an aid in the understanding and solution of typical gradient problems.

2.2.3 BS 7430

This British Standard [6] provides recommendations and guidance on meeting the requirements for earthing land-based electrical installations in and around buildings. It does not apply to:

Ships, aircraft or offshore installations. i.

REFERENCES

- Institute of Electrical and Electronics Engineers (2000). *IEEE Guide for Safety in* AC Substation Grounding. New York, NY: IEEE Std. 80.
- 2. Morstad, A. (2012). *Grounding of Outdoor High Voltage Substation*. Norway: Norwegian University of Science and Technology.
- Mondal, M., Jarial, R. K., Ram, S. & Singh, G. (2013). Design and Analysis of Substation Grounding Grid with and without Considering Seasonal Factors using EDSA Software. India: National institute of technology.
- Shah, S. G. & Bhasme, N. R. (2014). Design of Earthing System for HV/EHV AC Substation. India: Government College of Engineering.
- 5. Institute of Electrical and Electronics Engineers (1986). *IEEE Guide for Safety in AC Substation Grounding*. New York, NY: IEEE Std. 80.
- 6. British Standards Institution (2011). Code of Practice for Protective Earthing of Electrical Installations. London, UK: BS 7430.
- 7. International Electrotechnical Commission (1998). *Earthing and Protection Against Electric Shock*. Switzerland: IEC 60050-195.
- Bureau of Indian Standards (1987). Code of Practice for Earthing (First Revision). New Delhi, India: IS 3043.
- High Voltage Research Institute Electric Power Research Institute of Electric Power Industry Ministry (1997). *Grounding for AC Electrical Installations*. China: DL/T 621.
- 10. CYME International T&D (2016). *Substation Grounding Grid CYMGRD*. From http://www.cooperindustries.com
- 11. ETAP / Operation Technology, Inc (2016). *Ground Grid Systems*. From https://etap.com
- Grange, F., Gourdan, P., Blasquez, P., Leschi, D. & Dawalibi, F.P. (2014). A New Methodology of Cranes Modeling for ITER Grounding Safety Assessment. Sweden: 2014 International Symposium on Electromagnetic Compatibility.

- Zhang, W. & Li, Y. (2015). Research On Grounding Grid Safety Assessment Based On the Field-Circuit Model. China: International Conference on Information and Automation.
- Agrawal, K. C. (2001). Industrial Power Engineering and Applications Handbook. India: Newnes.
- Ouazani, A., Khellassi, I. & Habi, I. (2012). *The Effect of Electric Current on the Human Body*. Dubai, UAE: International Conference on Systems, Signal Processing and Electronics Engineering (ICSSEE 2012).
- 16. Salvatierra, B.G., Dominguez, D.H. & Morales, J.A. (2015). Analysis of Electric Shock Human Safety to Residential, Industrial and Medium Voltage Levels. Mexico: 2015 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC).
- International Electrotechnical Commission (2005). Effects of Current On Human Beings and Livestock. 4th ed. Switzerland: IEC/TS 60479-1.
- 18. American National Standard Institute (1993). Safe Current Limits for Electromedical Apparatus. Washington, D.C., USA: ANSI/AAMI ES1.
- 19. Bridges, J.E., Ford, G.L. & Sherman, I.A. (2015). Electrical Shock Safety Criteria: Proceedings of the First International Symposium on Electrical Shock Safety Criteria. USA: Elsevier.
- 20. He, J., Zeng, R. & Zhang, B. (2013). *Methodology and Technology for Power System Grounding*. China: Tsinghua University.
- 21. National Institute for Occupational Safety and Health (2008). *Worker Deaths by Electrocution*. Ohio, USA: NIOSH.
- Wiater, J. (2003). Distribution of The Step and Touch Voltages at The Typical HV/MV Substations During Lightning. Poland: XIII International Conference on EMD.
- 23. Nylund, S. (2017). Step and Touch Potential Awareness: Improving Transmission Line Crew Safety. From http://www.utilityproducts.com
- 24. E&S Grounding Solutions (2010). Ground Potential Rise Explained: Back Ground Information for High Voltage Transmission Towers. California, USA: E&S Grounding Solutions.
- 25. Prasad, D. & Sharma, H.C. (2011). Significance of Step and Touch Voltages. *International Journal of Soft Computing and Engineering (IJSCE) ISSN*, pp. 2231-2307.
- 26. Fluke Corporation. (2006). *Fluke: Earth Ground Resistance*. WA, USA: Instruction Booklet.

- 27. The Engineering Team at E&S Grounding Solutions. (2015). How Do You Get Safe Step and Touch Potentials When Using Waterproof Surface Materials? Retrieved on Nov 28, 2016, from http://www.esgroundingsolutions.com
- Switzer, S.K. (1999). Practical Guide to Electrical Grounding. 1st ed. Ohio, USA: ERICO.
- 29. Sen, P.K., Malmedal, K. & Nelson, J.P. (2002). *Steel Grounding Design Guide and Application Notes*. 2002 IEEE Rural Electric Power Conference.
- 30. ERICO International Corporation. (2007). *CADWELD Welded Electrical Connections*. Ohio, USA: Trade Brochure.
- 31. KYORITSU Electrical Instruments Works Ltd. (2009). *Earth Resistance & Resistivity Tester KEW 4106*. Tokyo, Japan: Leaflet.
- 32. Carpenter, Jr. R.B. & Lanzoni, J.A. (2007). *Designing for A Low Resistance Earth Interface (Grounding)*. USA: Lightning Eliminators & Consultants, Inc.
- 33. McDonald, J.D. (2012). *Electric Power Substations Engineering*. 3rd ed. Florida, US: CRC Press.
- 34. Prasad, D. & Sharma, H.C. (2012). Ground Potential Rise in High Voltage Substations. India: Uttarakhand Technical University.
- 35. Visual Studio: Developer Tools and Services. (2016). Visual Studio. Retrieved 24 October 2016, from https://www.visualstudio.com
- 36. Esposito, D. (2002). *Building web solutions with ASP. NET and ADO. NET.* Microsoft Press.
- 37. Esobinenwu, C.S., Akinwole, B.O.H. & Omeje, C.O. (2014). Earth Mat Design for 132/33Kv Substation in Rivers State Using ETAP. India: International Journal of Engineering Trends and Technology (IJETT).

