PERFORMANCE CHARACTERISTICS OF INVERTER DRIVEN SYNCHRONOUS MOTOR

MAHYUZIE BIN JENAL

A thesis submitted In fulfillment of the requirements for the award of the Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

MAY 2009

For my dearest wife Nazalina, My beloved sons M.Luqman Al-Hakim and M.Uwais Afiq,

ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah, the Most Beneficent and the Most Merciful, who has taught what I knew not. It is by the grace of the Almighty Allah that this project work has been completed successfully.

A deepest appreciation is dedicated to Prof Madya Dr Zainal Alam Bin Haron for his extraordinary patience and his enduring optimism. I really admire his knowledge, intelligence and patience. I do appreciate his dedicated guidance, suggestion, critical comments and warm support which have given me the opportunity to develop my research skills. I am blessed and honored to be his student.

Special thank and appreciation goes to all my lecturer friends especially Mr Suhaimi Saiman and Mr Md Zarafi Ahmad, technicians Mr Shamsudin Muslim and Mr Omar Salleh and others whose name could not be mentioned here one by one. Your encouragement, help and concern is greatly appreciated.

My warmest thanks go to my family for their ongoing encouragement and support.

Finally, I wish to thank everyone who has helped in one way or another towards the successful implementation of this project.

ABSTRACT

Three phase synchronous motor has a wide range of applications. Its constantspeed operation (even under load variation and voltage fluctuation) and high efficiency make it most suitable for constant-speed, continuous-running drives such as motorgenerator sets, air compressors, centrifugal pumps, blowers, crushers and many types of continuous-processing mills. However, this motor is not a self-started type. There are many methods implemented in order to bring up the motor's speed to the required limit. One of the approaches is by using variable-frequency supply starter that is used in this project work. Realizing the importance of motor performance information in practice, this project aimed to carry out the standard motor tests and observe the characteristics. Two main methods are applied in this particular system where one of them is by running up the synchronous motor conventionally. "Prime mover" is coupled to the motor and drives it to the desired speed before supplying electrical sources. The other method is by using variable-frequency (inverter) supply connected to the synchronous motor and run the motor accordingly. A number of experiments are set up either with and without the inverter to analyze and compare their performance characteristics. The results are reported and discussed in this work.

ABSTRAK

Motor segerak tiga fasa memiliki aplikasi penggunaan yang sangat meluas. Operasi kelajuan yang tetapnya (walau pun beroperasi dibawah nilai beban yang pelbagai dan ketidakstbilan voltan) dan kecekapan yang tinggi membuatkannya adalah yang paling sesuai bagi pemacu dari jenis kelajuan-tetap dan memerlukan operasi yang berterusan seperti set motor-penjana, pam empar, penjup, mesin penghancur dan lainlain kategori industri yang berkaitan. Walaubagaimanapun, motor ini bukanlah dari jenis yang boleh digerakkan dengan hanya memberikan bekalan elektrik. Terdapat banyak kaedah yang digunakan untuk menggerak motor daripada keadaan rehat kepada tahap kelajuan yang dikehendaki. Salah satu daripadanya adalah dengan menggunakan bekalan pemula pembolehubah frekuensi yang juga telah digunakan didalam kerja ini. Atas kesedaran akan kepentingan motor segerak, tesis ini bermatlamat untuk melaksanakan beberapa ujikaji dan pemerhatian keatas karektor prestasinya. Dua kaedah telah digunapakai didalam sistem ini diman salah satu daripadanya adalah memacu motor secara konvensional. "Penggerak utama' disambung kepada motor dan memacunya kepada kelajuan yang dikehendaki sebelum sumber elektrik dibekalkan. Satu lagi kaedah adalah dengan menyambungkan bekalan pembolehubah frekuensi (penyongsang) kepada motor segerak dan memacunya. Beberapa set ujikaji dijalankan sama ada menggunakan penyongsang atau tidak telah dijalankan untuk menganalisis dan membandingkan karektor prestasi motor tersebut. Hasilnya telah diapor dan dibincangkan didalam kerja ini.

TABLE OF CONTENTS

CHAPTER	CONTENTS	PAGE	
	THESIS STATUS CONFIRMATION		
	SUPERVISOR'S CONFIRMATION		
	TITLE	ii	
	TESTIMONY	iii	
	DEDICATION	iv	
	ACKNOWLEDGEMENT	v	
	ABSTRACT	vi	
	ABSTRAK	vii	
	TABLE OF CONTENTS	viii	
	LIST OF FIGURES	xiii	
	LIST OF TABLES	xvi	
	LIST OF SYMBOLS / ABBREVIATIONS xvii		
	LIST OF APPENDIXES	xix	

CHAPTER 1 INTRODUCTION 1.1 Starting of Synchronous Motor 1.2 Method of Starting Synchronous Motor 1.2.1 Pony Motor Starting 1.2.2 Starting as an Induction Motor 1.2.3 Inverter 1.3 Packground of the Study

1.3	Background of the Study	5
1.4	Problem statement	6
1.5	Aim of the study	7

viii

1

1

2

3

3

4

1.6	Objectives of the study	7
1.7	Project Scopes	7
1.8	Report Outline	8

CHAPTER II LITERATURE REVIEW

10

2.1	Synchronous Motor	10
2.2	Electromagnetic Power and Torque	14
2.3	Effect of Mechanical Load	17
2.4	Effect of Field Excitation	19
2.5	Experimental Determination of Circuit Parameters	22
2.6	Speed control of synchronous motor	25
	2.6.1 Frequency Control	26
	2.6.2 Self-Controlled Synchronous Motor	29
	2.6.3 Closed-Loop Control	32
2.7	Basic Theory of Inverters	33
	2.7.1 Voltage Source Inverter	33
	2.7.2 The Three-Phase Bridge VSI	34
	2.7.3 Current Source Inverter	35
	2.7.4 The Three-Phase Current Source Bridge	
	Inverter	35
2.8	Review of Important Research Works on	
	Inverter Driven Motor	36

CHAPTER III

METHODOLOGY

39

3.1Research flow393.2Toshiba VF-FSI Instructions Manual41

ix

	3.2.1	Toshiba VF-FS1 Inverter	
		Simplified Operation	41
	3.2.2	Local Mode and Remote Mode	42
	3.2.3	Start and Stop Operation	42
	3.2.4	Start and Stop using the Operation	
		Panel Keys (CNOD=1)	43
	3.2.5	RUN/STOP an External Signal to the	
		Terminal Board (CNOD = 0)	43
	3.2.6	General Frequency Setting	44
	3.2.7	Frequency setting using Operation Panel	
		(FNOD=3)	44
	3.2.8	Operation of the VF-FS1	45
	3.2.9	Acceleration/Deceleration Time Setting	46
	3.2.10	Automatic Acceleration/Deceleration	47
	3.2.11	Manual Setting of Acceleration/Deceleratio	n
		Time	48
3.3	Lucas 1	Nulle Dynamometer System Instructions	
	Manua	NI TUR	49
	3.3.1	General overview of Lucas Nulle	
		Dynamometer System	49
	3.3.2	Basic Operating Modes	51
		3.3.2.1 Torque Control	51
		3.3.2.2 Speed Control	53
		3.3.2.3 Inertia Wheel	54
		3.3.2.4 Step-Position	55
	3.3.3	Operation of the Servo-Brake System	56
3.4	Power	Quality Analyzer Instructions Manual	57
	3.4.1	Input Connections	57
	3.4.2	Quick Overview of Measuring Modes	59
	3.4.3	Setting up the Analyzer	60
	3.4.4	General Settings	63

x

	3.4.5	Display Information	65
		3.4.5.1 Phase Colors	66
		3.4.5.2 Screen Types	67
		3.4.5.3 Screen information common for	
		all screen types	68
	3.4.6	Inrush Current Measurement	69
		3.4.6.1 Inrush Trend Display	70
	3.4.7	Using memory	72
		3.4.7.1 Making a Screenshot	73
		3.4.7.2 Memory Operations	73
3.5	Physic	cal Connection of the Experimental Setup	75
3.6	Testin	g Implementation	76
	3.6.1	Torque Speed Characteristics Test	77
	3.6.2	Various Mechanical Loads	
		Characteristics Test	77
	3.6.3	Various Speed Electrical Load	
		Characteristics Test	79
	3.6.4	Inrush Current Observation Test	79

CHAPTER IV RESULTS AND DISCUSSIONS 80 Result of Torque Speed Characteristics Test 4.1 81 4.2 Result of Various Mechanical Load Characteristics Test 84 Result of Various Speeds Electrical Load 4.3 Characteristics Test 93 Result of Inrush Current Observation Test 99 4.4

CHAPTER V CONCLUSIONS 103 5.1 Conclusions 103

- 5.2 Recommendations 104
- REFERENCES

APPENDIXES

106

LIST OF FIGURES

FIGURE TITLE

2.1	Basic construction of cylindrical-rotor	
	synchronous motor type	11
2.2	Basic construction of salient-pole	
	synchronous motor type	12
2.3	Cross section of salient pole synchronous motor	13
2.4	Power distribution in synchronous motor	15
2.5	Motor phasor diagram	16
2.6	Steady-state torque-angle characteristic of	
	synchronous motor	17 UN
2.7	(a) Phasor diagram of a motor operating at a	
	leading power factor	
	(b) The effect of an increase in load on the	
	operation of a synchronous motor	18
2.8	(a) A synchronous motor operating at a lagging	
	power factor	
	(b) The effect of an increase in field current on	
	the operation of this motor	20
2.9	Synchronous motor V curves	21
2.10	(a) The phasor diagram of an <i>underexcited</i>	
	synchronous motor.	
	(b) The phasor diagram of an overexcited	
	synchronous motor.	22
2.11	(a) The full equivalent circuit of a three-phase	
	synchronous motor	

xiii

PAGE

	(b) The per-phase equivalent circuit	22
2.12	Connections for short-circuit and open-circuit test	24
2.13	Open-loop frequency control	26
2.14	Torque speed characteristics of synchronous motor	
	with VVVF control	28
2.15	Controller with reversible power flow	29
2.16	Self-controlled synchronous motor drive	
	(a) Open-loop control	
	(b) Closed-loop control	
	(c) Waveform of e_f and i_a for operation	
	similar to a dc motor	31
2.17	A Three-Phase Inverter	34
2.18	Circuit Diagram of Three-Phase CSI	36
3.1	Flowchart of research work	40
3.2	Process the setting mode	46
3.3	Set AU1 to 1 or 2	47
3.4	Manual setting at $AU1 = 0$	49
3.5	Layout of Digital Control Unit for	
	Servo-Brake system	50
3.6	Connection of Analyzer to 3-phase	
	distribution system	58
3.7 PEN	Vector diagram for correctly connected Analyzer	59
3.8	Welcome screen at power-on	61
3.9	Setup Menu	62
3.10	General Setting Menu	63
3.11	Overview of Screen Types	66
3.12	How to access the Inrush Trend screen	70
3.13	Inrush characteristics and relation with start menu	71
3.14	Function keys for inrush current observation	72
3.15	Frozen screen from memory	74
3.16	Memory function keys	74

xiv

3.17	Recalling and deleting Screenshots and Datasets	75
3.18	Recall and delete function keys	75
3.19	Connection of inverter driven synchronous motor	76
4.1	Graph of pull-out torque when various frequencies	
	applied to the synchronous motor	81
4.2	Line to line voltage when various frequencies	
	applied to the synchronous motor	82
4.3	Synchronous speed produced motor according	
	to the various input frequency	83
4.4	Comparison of PF performances between	
	conventional starting method and inverter driven	87
4.5	Input power comparison between conventional	
	and inverter driven	88
4.6	Block diagram of power flow	
	(conventional starting method)	89
4.7	Block diagram of power flow	
	(inverter driven method)	90
4.8	Comparison of motor efficiency between	
	conventional and inverter driven	91
4.9	Power Factor of Inverter	95
4.10	Flow power between synchronous to	
	output of load bank	97
4.11	Relationship between mechanical power	
	and output power	98
4.12	Inrush current at synchronous motor start up	
	using Servo drive	99
4.13	(a) 0-50Hz start up inrush current at acc. time = $5s$	
	(b) 0-50Hz start up inrush current at acc. time = $10s$	100
	(c) 0-50Hz start up inrush current at acc. time = 15s	101

LIST OF TABLES

TABLE

TITLE

PAGE

3.1	Step to Start and Stop the Inverter	42
3.2	Remote Mode Selection	43
3.3	FNOD Setting Procedure	44
3.4	Parameter Setting	48
3.5	Parameter Setting	48
3.6	Overview of Scope Mode	59
3.7	Overview of Measuring Mode	60
3.8	Setting Overview	61
4.1	Measured values of Torque-Speed	
	Characteristics Test	81
4.2	Result of Load Characteristics	
	(Conventional starting method)	83
4.3	Result of Load Characteristics (Inverter Driven)	85
4.4 PEN	Measured and calculated data of Inverter	93
4.5	Measured data of Synchronous Motor	94
4.6	Measured data of Load Bank	94
4.7	Measured and calculated data of motor power,	
	output power and mechanical power	96

xvi

LIST OF SYMBOLS/ ABBREVIATIONS

.

Symbols:

μ	-	$Micro (10^{\circ})$
Ω	-	Ohm
f	-	Frequency (Hz)
π	-	Pi (180)
φ	-	Flux
ω	-	Omega
φ	-	Phase displacement
δ	-	Torque angle
η	-	Efficiency
S	-	Slip
S	-	Apparent Power
Ra	-	Armature Resistor
Т	-	Torque
n	DIJSTP	Speed
m	DERE	mili (10 ⁻³)
Μ	-	Mega (10 ⁶)
Ι	-	Current
Xs	-	Synchronous Reactance
р	-	Pole
Р	-	Power
Α	-	Ampere
Е	-	Generated Voltage
V	-	Voltage
t	-	Time
Ζ	-	Impedance

Abbreviations:

AC (a.c)	-	Alternating Current
DC (d.c)	-	Direct Current
e.m.f	-	Electric Magnetic Force
m.m.f	-	Magnetomotive force
LN	-	Lucas Nulle
KV	-	Kilo-Volt
IEEE	-	Electrical and Electronic Engineer
FKEE	-	Fakulti Kejuruteraan Elektrik & Elektronik
UTHM	-	Universiti Tun Hussein Onn Malaysia
VSI -		Voltage Source Inverter
CSI	-	Current Source Inverter
VVVVF	-	Variable Voltage Variable Frequency
BJT		Bipolar Junction Transistor
TTL	PUDI	Transistor-transistor Logic
MOS	-	Metal Oxide Semiconductor
CMOS	-	Complementary Metal Oxide Semiconductor
SCR	-	Silicon Controlled Rectifier
IGBT	-	Insulated Gate Bipolar Transistor
PWM	-	Pulse Width Modulation
THD	-	Total Harmonic Distortion
sync	-	Synchronous
ACC	-	Acceleration
DEC	-	Deceleration

xviii

LIST OF APPENDIXES

APPENDIX	ITEM	PAGE
A	SPECIFICATION, DATA FOR TOSHIBA INVERTER	109
В	SPECIFICATION, DATA FOR LN SERVO	
	DRIVE-BRAKE SYSTEM	116
C	SPECIFICATION, DATA FOR LN SYNCHRONOUS MOTOR	124
D	PARAMETER SETTING OF INVERTER	126
Е	PROCEDURES AND SCHEMATIC DIAGRAM OF	
	TORDUE-SPEED CHARACTERISTICS TEST	130
FPER	PROCEDURES AND SCHEMATIC DIAGRAM OF	
	VARIOUS MECHANICAL LOAD CHARACTERISTICS TEST	133
G	PROCEDURES AND SCHEMATIC DIAGRAM OF VARIOUS	
	SPEED ELECTRICAL LOAD CHARACTERISTICS TEST	138
Н	PROCEDURES AND SCHEMATIC DIAGRAM OF	
	INRUSH CURRENT OBSERVATION TEST	142

xix

CHAPTER II

LITERATURE REVIEW

This chapter will review past literature and discuss about operating characteristics of synchronous motor. The elements of speed control will be briefly discussed as well as the application for three phase synchronous motor. Finally, all the reviewed literature will be summarized.

2.1 Synchronous Motor

Synchronous means to occur at regular or fixed intervals. An AC Synchronous Motor is an electrical motor that rotates at a fixed speed, regardless of any increase or decrease in load. The motor will keep its fixes speed regardless of the torque required up until it reaches its stall torque rating. If the load becomes greater than the motor's stall torque, the AC Synchronous Motor will not slow down until it reaches a point at which it will stall and stop turning. The AC Synchronous motor is an effective way to obtain a fixed speed at a very low motor system cost [10]. No expensive driver or amplifier is necessary. Most synchronous motors are used where precise timing and constant speed are required.

AC Synchronous Motors range in size from sub-fractional horsepower to over 10,000 horsepower. Smaller synchronous motors can be found in household devices such as clocks, timers, fans and cassette players, and as stepper motors in computer disk drives and printers. Larger synchronous motors are used in process industries and drive equipment such as compressors. Large synchronous motors most commonly employ a three-phase system. The smaller AC Synchronous Motor is the focus of this study.

Basically, according to the shape of the field, synchronous motor may be classified as cylindrical-rotor (non-salient pole) motor (Figure 2.1) and salient-pole machines (Figure 2.2).

Figure 2.1: Basic construction of cylindrical-rotor synchronous motor type

Figure 2.2: Basic construction of salient-pole synchronous motor type

The cylindrical-rotor construction is used in generators that operate at high speeds, such as steam-turbine generators (usually two-pole machines). This type of machine usually has a small diameter-to-length ratio, in order to avoid excessive mechanical stress on the rotor due to the large centrifugal forces.

The salient-pole construction is used in low-speed alternating current (AC) generators (such as hydro-turbine generators), and also in synchronous motors. This type of machine usually has a large number of poles for low-speed operation, and a large diameter-to-length ratio. The field coils are wound on the bodies of projecting poles. A damper winding (which is a partial squirrel-cage winding) is usually fitted in slots at the pole surface for synchronous motor starting and for improving the stability of the machine.

The most attractive and widely applied method of starting a synchronous motor is to utilize squirrel cage windings in the pole faces of the synchronous motor rotor. The presence of these windings allows for a reaction (or acceleration) torque to be developed in the rotor as the AC excited stator windings induce current into the squirrel cage windings. Thus, the synchronous motor starts as an induction motor. These rotor windings are frequently referred to as damper or amortisseur windings. The other major function of these windings is to dampen power angle oscillations after the motor has synchronized. Unlike induction motors, no continuous squirrel cage torque is developed at normal running speeds.

Figure 2.3: Cross section of salient pole synchronous motor

When the motor accelerates to near synchronizing speed (about 95% synchronous speed), DC current is introduced into the rotor field windings. This current creates constant polarity poles in the rotor, causing the motor to operate at synchronous speed as the rotor poles "lock" onto the rotating AC stator poles. Torque at synchronous speed is derived from the magnetic field produced by the DC field coils on the rotor linking the rotating field produced by the AC currents in the armature windings on the stator. Magnetic polarization of the rotor iron is due to the rotor's physical shape and arrangement and the constant potential DC in coils looped around the circumference of the rotor.

Synchronous motors possess two general categories of torque characteristics. One characteristic is determined by the squirrel-cage design, which produces a torque in relation to "slip" (some speed other than synchronous speed). The other characteristic is determined by the flux in the salient field poles on the rotor as it runs at synchronous speed. The first characteristic is referred to as *starting torque*, while the second characteristic is usually referred to as *synchronous torque*. In starting mode, the synchronous motor salient poles are not excited by their external DC source. Attempting to start the motor with DC applied to the field does not allow the motor to accelerate. In addition, there is a very large oscillating torque component at slip frequency, produced by field excitation, which could result in motor damage if full field current is applied during the entire starting sequence. Therefore, application of DC to the field is usually delayed until the motor reaches a speed where it can be pulled into synchronism without slip.

At synchronous speed, the ferro-magnetic rotor poles become magnetized, resulting in a small torque (reluctance torque) which enables the motor to run at very light loads in synchronism without external excitation. Reluctance torque can also pull the motor into step if it is lightly loaded and coupled to low inertia. It is convenient to make an analogy of a synchronous motor to a current transformer for the purpose of demonstrating angular relationship of field current and flux with rotor position.

2.2 Electromagnetic Power and Torque

Let us presume that a synchronous motor is to drive a mechanical load, in steady state, the mechanical torque of the motor should balance the load torque and the mechanical loss torque due to friction and windage, that is

$$T = T_{load} + T_{loss} \tag{2.1}$$

Multiplying the synchronous speed to both sides of the torque equation, we have the power balance equation as

$$P_{em} = P_{load} + P_{loss} \tag{2.2}$$

where $Pem = \tau \omega_{syn}$ the electromagnetic power of the motor, $P_{load} = \tau_{load} \omega_{syn}$ is the mechanical power delivered to the mechanical load, and $Ploss = \tau_{loss} \omega_{syn}$ the mechanical power loss of the system. The electromagnetic power is the amount of power being converted from the electrical into the mechanical power. That is

$$Pe_m = 3E_a I_a \cos \varphi_{E_{a}} = \tau \omega_{svn}$$

where $\varphi_{E_{a}I_{a}}$ is the angle between phasors E_{a} and I_{a} .

Figure 2.4: Power distribution in synchronous motor

When the stator winding resistance is ignored, the per phase circuit equation can be approximately written as

(2.3)

$$V_a = E_a + jX_s I_a \tag{2.4}$$

The corresponding phasor diagram is shown Figure 2.5. From the phasor diagram, we can readily obtain

$$V_a \sin \delta = X_s I_a \cos \varphi_{E_a I_a} \tag{2.5}$$

Where $\varphi_{E_{a_{I_a}}} = \varphi - \delta$

Therefore,

$$P_{em} = \frac{3E_a V_a}{X} \sin \delta$$

and

$$T = \frac{P_{em}}{\omega_{syn}} = \frac{3E_a V_a}{\omega_{syn} X_s} \sin \delta$$
(2.7)

where δ is the load angle. When the stator winding resistance is ignored, δ can also be regarded as the angle between the rotor and stator rotating magnetic fields.

Figure 2.5: Motor phasor diagram

(2.6)

REFERENCES

- Chapman S. J. "Electric Machinery and Power System Fundamentals." Mc Graw [1] AMINAT IS" Hill Edition, 2002.
- [2] Gross. C. A. "Electric Machines." CRC Press, 2006.
- Bartelt. T.L.M, "Industrial Control Electronic: Devices, System & Applications". [3] 3rd Edition. Thomson Delmar Learning, 2006.
- A.E Fitzgerald, C.Kinsley Jr. and S.D. Umans, "Electric Machinery", 6th Edition. [4] Mc Grawhill, 2003
- P.C.Sen, "Principle of Electric Machines and Power Electronics". Second [5] Edition, John Wiley & Sons, Inc., 1997
- M. H Rashid, "Power electronic-circuit, devices and applications." 2nd Edition. [6] Prentice Hall International Edition, 2004.
- Jafar Soltani, "Dynamical Performance of a New Type of Three Phase [7] Synchronous Motor Drive Supplied by Square-Wave Inverters:" IEEE transaction, 1999.

- [8] R.Chibani, E.M Berkoukand and G.Manesse, "PWM current rectifier-Five NPC level inverter cascade. Application to the P.M synchronous machine." IEEE transaction, 1999.
- [9] M.Nasir Uddin, T.S. Radwanand and M.A. Rahman, "Performance Analysis of a Four Switch 3-Phase Inverter Fed IM Drives." IEEE transactation (2004).
- [10] Moorthi V.R. "Power Electronics, Devices, Circuits, and Industrial Applications," Oxford University,2005
- [11] John F. Roesel, Jr."Improved Power Quality With Written-Pole TM Motor-Generators and Written-Pole TM Motors,." IEEE transaction (1996).
- [12] M.C. Robbie, and T. Mike, "Starting High Inertia Load," *IEEE Materials*, pp 257-265. 1997
- [13] Vithayanthil J."Power Electronics, Principles and Applications," McGraw-Hill, 1995
- [14] D.P Kothari, I.J Nagrath, "Electric Machines", Third Edition, Tata McGraw-Hill,2004.
- [15] Charles I.Hubert, "Electric Machines: Theory, Operation, Applications, Adjustment and Control", Second Edition, Prentice Hall,2002.
- [16] Bhag S.Guru, Huseyin R.Hiziroglu,"Electric Machinery And Transformer", Third Edition, Oxford University Press, 2001.
- [17] Instruction Manual, by TOSVERT VF-FSI, for Industrial Inverter E6581471 and E6581381

- [18] Instruction Manual, by PCM001Z, for Inverter Maintenance Communication Application. E6581110
- [19] "Three Phase Asynchronous Motors, Exercise Description" 3rd.Edition, Lucas Nulle, 1998.
- [20] User Manual, Fluke 434/435 Three Phase Power Quality Analyzer, Rev.3, December 2008.