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AN INVESTIGATION OF PHYSICAL PROCESSES 

IN NANOSPHERE LITHOGRAPHY 

By M.A. Agam 

ABSTRACT 

Various physical processes have been investigated in order to improve the 

Nanosphere Lithography (NSL) technique by modifying the nanosphere structures. 

Polysytrene CPS) nanospheres used in NSL can be modified in three schemes: 

Electron beam, heat and chemical manipulation techniques. The most successful 

scheme to modify nanosphere structures is by the electron beam manipulation 

technique. Using electron beam irradiation, both the size and shape of the nanospheres 

can be modified in a controlled manner. An ordered array of spheres can be modified 

by electron beam irradiation to create a pattern otherwise not available through self

assembly alone. Mechanisms of polymer degradation induced by energetic electrons 

are discussed. 

Heat and chemical manipulation techniques have created freestanding 

transportable nanospheres thin films (FTNFs) that can be further processed with 

reactive ion etching (RIE) to create a freestanding transportable lithography mask. A 

unique honeycomb structure has been created when PS nanospheres were treated with 

organic solvents. The formation of the honeycomb structure depends on the 

concentration of the organic solvents and the nanosphere dissolution rate when in 

contact with organic solvents. 
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Chayter 1 

This chapter begins by discussing the background of sclf

assembly in nature. Mimicking nature's ability in fabricating 

nanomaterials has been one of scicntists' ambitions. 

Discussions on nanofabricating tcchniqucs started with 

photolithography, continued with other nanolithography 

techniques, and finally followcd by Nanosphcrc Lithography. 
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Chapter 1: Introduction 

One of the greatest researches of this century is the research of the origin of 

life, which was estimated to start some 4.8 billion years ago. Life was said to begin 

from a simple cell, which later evolved into complex, multi-organ organisms. The 

complexity of nature was said to arise from self-organisation or self-assembly. [1.2J 

Autonomous organization of components into patterns or structures without 

human intervention is defined as self-assembly. [3J The components could be a group 

of molecules or segments of a macromolecule that interact with each other. These 

molecules or molecular segments may be the same or different. Their interaction leads 

to some less ordered state (a solution, disordered aggregate, or random coil) to a final 

state (a crystal or folded macro molecule) that is more ordered. 

Self-assembly occurs when molecules interact with one another through a 

balance of attractive and repulsive interactions. Examples of the interactions are 

hydrogen bonds, ionic bonds (electrostatic interaction), hydrophobic interaction, van 

der Waals interactions, and water-mediated hydrogen bonds. [4J The simplest form of 

hydrogen bond is in the water molecule, where a proton (H+ ion) gets between two 

atoms, oxygen and another hydrogen atom, polarizing and attracting them by means of 

the induced dipoles. Hydrogen bond plays an important role in protein assembly, such 

as in the double helix of chromosome. [5J Thymine was linked to adenine molecule in 

the chromosome by hydrogen bonds that were created by different polarized charges 

in the adenine and thymine molecules. Hydrogen bond, as the name implies, uses the 

hydrogen atom to interact with electronegative elements, sllch as oxygen, nitrogen or 

fluorine. [6J The hydrogen bond energy is usually less than 0.5 eV. An Ionic bond is an 

interaction between oppositely charged atoms while Van der Waals bond is an 
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Chapter I: Introduction 

interaction between the electric dipole moments of atoms or molecules and has 

binding energy of O. leV or less compared to a stronger ionic bond which can reach to 

5 eV in energy. 

Although the bonds mentioned above are relatively insignificant in isolation, 

when combined together as a whole, they govern the structural confirmation of all 

biological macromolecules and influence their interactions with other molecules. 17J 

Therefore, the autonomous organization of components will depend on information 

coded in molecular structures, such as, in the form of shapes, surface properties, 

charges, magnetic dipoles or masses. 13J 

Self-assembly in nature's living organisms, is a process of automated assembly 

of materials at nanoscale precision, in which small particles, like atoms, molecules and 

atomic clusters are regularly added or removed to construct functional systems or 

structures. 181 One example is haemoglobin protein, which absorbs and releases oxygen 

and carbon dioxide in our blood circulation system. These precise absorptions and 

releases of oxygen and carbon dioxide in our blood circulation system are examples of 

nature's nano-assembling and nanofabrication abilities. 

The living organisms' method of nano-assembling and nanofabrication of 

materials is called the "bottom up" manufacturing method. Living organisms depend 

much on self-organization in various stages of their lives. They are built "bottom up" 

by cells, which are also built by the "bottom up" method by smaller units, such as 

DNA (Deoxyribonucleic acid) and RNA (Ribonucleic acid). DNA and RNA are other 

examples of nanofabrication machine units, where RNA reads the DNA and translates 

the code into protein, which is the basic compound of life. 

3 
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Chapter I: Introduction 

Living organisms prefer small building blocks (atoms, proteins, RNA, DNA, 

organic materials, etc) and mostly soft, low-Young's modulus materials (muscles, 

skin, etc), at atmospheric condition and room temperature. Nature (living organisms), 

through eons of time has developed manufacturing methods, materials, structures and 

intelligence, which is far more complex, better and advanced from human 

technological capabilities. 18J 

Human, on the other hand, have been mostly using the "top-down" 

manufacturing method, where bigger materials are reduced to smaller pieces to create 

functional materials and devices. Human manufacturing methods operate at various 

temperatures and conditions, using inorganic or stiff materials (silicon, stainless steel) 

and at various scale dimensions. The constant drive for smaller devices has led human 

into micro and nano technologies. Much of the efforts are concentrated on the 

semiconductor industry, particularly in finding ways to create more and dense 

integrated circuit within smaller area of semiconductor materials. 

Producing materials at micro and nanoscale dimensions, especially in the 

semiconductor fabrication technology, has forced human to make use of the idea of 

lithography. Lithography is a process of imitating the original pattern and transferring 

it to another medium. One technique that has been successfully used to fabricate micro 

and nanoscale dimension devices is photolithography. 

Photolithography is a process of using a light source to illuminate a photo 

mask, where the desired pattern from the mask is then projected onto a substrate 

coated with photosensitive polymer called photoresist. 19.101 The polymer photoresist 

radiated with a light source changes its chemical properties, either to become more 
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Chapter I: Introduction 

resistant or more soluble to solvents or developers. If the polymer resist becomes more 

resistant after being exposed to a light source, it is called a negative photoresist. 

However, if it becomes more soluble, it is called a positive photoresist. 

When a negative photoresist is developed with an organic solvent. desired 

patterns are formed by the remains of the radiated photoresist. Once the patterns arc 

transformed, the process can be repeated or combined with other processes, such as 

annealing, etching and chemical treatment to produce functional devices. 

Photolithography has gradually evolved from using the visible emission of 

mercury discharged lamps (g line, A = 436 nm), to the near Ultraviolet (UV) emission 

of mercury lamps (i-line, A = 365 nm), to the so-called deep-UV emission of KrF 

eximer laser (A = 248 nm) and even deeper UV emission of the ArF eximer laser (A = 

193nm). Illl Printed dimensions will be in the range of 50-70 nm or less in a few years 

time, when another possible wavelength, the Ar2 emission at A = 126 nm is introduced. 

The success story of photolithography is under challenge, since the optical 

resolution achievable through conventional optical means in photolithography 

techniques is restricted by the diffraction limit of light, A/2. Spatial resolution below 

100 nm will be difficult since diffraction of light and the lost of light intensity while 

passing through the optical lenses, will be the limiting factors for the optical resol ution 

of the photolithography technique. Another limiting factor is that it works only on 

photoresist materials. 1121 Future nanofabrication will have to deal with diverse types of 

materials and conditions. A few techniques have been developed to tackle the 

diffraction limit of photolithography, including using much shorter wavelengths of the 

radiation source. 
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Chapter 1: Introduction 

Scientists have considered shorter wavelength radiation sources, such as X-Ray 

and electron beam, to be used to modify the chemical properties of the polymer resist, 

hence they are called the X-ray lithography (XRL) and electron beam lithography 

(EBL) techniques. EBL can create smaller features on the polymer resist since it can 

be focused to less than 10 nm in diameter. (13.l4( Serial processing method, where an 

electron beam is rastered line by line on the polymer resist, is one of the disadvantages 

of EBL. Other disadvantages of EBL include high sample and initial capital costs. 

Meanwhile, X-ray lithography technique is characterised by its high initial capital 

costs but high sample throughput. Structures with resolution down to 30 nm can be 

produced simultaneously using XRL (15( but with its high initial capital cost, 

researchers are currently focusing on other fabrication techniques. 

Other newly developed techniques for the fabrication of nanostructures on 

materials are the Scanning Tunnelling Microscope (STM) and the Atomic Force 

Microscope (AFM). (16.17( Both techniques have low throughput, since they also adopt 

the serial processing method. In STM or AFM, molecular and atomic manipulation of 

materials can be achieved, but its serial processing method is not yet suitable for mass 

production of devices. 

The aforementioned disadvantages of 'top-down" fabrication methods, UV 

Photolithography, EBL, XRL, etc., have directed scientists to focus on other 

fabrication methods. The ideal nanofabrication technique would be materials and 

substrates general; inexpensive; flexible in nanoparticle sizes, shapes and spacing 

parameters; and massively parallel. (lSI Thus, parallel nanolithography and self-
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Chapter 1: Introduction 

assembly nanofabrication methods, could fulfil the ideals of the nanofabrication 

technique. 

Staying focused on parallel nanolithography techniques have led scientists to 

explore diffusion-controlled aggregation at surface, [19J laser focus atom deposition, [20-

22J and nanosphere lithography (NSL). 123-25J As self-assembly techniques are 

championed by nature, scientists have also considered mimicking nature's self

organization process as an essential part of future technological capabilities in 

producing smaller and functional devices. 

The interest of mimicking nature's self-assembly process, is clearly visible, if 

we look into the citation counts for the self-assembly process related researches 

(Figure 1.1). There is an exponentially increase in the number of published papers in 

the world scientific journals. 126J Self-assembly, self-repairing and self-replicating are 

scientists' popular words, which have translated scientists' ambitions to fabricate 

future materials and devices using the understanding and mimicking nature's ways of 

creating and fabricating materials. 
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Figure 1.1: Nanoscience Literature Citation Counts (courtesy of AMPTIAC: 
American Department of Defence 2002, vol. 6) 

Table 1.1 shows the classification of e lf-a embly material and it 

applications and importance. 131 There are two main kind of elf-a embly; tati and 

dynamic. Dynamic self-as embly (D) i nature' (Jivin o rgani m ) wa f pr du ing 
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Chapter 1: Introduction 

surface, where the formation of the ordered structure may require energy (like in the 

form of stirring) is a form of static self-assembly (S). 

System Type Applications/importance 

Atomic, ionic, molecular crystals S Materials, optoelectronics 
Phase-separated and ionic layered S 
polymers 
Self-assembled monolayers (SAMs) S, T Microfabrication, sensors, 

nanoelectronics 
Lipid bilayers and black lipid films S Biomembranes, emulsions 
Liquid crystals S Displays 
Colloid crystals S Band gap materials, molecular 

sieves 
Buble rafts S Models of crack propagation 
Macro- and mesoscopic structures S orD, T Electronic circuits 
(MESA) 
Auidic self-assembly S, T Microfabrication 
"Light matter" D,T 
Oscillating and reaction-diffusion D Biological oscillations 
reactions 
Bacterial colonies D,B 
Swarms (ants) and schools (fish) D,B New models for 

computation/optimization 
Weather patterns D 
Solar systems D 
Galaxies D 

Table 1.1: Examples of self-assembly (S, static, D, dynamic, T, templated, 
B, biology). Courtesy from G. M Whitesides et al. [3] 

There are also two further variants of self-assembly which are templated self-

assembly (T) and biological self-assembly (B). Templated self-assembly is a way to 

code the formation of surfaces or environment, as a component that will interact with 

the desired components, such as colloids to form into three-dimensional photonic 

crystals. Biological self-assembly is characterised by its variety and complexity of the 

functions that it produces. One technique that applies both self-assembly and parallel 

nanolithography process is NSL. It is originally known as "natural lithography" [23[, 
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Chapter 1: Introduction 

which u ed a monodisper ed nanosphere template as a deposition mask to fabricate 

arrays of metal particles, the size of which depends OD the sizes of the nanospheres 

u ed. 

, 

a) 

b ) 

c) 

Figure 1.2: Principle of basic NSL: a) application of suspension , b) deposition 
of metal onto ordered monolayer, c) regularly arranged metal structures on the 
surface after removal of the particles. Courtesy from F. Burmeister et al. 127) 

Basic NSL is a process that includes the self-assembly of nanospheres on a 

substrate to create a single monolayer lithographic mask. This process was used in the 

experiments throughout the course of this study. In the experiments, metal particles 

were evaporated to fill the voids defined by the interstitial of the nanospheres. Mter 

removing the mask using an appropriate organic solvent, periodic particle arrays 

(PPAs) of metal nanoparticles were left on the substrate surface. The shapes of the 

10 
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Chapter I: Introduction 

metal particles created from NSL are usually triangular, truncated, with their size 

depending on the size of the nanospheres used. 

Smaller PPAs can be formed if double-layer nanospheres were used as a 

lithographic mask 1281• Thermal annealing of the PPAs can reduce the size of the voids, 

1291 II h . I' I . as we as c angmg t lelr slape. Annealmg the nanospheres at Tg (glass transition 

temperature) 1301 will cause swelling of the nanospheres, which will reduce the size of 

the voids, or even completely close the gap between the nanospheres. 

Reactive Ion Etching (RIE) was used in the experiments to create different 

patterns of lithographic masks. 131] It was also used to try to modify the shapes and the 

sizes of the PPAs or to create nanopillars. ]32-371 Other modifications to NSL will be 

mentioned in the next chapter to show that attempts have been made to further develop 

NSL in order to make it a more versatile parallel nanolithographic fabrication method. 

Nanosphere lithograpy is an inexpensive, inherently parallel, high-throughput 

and materials general nanofabrication technique that is potentially useful in studies of 

size dependent optical, magnetic, catalytic, thermodynamic, electrochemical, and 

electrical transport properties of materials. 138.391 Limited patterning capability of NSL 

is one of the limiting factors that should first be addressed before it could be used as a 

versatile lithography technique. Previous investigators have tried to use pre-patterned 

surface to guide the self-assembly of nanospheres on the substrate surfaces. 140,41] This 

assembly of nanospheres to the pre-patterned substrate surface was later defined as 

template-assisted self-assembly (T ASA). 142-461 

Scanning Electron Microscope (SEM) has long been used as an imaging 

machine. It can be used not only to scan the image of the nanospheres, but also to 
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Chapter I: Introduction 

d'f I 1471 P . mo I y t lem. revlOus researches have shown that nanospheres can be modified by 

heat and RIE techniques. In this thesis, other methods to modify nanosphere structures 

were explored, including the use of electron beam radiation, heat and chemical 

treatments. 

The aim of this research reported within this thesis was to explore the use of 

electron beam radiation as a means of modifying the nanosphere structures thus 

creating a new lithographic mask that is very different from the ordinary NSL. It was 

found that the irradiated nanospheres gradually shrink, creating a hexagonal structure 

under electron beam exposure. The extent of the modification was found to be 

dependent on the number of electrons that bombarded the nanospheres and the applied 

acceleration voltages. 

Polystyrene CPS) molecules in the nanospheres are believed to have been 

degraded and polymer degradation under electron beam radiation are usually in the 

form of macromolecular chain splitting, creation of low mass fragments, production of 

free radicals, oxidation, and crosslinking. Irradiated nanospheres are believed to cross-

link with each other to create dense, hexagonal structures. The irradiated nanospheres 

or the hexagonal structures should also show some changes to their chemical 

properties, which was later found to become more resistant to oxygen plasma etching. 

The interactions of the accelerated electrons with PS nanospheres moleculcs 

have also created low mass fragments that are deposited in the voids of the irradiatcd 

nanospheres site, covering the substrate surface. Therefore, if metal particles were to 

be evaporated and deposited, PPAs will only exist at the voids of thc non-exposcd, 

non-i rradiated nanospheres. Somehow, we can regard th is tech n i q lIC as nc ga ti vc 
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lithography, where the irradiated regions will act as shields for depositing metal 

particles. In this way, patterning the PPAs is achieved. without the need to pre 

patterned the substrate surface, such as in the TASA 's technique. 

Longer electron beam exposure to the nanospheres will also separate thelll 

from one another and sometimes displace the PS nanospheres laterally. Further 

investigations also show that these affected, irradiated nanospheres were becoming 

more attached to the substrate and were difficult to be removed by organic solvents in 

the lift-off process. 

Heating the nanospheres to their Tg could also produce new lithography masks. 

When heated, they swell and close the voids between them. Subsequently these voids 

can be reopened by RIE, to crcatc controllable PPAs on thc substratc surface. 

Creating chemically modified nanospheres by mcans of cvaporating the vapour 

of organic solvents is also reported in this study. Despite thc difficulty to control the 

amount of the organic solvent vapour, honeycomb structures have been formed 

successfully. Nanospheres partially dissolved into a scmi-liquid matcrial when in 

contact with an organic solvent. The surface tcnsion and the associated capillary forces 

drive the liquid matcrial into the gaps of the particle arrays. 

Surface tension and the associated capillary forces are among factors that 

influence the fabrication of the honcycomb structurc. The honeycomb structure was 

assumed to have formed whcn each partially dissolvcd nanosphcrc acts as an island. 

while the scmi-liquid material. partly from the dissolved nanospheres. nows to it's 

surroundino or at thc circumfcrcnce of thc nanospheres. When the semi-liquid 
o 

materials hardencd. they act as walls. These walls and the semi-liquid materials arc 
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constantly produced depending on the amount of solvents involved. They will create 

equal surface tension and capillary forces that will displace the dissolved nanospheres. 

the semi-liquid materials to be deposited to these walls and form honeycomb 

structures. 

Freestanding transportable thin films of nanospheres are created by either 

chemical or heat treatment. If a monolayer nanosphere film is carefully evaporated 

with an organic solvent for a few minutes, they will create a semi-liquid material that 

will later harden when the organic solvent evaporates, enhancing the bonding between 

the nanospheres in the thin monolayer film. This thin layer film can be floated on the 

water surface and later placed on a copper grid to act as a lithography mask. Although 

the result is not completely satisfactory, the procedure can be explored further, as it 

could provide a way to create cheaper freestanding lithography masks. 

Heating the monolayer nanosphere film above its Tg will melt the nanospheres 

and upon cooling, will create much stronger bond between the nanospheres. When 

heated, part of the nanospheres will melt and flow beneath the nanospheres, creating a 

large contact area between them. This monolayer, melted nanosphere fi 1m can be 

floated on water surface to create a freestanding film which could be used to create an 

inexpensive nanolithography mask. 

The main achievements of my PhD project are thus:-

a) controllable modification of PS nanosphere structures by electron beam 

irradiation. Fabrication of dense hexagonal structures. 

b) new lithography mask that can be used to pattern the formation of the 

PPAs. 
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