STIFFNESS AND VIBRATIONAL CHARACTERISTICS OF SMA/DER331 COMPOSITES WITH SHAPE MEMORY ALLOY LONG FIBERS

MOHD NORIHAN BIN IBRAHIM@TAMRIN

A project report submitted in partial fulfillment of the requirement for the award of the Degree of Master of Mechanical Engineering

Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

APRIL, 2008

To my loving wife, Zulaika A. G. Khan, M.Naseem Khan and M. Zarif Khan(sons), Ainaa Syahirah(daughter), my mother and my father, my family and my supporting friends ...

"THANK YOU for your support"

ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious and The Most Merciful

I would like to take this opportunity to express my sincere appreciation to my supervisor, Associate Professor Dr. Ing Darwin Sebayang for his thoughtful insights, helpful suggestions and continued support in the form of knowledge, enthusiasm and guidance during the course of this project.

My appreciation goes to Mr. Saifulnizan Jamian, co-supervisor of this project from the Department of Engineering Mechanics, Faculty of Mechanical and Manufacturing Engineering, UTHM for his advice and constructive support. Grateful to the Head of Department and laboratory staff of Polymer Engineering Department in UTM Skudai for their permission and technical support during implementing related test progress. My gratitude also goes to our technician members Mr. Adam Masrom (Machining Laboratory), Mr. Fazlannuddin Hanur Harith (Polymer Laboratory), Hj. Saifulazad Ahmad (Strength Laboratory) and Mohd Zainorin Kasron (Vibration Laboratory) for their support and cooperation.

Not forgetting, thank you to my family, on whose constant encouragement and love I have relied on throughout my studies. Lastly, thanks to all my friends which directly and indirectly contribute to their ideas, motivation, involvement and support during completing this study.

ABSTRACT

SMA-composites are an adaptive composite in which SMA elements are incorporated into fiber reinforced epoxy composites. Many researches have been done on investigating the properties of shape memory effect and superelastic influence in SMA composites. However, little information available on the effect of different fiber volume fraction with continuous flexinol long wire to mechanical strength and vibrational characteristics. This study is mainly focused on the integration of shape memory alloy (SMA) elements with epoxy composites based on different fiber volume fraction. The aim is to analyze and investigate static and dynamic mechanical properties of SMA/DER331 by measuring the first vibration mode of clamped cantilever beams, elastic strength and hysteresis behavior of SMAcomposites through monotonic tensile, cyclic and vibration analysis. This observation indicates that the Young's modulus increases (1667.083MPa) at 2.4% fiber volume fraction of flexinol wire of SMA/DER331 compared to matrix Young's modulus (904.495MPa). The increase of temperature up to 75°C and 90°C lead to the recovery of stress and strain and therefore closed hysteresis achieved. The temperature dependency of vibration property is affected largely due to the addition of SMA Flexinol long fibers. The vibrational characteristics of SMA composites can be improved by the addition of certain amount of flexinol wire. The addition of 2.4% fiber volume fraction of flexinol long fibers resulted in the highest natural frequency with the value of 171Hz at the temperature of 70° C.

ABSTRAK

Komposit aloi memori bentuk merupakan gabungan dimana elemen-elemen aloi memori bentuk disatukan ke dalam bahan komposit. Terdapat banyak kajian dijalankan berkenaan sifat dan kesan aloi memori bentuk dan sifat superelasticity. Bagaimanapun, terdapat sedikit maklumat berhubung kesan kekuatan mekanikal dan getaran. Kajian ini memberi tumpuan kepada pendekatan terhadap integrasi aloi memori bentuk dengan komposit epoxy berasaskan kepada perbezaan pecahan isipadu serat. Objektif kajian ini adalah untuk menganalisa dan menyiasat ciri-ciri mekanikal secara statik dan dinamik bagi integrasi (SMA/DER331) dengan mengukur mod getaran asas bagi rasuk, kekuatan elastik dan sifat histerisis bagi komposit aloi memori bentuk menerusi tegangan monotonik, kitaran dan analisis getaran. Hasil kajian menunjukkan bahawa Young's modulus meningkat sebanyak 1667.083MPa pada 2.4% isipadu serat komposisi dawai flexinol bagi integrasi (SMA/DER331) berbanding 904.495MPa bagi matrik. Peningkatan suhu sehingga 75°C dan 90°C pula menyebabkan kewujudan pengembalian terikan dan tegasan pada struktur dan histerisis lengkap juga dicapai. Sifat-sifat getaran dipengaruhi secara nyata oleh peningkatan serat panjang aloi memori bentuk dan suhu. Ciri-ciri getaran bagi komposit aloi memori bentuk boleh diperbaiki dengan penambahan jumlah dawai flexinol pada kadar yang tertentu. Penambahan sebanyak 2.4% pecahan isipadu serat bagi dawai flexinol menghasilkan frekuensi semulajadi yang tertinggi sebanyak 171Hz pada suhu 70° C.

CONTENTS

CHAPTER

SUBJECT

PAGE

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
CONTENTS	vii
LIST OF FIGURES	xv
LIST OF TABLES	xi
LIST OF SYMBOLS	xvi
LIST OF APPENDIXES	xxi

CHAPTER I INTRODUCTION

1.1	Introd	uction to Shape Memory Alloy (SMA)	1
	1.1.1	General Principles of SMA	2
	1.1.2	Hysteresis	3
	1.1.3	Thermoelastic Martensitic	4
		Transformation	
	1.1.4	Shape Memory Effect	5

vii

	1.1.5 Pseudoelasticity of SMA	7
1.2	Shape Memory Alloy Composites	7
1.3	Problem Background	8
1.4	Problem Statement	10
1.5	Objectives	10
1.6	Scopes	11

CHAPTER II LITERATURE REVIEW

2.1 Overview 2.2 Mechanical Behavior of SMA-Composites 2.2.1 Phase Transformation and Reorientation 2.2.2 Mechanical Behavior Investigation 2.3 Thermomechanical Behavior of SMA-Composites 2.3.1 Phenomenology of Nitinol 2.3.2 Transformation Induced Deformation 2.3.3 Thermomechanical Behavior Investigation Vibration Analysis of SMA –Composites 2.4 2.5 Constitutive Model of Shape Memory

Alloys (SMAs) 2.6 Literature Summary 32

CHAPTER III

PROJECT METHODOLOGY

3.1	Introduction	35
3.2	Project Outline	36
3.3	Mould Design and Fabrication	38
3.4	Specimen Preparation	43

12

13

13

15

21

21

23

25

26

28

	3.4.1	Materials	43	
		3.4.1.1 SMA Flexinol	43	
		Actuator Wire		
		3.4.1.2 DER 331 Epoxy Resin	44	
	3.4.2	Material Overview	44	
	3.4.3	Specimen Fabrication – Monotonic	45	
		Tensile and Cyclic Testing		
	3.4.4	Specimen Fabrication – Vibration	48	
		Test		
3.5	Exper	imental Test	49	
	3.5.1	Measurement of Phase	49	
		Transformation in SMA Fiber		
	3.5.2	Monotonic Tensile Test	51	
	3.5.3	Cyclic Testing	53	
	3.5.4	Vibration Testing	55	
		3.5.4.1 Vibration Properties	55	
		Measurement		
		3.5.4.2 Vibration Approach	57	

CHAPTER IV RESULTS AND DISCUSSIONS

4.1	Introd	luction	59
4.2	Phase	Transformation of SMA	60
	Flexir	nol Wire	
4.3	Mono	tonic Tensile Test Result	61
4.4	Cyclic	e Test Result	65
	4.4.1	Load Cases 1 – Cyclic at	65
		Different Displacement, x	
		4.4.1.1 Stress Versus Strain	70
	4.4.2	Load Cases 2 – Shape Memory	72
		Effect	
	4.4.3	Load Cases 3 – Pseudoelasticity	79
		Effect	

4.5	Vibration Testing Result		84
	4.5.1	Natural Frequency of	84
		Reference Sample	
	4.5.2	Natural Frequency of	86
		Matrix Sample	
	4.5.3.	Reinforced Composites	88
		(SMA/DER331)	
		4.5.3.1 Natural Frequency	88
		Characteristics	
		4.5.3.2 Damping Characteristics	92
4.6	Results	s Summary	95

CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	96
5.2	Project Contributions	99
5.3	Future Work Recommendations	99

REFERENCES

102

х

APPENDIXES

А	One Dimensional Constitutive Equation	107
	Of SMA	
В	Material Models of Fiber and Matrix	109
С	Illustration of Mould	113
D	Illustration of Tested Specimen	116

LIST OF FIGURES

FIGU	TRE NO. TITLE	PAGE	
1.1	(a) Martensitic transformation and hysteresis.	3	
	(b) Stress-strain behavior of different phases of		
	NiTi at constant temperature		
1.2	Schematic of pseudoelasticity and shape memory	6	
	effect behavior (D.S Burton, et.al, 2006)		
1.3	Schematic of shape memory effect	7	
	(Wayman and Duerig, 1990)		
2.1	Pseudoelasticity of SMA	14	
2.2	Stress-strain curves of NiTi deformed in pseudoelasticity	16	
	(Yinong and Hong, 1998)		
2.3	Strengthening mechanisms of SMA-based MMCs	17	
	(D.Yang, 2000)		
2.4	Volume element loaded in 1 or x direction	19	
2.5	Decomposition of Austenite to Martensite and	22	
	Martensite to Austenite (Miyazaki et.al 1981)		
2.6	Thermal history of NiTi	24	
2.7	Three-dimensional stress-strain temperature diagram	31	
	showing deformation and shape memory behavior		
	of NiTi shape memory alloy.		
3.1	Methodology overview of project	37	
3.2	Illustration of the schematic drawing of mould	38	

xi

3.3	Schematic diagram of plate layout of mould	40	
	(a,c,e – side view) and (b,d,f - front view).		
3.4	Mould fabrication	42	
3.5	Specimen preparation flow	46	
3.6	Monotonic tensile and cyclic test specimen	46	
3.7	Illustration of SMA/DER331 composites according to	47	
	different fiber volume fraction		
3.8	Illustration of specimens for the vibrational testing	48	
3.9	Diagram of a power compensated differential	50	
	scanning calorimeter		
3.10	Illustration on the sequences of monotonic tensile test	52	
3.11	Equipment for monotonic and cyclic tensile testing	52	
3.12	Illustration on the implementation sequences of cyclic	54	
	test for the case of shape memory effect	55	
3.13	Illustration on the implementation sequences of	55	
	cyclic test for the case of pseudoelasticity effect		
3.14	Illustration of the specimen fixation for vibration testing	56	
3.15	Equipment set-up and testing	57	
3.16	Illustration of specimen fixation and heat supply	57	
4.1	Phase transformation of SMA flexinol wire (Ø0.51mm)	60	
4.2	Stress versus strain for SMA composites with	62	
	flexinol wire and matrix of DER 331		
4.3	Variation on the strength of SMA composites and	63	
	comparison on the theoretical and experimental result.		
4.4	Theoretical results of tensile modulus of elasticity	64	
	versus fiber volume fraction		
4.5	Result of loading and unloading test for matrix based on	67	
	single cyclic. (a) Young's modulus as function of		
	displacement. (b) maximum stress-strain according		
	to displacement rate		
4.6	Result of loading and unloading tensile test for RC1	68	
	based on single cyclic. (a) Young's modulus as		
	function of displacement. (b) maximum stress-strain		
	according to displacement rate		

xii

4.7	Result of loading and unloading test for RC2	69
	based on single cyclic. (a) Young's modulus	
	as function of displacement. (b) maximum stress-strain	
	according to displacement rate	
4.8	Result of loading and unloading test for RC3 based on	69
	single cyclic. (a) Young's modulus as function of	
	displacement. (b) maximum stress-strain according	
	to displacement rate	
4.9	Stress versus strain of matrix DER331 and	71
	flexinol SMA composites RC2 (1.6% fiber volume	
	fraction) with displacement rate, $x = 3mm$	
4.10	Variation of stress versus strain for the matrix	74
	DER 331 specimen with respect to the different temperature	
4.11	Variation of stress versus strain for the SMA	74
	composites, RC1 specimens with respect to the	
	different temperature	
4.12	Illustration of the structure/specimen deformation for	75
	RC1 subject to the variation of temperature	
	exposure during unloading	
4.13	Variation of stress versus strain for the SMA composites,	76
	RC2 specimens with respect to the different temperature	
4.14	Variation of stress versus strain for the SMA composites,	77
	RC3 specimens with respect to the different temperature	
4.15	Stress versus strain of matrix DER 331 Epoxy Resin	80
4.16	Stress versus strain of SMA/DER 331 with the fiber	81
	volume fraction of 0.80% (RC1)	
4.17	Illustration of the structure/specimens profile after	82
	tested at temperature of 90°C	
4.18	Stress versus strain of SMA/DER 331 with the fiber	83
	volume fraction of 1.60% (RC2)	
4.19	Stress versus strain of SMA/DER 331 with the fiber	83
	volume fraction of 2.40% (RC3)	
4.20	Real and imaginary as a function of frequency	85
4.21	Log magnitude as function of frequency	85

xiii

4.22	Bode diagram plots the FRFs phase and log	87
	magnitude as function of frequency	
4.23	The imaginary and real as function of frequency	88
4.24	Variation of natural frequency with temperature	89
	for different SMA flexinol fiber content	
4.25	Variation of SMA composites for different fiber	90
	content heated at temperature 70°C.	
4.26	Damping response for the acceleration response	92
	as function of time	
4.27	Variation of damping behavior with temperature	93
	for different SMA flexinol fiber content	

xiv

LIST OF TABLES

TITLE

TAB	LE NO. TITLE	PAGE	
2.1	Literature summary	33	
3.1	Material properties of SMA Flexinol Wire and DER 331	45	
3.2	Common beam boundary condition, frequency equation,	58	
	kl values for beam with uniform cross section		
4.1	Result on the tensile testing conducted by means of	61	
	Universal Testing Machine at room temperature (≈30°C)		
4.2	Theoretical results on the longitudinal modulus of	64	
	elasticity based on the fiber and matrix volume fraction		
4.3	Cyclic test of specimen SMA/DER 331	66	
	(a) matrix DER 331 (b) Reinforce composite, RC2 (1.6%);		
	(c) Reinforce composite, RC3 (2.4%)		
	(d) Reinforce composite, RC1 (0.8%)		
4.4	First and second natural frequency of aluminium (Al)	86	
	and matrix(MX) specimen.		
4.5	Result of vibrational testing for different fiber	89	
	volume fraction of flexinol wire.		
4.6	Result of damping of SMA composites for	93	
	different fiber volume fraction of flexinol wire		
4.7	Summary of results	95	

LIST OF SYMBOLS & ABBREVIATIONS

A	Cross-sectional area
A_s	Austenite start temperature
A_s^0	Austenite start temperature (stress –free value)
A_f	Austenite finish temperature
A_f^0	Austenite finish temperature (stress –free value)
A-phase	Austenite phase
Al	Aluminium
a_M, a_A, b_M, b_A	Material constant in terms of transition temperature
	A_s, A_f, M_s, M_f
Си	Copper
C_A, C_M	SMA material constant related to stress-induced
	phase transformation
$D(\xi)$	Young's modulus
D_m	Young's modulus for the SMA 100% martensite
D _a	Young's modulus for the SMA 100% austenite
Ε	Modulus of elasticity/Young's modulus
E_I	Young's modulus in 1/or x direction
E_f	Young's modulus for an isotropic fiber.
E_m	Young's modulus for an isotropic matrix
E^{Ω}	Fourth order elastic tensor of SMA
E^{M}	Fourth order elastic tensor of matrix
G	Shear modulus of the material
Ι	Second order identity tensor

xvi

Ι	Area moment of inertia
J_2	Second invariant of the deviatoric tensor
J_3	Third invariant of the deviatoric tensor
M_s	Martensite start temperature
M_s^0	Martensite start temperature(stress - free value)
M_f	Martensite finish temperature
M_f^0	Martensite finish temperature(stress - free value)
M-phase	Martensite phase
NiTi	Nickel-Titanium
Т	Temperature
T ₀	Reference temperature
T _c	Temperature above which yield strength of A-phase lower
	than stress required to induce A –M transformation
V	Volume
V_f	Volume of fibers / Total volume of composite material
V_m	Volume of matrix / Total volume of composite material
X	Thermodynamic force
X	Inclusion volume
	Thermodynamic force Inclusion volume
c DU	Damping
$c_c P E K$	Critical damping
d	Deviatoric strain
d'	Transformation strain
f	Natural frequency
h	Material parameter indicate the slope of the linear

stress transformation

Bulk modulus of the material

Versor in the direction of fiber

Versor in the direction of fiber

Standard kil value based on common beam boundary condition

Stiffness

k

k

 k^3

 k^3

kl

xvii

	(fixed –free)
l	Length
р	Volumetric stress
S	Deviatoric stress
vs	Versus
wt	Weight
x	Displacement
σ	Stress
$\sigma_{\scriptscriptstyle eq}$	Equivalent stress
$\sigma^{\scriptscriptstyle M}$	Stress tensor of matrix
$\sigma^{_{\Omega}}$	Stress tensor of SMA
σ_{ι}	Uniaxial critical stress in tension
σ_{c}	Uniaxial critical stress in compression Strain Recovery strain limit/Maximum recoverable strain Total strain of matrix
ε	Strain
ε_{L}	Recovery strain limit/Maximum recoverable strain
ε^{M}	Total strain of matrix
ε^{Ω}	Total strain of matrix Total strain of SMA Martensite fraction
ξ	Martensite fraction
Θ	Thermoelastic tensor
$\Omega(\xi)$	Transformation tensor
η^M p F R P	Elastic strain of matrix
τ	Inelastic strain of matrix
α^{M}	Expansion coefficient
η^{Ω}	Elastic strain of SMA
π	Inelastic strain of SMA
x_1, x_2, x_3	Coordinate system
α ^Ω	Expansion coefficient of SMA
δ	Possible pre-strain
$arepsilon_L$	Material parameter of the maximum transformation strain
д	Volumetric strain
(•)	Scalar product

xviii

α	Back stress
β	Material parameter linked to the dependence of the
	critical stress on the temperature
ζ	Plastic multiplier
ω_n	Natural frequency for free oscillation
ζ	Damping ratio/ damping factor
ρ	Density
>	Greater than
<	Lower than

	Lower than
90	
°C	Degree Celsius
°C/min	Degree Celsius per minute
GPa	Giga Pascal
Hz	Hertz
Κ	Kelvin
kg/m^3	Kilogram per cubic meter
mg	Milligram
mm	Millimeter
МРа	Mega Pascal
mPa.s	Milli pascal second
NPEKI	Newton
%	Percentage

American Society for Testing and Materials
Computer numerical control
Liquid epoxy resin by DOW
Pseudoelasticity test for MX at temperature of $90^{\circ}C$
Pseudoelasticity test for RC1 at temperature of 90°C
Pseudoelasticity test for RC2 at temperature of 90°C
Pseudoelasticity test for RC3 at temperature of 90°C

xix

DSC	Differential Scanning Calorimetry
М	Matrix material
MX	Matrix
RC1	Reinforced composites with fiber volume fraction of
	0.8% (3 wires)
RC2	Reinforced composites with fiber volume fraction of
	1.6% (6 wires)
RC3	Reinforced composites with fiber volume fraction of
	2.4% (9 wires)
MX-30C,45C,	Matrix specimen tested at temperature of 30°C,45°C,
60C, etc	60°C, etc.
RC1-30C,45C,	RC1 specimen tested at temperature of 30°C,45°C,
60C, etc	60°C, etc.
RC2-30C,45C,	RC2 specimen tested at temperature of 30°C,45°C,
60C, etc	60°C, etc.
RC3-30C,45C,	RC3 specimen tested at temperature of 30°C,45°C,
60C, etc	60°C, etc.
ROM	60°C, etc. Rules of mixtures Representative volume element
RVE	Representative volume element
SMA	Shape memory alloy
SME	Shape memory effect
PERPU	

LIST OF APPENDIXES

APPI	NDIX TITLE	PAGE
А	One Dimensional Constitutive Equation of SMA	107
В	Material Models of Fiber and Matrix	109
C-1	Mould for matrix (DER 331 epoxy resin)	114
C-2	Mould for RC1 (fvf, 0.8%)	114
C-3	Mould for RC2 and RC3 (fvf, 1.6% and 2.4%)	114
C-4	Beaker for liquid epoxy resin and hardener	115
C-5	Universal Release Wax applied in mould	115
C-6	Flexinol wire spool	115
C-7	Vacuum machine for air bubbles release	115
C-8	Mould	115
C-9	Group of moulds	115
C-10	Finish product in forms of dumbbell	115
Illustra	tion of Tested Specimen	
D-1	Monotonic tensile test	117
D-2	Cyclic test (load cases 1- different displacement)	117
D-3	Cyclic test (load cases 2 – Shape memory effect)	118
D-4	Cyclic test (load cases 3 – Pseudoelasticity effect)	118
D-5	Comparison of Young's modulus and fracture	119
	point of specimens under load cases 1	
D-6	Illustration of the structure/specimens profile	119
	2000	

after tested at temperature of 90°C

xxi

CHAPTER I

INTRODUCTION

1.1 Introduction to Shape Memory Alloy (SMA)

Shape memory alloys are unique alloys that have the ability to undergo large deformations, but can return to their undeformed shape by heating known as the shape memory effect or through removal of the stress known as the superelastic effect. Although first discovered in the 1960s, shape memory alloys (SMAs) have found functional applications only in the past 15–20 years. The high cost, lack of clear understanding of the thermo-mechanical processing, and the inability to reliably predict the behavior of shape memory alloys were the reasons for the slow introduction of the material into application. Higher quality and reliability, coupled with a significant reduction in price has recently led to numerous applications of shape memory alloys in the biomedical, commercial, and aerospace industries (Reginald *et al.*, 2004).

Driven by a search for devices that could result in less invasive medical procedures, researchers have found numerous applications for shape memory alloys in the medical field. Arterial stents, medical guidewires, catheters, orthodontic braces, and orthopaedic prostheses have all taken advantage of the unique properties of superelastic shape memory alloys (Duerig *et al.*, 1990). In the aerospace industry, shape memory alloys have been used in adaptive aircraft wings and smart helicopter blades for increased efficiency and reduced noise and vibration (Beauchamp, 1992; Chandra, 2001). Recent years have seen numerous commercial and consumer applications of shape memory alloys. Eye glass frames, cellular telephone antennas, frames for brassiers, and golf clubs all take advantage of the superelastic properties of SMAs (Asai and Suzuk, 2000; Hsu *et al.*, 2000)

New opportunities for expanding the use of SMAs in the design of smart structure is being realized by embedding NiTi wires into polymers, elastomers, and fiber-reinforced/epoxy composites (Hugh and Charles, 1999). The embedded wires can be used to activate flexible materials, like polymers and elastomers, or improve the toughness and buckling resistance of brittle materials, like fiber-reinforced/epoxy composites . In developing these materials, research efforts are focussing on overcoming technical barriers such as: increasing actuator stroke, building reliable smart material data bases, developing robust distributed parameter control strategies, and mathematically modeling smart systems.

1.1.1 General Principles of SMA

When martensite NiTi is heated, it begins to change into austenite (Figure 1.1a). The temperature at which this phenomenon starts is called austenite start temperature (A_s). The temperature at which this phenomenon is complete is called austenite finish temperature (A_f). When austenite NiTi is cooled, it begins to change onto martensite. The temperature at which this phenomenon starts is called martensite start temperature (M_s). The temperature at which this phenomenon starts is called completely reverted is called martensite finish temperature (M_s). The temperature at which this phenomenon starts is called martensite is again completely reverted is called martensite finish temperature (M_f), (Istvan, 2001).

Composition and metallurgical treatments have dramatic impacts on the above transition temperatures. From the point of view of practical applications, NiTi can have three different forms: martensite, stress-induced martensite (superelastic), and austenite. When the material is in its martensite form, it is soft and ductile and can be easily deformed (somewhat like soft pewter). Superelastic NiTi is highly elastic (rubber-like), while austenitic NiTi is quite strong and hard (similar to titanium) (Figure 1.1b). The NiTi material has all these properties, their specific expression depending on the temperature in which it is used.

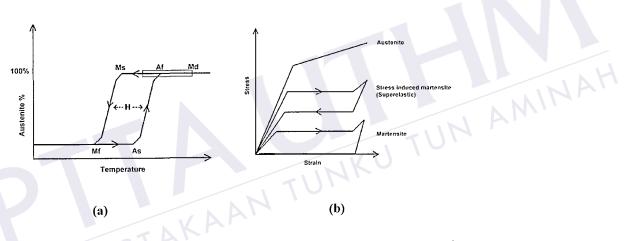


Figure 1.1. (a) Martensitic transformation and hysteresis,H upon a change of temperature.(b) Stress-strain behavior of different phases of NiTi at constant temperature.(Istvan, 2001).

1.1.2 Hysteresis

The temperature range for the martensite to austenite transformation, i.e. soft to hard transition, that takes place upon heating is somewhat higher than that for the reverse transformation upon cooling (Figure 1.1a). The difference between the transition temperatures upon heating and cooling is called *hysteresis*. Hysteresis is generally defined as the difference between the temperatures at which the material is 50 % transformed to austenite upon heating and 50 % transformed to martensite upon cooling. This difference can be up to 20-30 °C In practice, this means that an alloy designed to be completely transformed by body temperature upon heating ($A_f < 37$ °C) would require cooling to about +5 °C to fully retransform into martensite (M_f).

1.1.3 Thermoelastic Martensitic Transformation

The unique behavior of NiTi is based on the temperature dependent austenite to martensite phase transformation on an atomic scale, which is also called *thermoelastic martensitic transformation*. The thermoelastic martensitic transformation causing the shape recovery is a result of the need of the crystal lattice structure to accommodate to the minimum energy state for a given temperature. In NiTi, the relative symmetries between the two phases lead to a highly ordered transformation, where the displacements of individual atoms can be accurately predicted and eventually lead to a shape change on a macroscopic scale. The crystal structure of martensite is relatively less symmetric compared to that of the parent phase.

If a single crystal of the parent phase is cooled below M_f , then martensite variants with a total of 24 crystallographically equivalent habit planes are generally created. There is, however, only one possible parent phase (austenite) orientation, and all martensitic configurations revert to that single defined structure and shape upon heating above A_f . The mechanism by which single martensite variants deform is called *twinning*, and it can be described as a mirror symmetry displacement of atoms across a particular atom plane, the twinning plane (Buehler *et al.*, 1967). While most metals deform by slip or dislocation, NiTi responds to stress by simply

REFERENCES

Akira, S., Hiroshi, O. and Fumio, N. (2004). "Enhancement of Mechanical Strength by Shape Memory Effect in Ti-Ni Fiber-Reinforced Composites." Engineering Fracture Mechanics. 71. 737-746.

Asai, M. and Suzuk, Y. (2000). "Applications of Shape Memory Alloys in Japan." Mater. Sci. Forum. 327–328. 17–22.

 Auricchio, F. and Petrinni, L. (2004). "A Three Dimensional Model Describing Stress Temperature Induced Solid Phase Transformation; Solution Algorithm and Boundary Value Problems." *International Journal for Numerical Method in Engineering*. 61. 807-836.

Beauchamp, C. H. (1992). "Shape Memory Alloy Adjustable Camber (SMAAC) Control Surfaces." Proc. 1st European Conf. on Smart Structures and Materials. Glasgow, U.K: 189–192.

Bolton, W.(1993). "Mechanical Science." Blackwell Science Ltd.

Buehler, William J.W. and Frederick, E. (1967). "A Summary of Recent Research on the NITINOL Alloys and Their Potential Application in Ocean Engineering." Ocean Engineering. 1. Pergamon Press.

Burton, D.S, Gao X. and Brinson, L.C. (2006). "Finite Element Simulation of a Self-Healing Shape Memory Alloy Composite." Mechanics of Materials. 525-537.

- Brinson L.C., Ina S. and Rolf, L. (2003) "Stress-Induced Transformation Behavior of a Polycrystalline NiTi Shape Memory Alloy: Micro and Macromechanical Investigations via in situ Optical Microscopy." Northwestern University. Evanston IL 60208, USA.
- Chandra, R. (2001). "Active Shape Control of Composite Blades Using Shape Memory Actuation." Smart Mater. Struct. 10. 1018-1024.

Charles, A. H. (2000). "Modern Plastics Handbook." McGraw Hill.

Clarence, W.D. S. (2000) "Vibration : Fundamental and Practice." CRC Press LLC.

JN AMINA Dazhi, Y. (2000). "Shape Memory Alloy and Smart Hybrid Composites -Advanced Materials for the 21st Century." Materials and Design. 503 - 505.

Dimarogonas, A.D. and Haddad, S. (1992). "Vibration for Engineers." Prentice Hall, Inc.

Duerig, T., Melton, K., Stokel, D., and Wayman, C. (1990). "Engineering Aspects of Shape Memory Alloys". Butterworth-Heinemann, London.

Hodgkinson, J.M. (2000). "Mechanical Testing of Advanced Fiber Composites." Woodhead Publishing Limited.

Hsu, S. E., Yeh, M. T., Hsu, I. C., Chang, S. K., Dai, Y. C., and Wang, J. Y. (2000). "Pseudo-Elasticity and Shape Memory Effect on the TiNi-Cov Alloy." Mater. Sci. Forum. 327-328. 119-122.

Hugh, A. B. and Charles L.M. (1999). "Mechanical Characterization of Shape Memory Alloy Composites for Designing Smart Structures." ASME.USA.

- Istvan, M. (2001). "Fundamental Characteristics and Design Method for Nickel-Titanium Shape Memory Alloy." Periodica Polytechnica Ser. Mech. Eng. Vol. 45. PP 75-86.
- Jin-H. R. and Ji-H. K. (2002). "Adaptability of Hybrid Smart Composite Plate Under Low Velocity Impact." Composites. Part B. 34. 117–125.
- John A. S. (2002). "A Thermomechanical Model for a 1-D Shape Memory Alloy Wire with Propagating Instabilities." *International Journal of Solids and Structures*. 1275–1305.
- Kawai, M. (2000). "Effects of Matrix Inelasticity on the Overall Hysteretic Behavior of TiNi-SMA Fiber Composites." *International Journal of Plasticity*. 16. 263-282.
- Kelly, A.T., Jan, S.and Rudy, S. (2004a). "Part I. Thermomechanical Characteristics of Shape Memory Alloys.". Materials Science and Engineering. A368. 286-298.
- Kelly, A.T., Jan, S., Yanjun, Z. and Rudy, S. (2004b). "Part II. Thermomechanical Characteristics of Shape Memory Alloy Composites." Materials Science and Engineering. A368. 299–310.
- Liang, C. and Logers, C.A. (1990). "One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials." *Journal of Intelligence Material System Structure*. 1. 207–34.
- Liew, K.M., Kitipornchai, S., Ng, T.Y. and Zou, G.P. (2002). "Multi-Dimensional Superelastic Behavior of Shape Memory Alloys via Nonlinear Finite Element Method." Engineering Structures. 24. 51–57.
- Lu, Z.K. and Weng, G. J. (2000). "A Two-Level Micromechanical Theory for a Shape-Memory Alloy Reinforced Composite." *International Journal of Plasticity*. 16. 1289 – 1307.

- Mauro, D. and Donatello, C. (2001). "Mechanical Behaviour of Shape Memory Alloys for Seismic Applications 2. Austenite NiTi Wires Subjected to Tension." *International Journal of Mechanical Sciences*. 43. 2657–2677.
- Marfia, S. (2005). "Micro-Macro Analysis of Shape Memory Alloy Composites." International Journal of Solids and Structures. 42. 3677 – 3699.
- McConnell, K.G. (1995). "Vibration Testing: Theory and Practice". John Wiley & Sons, Inc.
- Miyazaki, S., Otsuka, K. and Suzuki, Y. (1981). "Transformation Pseudoelasticity and Deformation in a Ti-50.6 at% Ni alloy." University of Tsukuba, Japan: 287-292.
- Qing-Q.N., Run-X. Z., Toshiaki, N. and Masaharu, I. (2007). "Stiffness and Vibration Characteristics of SMA/ER3 Composites with Shape Memory Alloy Short Fibers." Composite Structures. 79. 501–507.

Reginald, D. M., ASCE, Jason, M. and Michael, D. (2004). "Cyclic Properties of Superelastic Shape Memory Alloy Wires and Bars". *Journal of Structural Engineering*. ASCE.

Robert, M.J. (1999). "Mechanics of Composite Materials; Second Edition." Taylor & Francis, USA.

- Run-X. Z., Qing-Q. N., Toshiaki, N. and Masaharu, I. (2007). "Mechanical Properties of Composites Filled with SMA Particles and Short Fibers." Composite Structures. 79. 90–96.
- Run-X. Z., Qing-Q. N., Arata, M., Takahiko, Y. and Masuharu, I. (2006). "Vibration Characteristics of Laminated Composite Plates with Embedded Shape Memory Alloys." Composite Structures. 74. 389–398.

- Souza, A.C., Mamiya, E.N. and Zoualn, N.(1998). "Three Dimensional Model for Solids Undergoing Stress-Induced Phase Transformation." European Journal of Mechanics. 17, 789-806.
- Srinivasan, A.V. and McFarland, D.M. (2001). "Smart Structures; Analysis and Design." Cambridge University Press.
- Susana, M., Maria, O. M. and Aquiles, S. (2006). "Superelastic Behavior and Damping Capacity of Cualbe Alloys." Materials Science and Engineering A 419. 91–97.
- Takahiro, S., Puspendu, S., Takehiko, K., Kazuyuki, O., Setsuo, K., Atsumichi, K.,
 Masahiko, H., Takatoshi, O. and Scripta, M. (2006). "Vibration Mitigation
 by the Reversible Fcc/Hcp Martensitic Transformation During Cyclic
 Tension–Compression Loading of An Fe–Mn–Si-Based Shape Memory
 Alloy." Scripta Materialia. 54. 1885–1890.

Wael, Z. and Ziad, M. (2007). "A Three-Dimensional Model of the Thermomechanical Behavior of Shape Memory Alloys." *Journal of the Mechanics and Physics of Solid.*

Yinong, L. and Hong, X. (1998). "Apparent Modulus of Elasticity of Near-Equitomic NiTi." *Journal of Alloy and Compounds*. 270. 154-159.

