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ABSTRACT 

SMA-composites are an adaptive composite in which SMA elements are 

incorporated into fiber reinforced epoxy composites. Many researches have been 

done on investigating the properties of shape memory effect and superelastic 

influence in SMA composites. However, little information available on the effect of 

different fiber volume fraction with continuous flexinol long wire to mechanical 

strength and vibrational characteristics. This study is mainly focused on the 

integration of shape memory alloy (SMA) elements with epoxy composites based on 

different fiber volume fraction. The aim is to analyze and investigate static and 

dynamic mechanical properties of SMAJDER331 by measuring the first vibration 

mode of clamped cantilever beams, elastic strength and hysteresis behavior of SMA

composites through monotonic tensile, cyclic and vibration analysis. This 

observation indicates that the Young's modulus increases (1667.083MPa) at 2.4% 

fiber volume fraction of flexinol wire of SMAJDER331 compared to matrix Young's 

modulus (904.495MPa). The increase of temperature up to 75°C and 90°C lead to the 

recovery of stress and strain and therefore closed hysteresis achieved. TIle 

temperature dependency of vibration property is affected largely due to the addition 

of SMA Flexinol long fibers. The vibrational characteristics of SMA composites can 

be improved by the addition of certain amount of flexinol wire. The addition of 2.4% 

fiber volume fraction offlexinol long fibers resulted in the highest natural frequency 

with the value of 171 Hz at the temperature of 70° C. 
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ABSTRAK 

Komposit aloi memori bentuk merupakan gabungan dimana elemen-elemen 

aloi memori bentuk disatukan ke dalam bahan komposit. Terdapat banyak kajian 

dijalankan berkenaan sifat dan kesan aloi memori bentuk dan sifat superelasticity. 

Bagaimanapun, terdapat sedikit maklumat berhubung kesan kekuatan mekanikal dan 

getaran. Kajian ini memberi tumpuan kepada pendekatan terhadap integrasi aloi 

memori bentuk dengan komposit epmy berasaskan kepada perbezaan pecahan 

isipadu serat. Objektifkajian ini adalah untuk menganalisa dan menyiasat ciri-ciri 

mekanikal secara statik dan dinamik bagi integrasi (SMAJDER331) dengan 

mengukur mod getaran asas bagi rasuk, kekuatan elastik dan sifat histerisis bagi 

komposit aloi memori bentuk menerusi tegangan monotonik, kitaran dan analisis 

getaran. Hasil kajian menunjukkan bahawa Young's modllius meningkat sebanyak 

1667.083MPa pada 2.4% isipadu serat komposisi dawai flexinol bagi integrasi 

(SMAJDER331) berbanding 904.495MPa bagi matrik. Peningkatan suhu sehingga 

75°C dan 90°C pula menyebabkan kewujudan pengembalian terikan dan tegasan 

pada stroktur dan histerisis lengkap juga dicapai. Sifat-sifat getaran dipengaruhi 

secara nyata oleh peningkatan serat panjang aloi memori bentuk dan suhu. Ciri-ciri 

getaran bagi komposit aloi memori bentuk boleh diperbaiki dengan penambahan 

jumlah dawai flexinol pada kadar yang tertentu. Penambahan sebanyak 2.4% 

pecahan isipadu serat bagi dawai flexinol menghasilkan frekuensi semulajadi yang 

tertinggi sebanyak 171Hz pad a suhu 70° C. 
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CHAPTER I 

INTRODUCTION 

1.1 Introduction to Shape Memory Alloy (SMA) 

Shape memory alloys are unique alloys that have the ability to undergo large 

deformations, but can return to their undefornled shape by heating known as the 

shape memory effect or through removal of the stress known as the superelastic 

effect. Although first discovered in the 1960s, shape memory alloys (SMAs) have 

found functional applications only in the past 15-20 years. The high cost, lack of 

clear understanding of the thermo-mechanical processing, and the inability to reliably 

predict the behavior of shape memory alloys were the reasons for the slow 

introduction of the material into application. Higher quality and reliability, coupled 

with a significant reduction in price has recently led to numerous applications of 

shape memory alloys in the biomedical, commercial, and aerospace industries 

(Reginald et aI., 2004). 

Driven by a search for devices that could result in less invasive medical 

procedures, researchers have found numerous applications for shape memory alloys 

in the medical field. Arterial stents, medical guidewires. catheters. orthodontic braces. 

and orthopaedic prostheses have all taken advantage of the unique properties of 
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superelastic shape memory alloys (Duerig et al., 1990). In the aerospace industry, 

shape memory alloys have been used in adaptive aircraft wings and smart helicopter 

blades for increased efficiency and reduced noise and vibration (Beauchamp, 1992: 

Chandra, 2001). Recent years have seen numerous commercial and consumer 

applications of shape memory alloys. Eye glass frames, cellular telephone antennas, 

frames for brassiers, and golf clubs all take advantage of the superelastic properties 

of SMAs (Asai and Suzuk, 2000; Hsu et al., 2000) 

2 

New opportunities for expanding the use of SMAs in the design of smart 

structure is being realized by embedding NiTi wires into polymers, elastomers, and 

fiber-reinforced/epoxy composites (Hugh and Charles, 1999). The embedded wires 

can be used to activate flexible materials, like polymers and elastomers, or improve 

the toughness and buckling resistance of brittle materials, like fiber-reinforced/epoxy 

composites. In developing these materials, research efforts are focussing on 

overcoming teclmical barriers such as: increasing actuator stroke, building reliable 

smart material data bases, developing robust distributed parameter control strategies, 

and mathematically modeling smart systems. 

1.1.1 General Principles of SMA 

When martensite NiTi is heated, it begins to change into austenite (Figure 

1.1 a). The temperature at which this phenomenon starts is called austenite start 

temperature (As). The temperature at which this phenomenon is complete is called 

austenite finish temperature (Ar). When austenite NiTi is cooled, it begins to change 

onto martensite. The temperature at which this phenomenon starts is called 

martensite start temperature (Ms). The temperature at which martensite is again 

completely reverted is called martensite finish temperature (Mr), (Istvan, 2001). 
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3 

Composition and metallurgical treatments have dramatic impacts on the 

above transition temperatures. From the point of view of practical applications, NiTi 

can have three different forms: martensite, stress-induced martensite (superelastic), 

and austenite. When the material is in its martensite form, it is soft and ductile and 

can be easily deformed (somewhat like soft pewter). Superelastic NiTi is highly 

elastic (rubber-like), while austenitic NiTi is quite strong and hard (similar to 

titanium) (Figure 1.1 b). The NiTi material has all these properties, their specific 

expression depending on the temperature in which it is used. 

100'% 
AI Md 

Temperature 

(a) 

Strain 

(b) 

Austonlto 

Stre-ss induced mart"nslt(> 
fSuporcl:J5tJc) 

Martrnslfo 

Figure 1.1. (a) Martensitic transformation and hysteresis,H upon a change of 

temperature.(b) Stress-strain behavior of different phases ofNiTi at constant 

temperature.(Istvan, 2001). 

1.1.2 Hysteresis 

The temperature range for the martensite to austenite transformation, i.c. soft 

to hard transition, that takes place upon heating is somewhat higher than that for the 

reverse transformation upon cooling (Figure 1.1 a). The difference between the 

transition temperatures upon heating and cooling is called hysteresis. Hysteresis is 
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4 

generally defined as the difference between the temperatures at which the material is 

50 % transformed to austenite upon heating and 50 % transformed to martensite upon 

cooling. This difference can be up to 20-30 DC In practice, this means that an alloy 

designed to be completely transformed by body temperature upon heating (Ar< 37 

DC) would require cooling to about +5 DC to fully retransform into martensite (Mr). 

1.1.3 Thermoelastic Martensitic Transformation 

The unique behavior ofNiTi is based on the temperature dependent austenite 

to martensite phase transformation on an atomic scale, which is also called 

thermoelastic martensitic transformation. The them10elastic martensitic 

transformation causing the shape recovery is a result of the need of the crystal lattice 

structure to accommodate to the minimum energy state for a given temperature. In 

NiTi, the relative symmetries between the two phases lead to a highly ordered 

transformation, where the displacements of individual atoms can be accurately 

predicted and eventually lead to a shape change on a macroscopic scale. The crystal 

structure of martensite is relatively less symmetric compared to that ofthe parent 

phase. 

If a single crystal of the parent phase is cooled below Mr, then martensite 

variants with a total of24 crystallographically equivalent habit planes are generally 

created. There is, however, only one possible parent phase (austenite) orientation, 

and all martensitic configurations revert to that single defined structure and shape 

upon heating above Ar. The mechanism by which single martensite variants deform 

is called twinning, and it can be described as a mirror symmetry displacement of 

atoms across a particular atom plane, the twinning plane (Buehler et 01., 1967). 

While most metals deform by slip or dislocation, NiTi responds to stress by simply 
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