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ABSTRACT

This thesis investigates analytically and numerically the flow and heat transfer of

nanofluids: between two infinite parallel plates, over a wedge, and past a stretching

sheet. Two problems have been considered for the parallel plates. A mathematical

model of squeezing unsteady nanofluid flow is studied firstly in the presence of

thermal radiation, and secondly, in the presence of both thermal radiation and heat

generation/absorption. The solutions are obtained by using homotopy perturbation

method (HPM) and fourth-order Runge-Kutta with shooting technique (RK4). The

flow of nanofluids over a wedge leads to the derivation of the Falkner-Skan equation

and this problem have been solved using the optimal homotopy asymptotic method

(OHAM). Finally, three issues have been considered for nanofluids past the stretching

sheet. Firstly, we considered a problem of flow and heat transfer of nanofluids over

a dynamic stretching sheet with non-linear velocity and variable thickness in the

presence of Brownian motion and thermal radiation. Secondly, the effect of a chemical

reaction is taken into account. These two problems have been investigated using the

OHAM and RK4. Lastly, a mathematical model for the effect of chemical reaction in

a natural convective boundary-layer flow of nanofluids has been evolved. The HPM

with Pade approximation (HPM-Pade) along with RK4 is used to solve the nonlinear

governing equations. It is found that the thermal radiation had recorded a significant

influence, in which it has been observed that the growing value of the thermal radiation

parameter results to the decrease in the temperature profile in the case of squeezing

flow problem. Thereby both the thermal boundary layer thickness and temperature

profile have substantially risen in the flow and heat transfer over a stretching sheet

cases. From the subsequent cases, we also found that the temperature is high due to

the increase in both the Brownian motion and the thermophoresis parameters, while the

scenario reverses as the nanoparticle concentration only increases with the strengthen

thermophoresis parameter and slow down with an increase in the Brownian motion

parameter.
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ABSTRAK

Tesis ini mengkaji secara analitik dan berangka aliran dan pemindahan haba

nanobendalir: yang berada di antara dua plat tak terhingga yang selari, terhadap baji

dan melintasi helaian yang meregang. Dua masalah telah dipertimbangkan untuk

aliran melalui plat selari. Pertamanya, model matematik terhadap aliran tak mantap

nanobendalir yang dipicit dengan kehadiran sinaran terma dan keduanya, dengan

kehadiran sinaran terma dan penjanaan/penyerapan haba. Penyelesaian diperoleh

menggunakan kaedah usikan homotopi (HPM) dan skim Runge-Kutta peringkat

empat dengan teknik tembakan (RK4). Aliran nanobendalir terhadap baji pula

mendorong kepada pembentukan persamaan Falkner-Skan dan telah diselesaikan

menggunakan kaedah homotopi asimptot optimum (OHAM). Akhirnya, tiga isu

telah dipertimbangkan untuk nanobendalir yang melintasi helaian yang meregang.

Pertamanya, masalah aliran dan pemindahan haba nanobendalir terhadap helaian yang

meregang secara dinamik dengan halaju tak linear dan ketebalan yang berbeza diiringi

dengan kehadiran pergerakan Brown dan sinaran terma. Keduanya, kesan tindak

balas kimia telah diambil kira. Kedua-dua masalah ini telah dikaji menggunakan

OHAM dan juga RK4. Akhirnya, model matematik bagi kesan tindak balas kimia

pada perolakan tabii di dalam aliran lapisan sempadan nanobendalir telah dikaji.

Kaedah HPM dengan anggaran Pade (HPM-Pade) bersama dengan RK4 digunakan

untuk menyelesaikan persamaan menakluk tak-linear. Didapati bahawa sinaran

terma memberi kesan yang penting, yang mana pada masalah aliran cubitan dengan

meningkatkan parameter sinaran terma menghasilkan pengurangan pada profil suhu.

Pada waktu yang sama pada masalah helaian merenggang, kedua-dua ketebalan lapisan

sempadan terma dan profil suhu meningkat secara ketara. Pada masalah yang terakhir,

didapati bahawa suhu meningkat akibat dari pada peningkatan parameter gerakan

Brown dan termoforesis. Sementara itu, senario sebaliknya berlaku apabila kepekatan

nanozarah hanya meningkat dengan kekuatan parameter termoforesis dan perlahan

dengan peningkatan parameter gerakan Brown.
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LIST OF ABBREVIATIONS

HPM - Homotopy perturbation method

OHAM - Optimal homotopy asymptotic method

MHD - Magnetohydrodynamic flow

HAM - Homotopy analysis method

BVP - Boundary value problem

IVP - Initial value problem

ADM - Adomian decomposition method

DTM - Differential transformation method

LSM - Least square method

CM - Collocation method

DRA - Duan-Rach approach

PHF - Prescribed heat fluxPTTA
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xxii

NOMENCLATURE

Roman Letters

a, b - Positive constants along the sheet

A - Ratio of the rates of free stream velocity to

the parameter velocity of the stretching sheet

A1, A2, A3 - dimensionless constants

Bi - Biot number

B0 - Magnetic field

C - nanoparticle volume fraction

Cf - Skin friction coefficient of the fluid

Ci (i = 1, 2, ...,m) - Concentration of each species i

Cj (j = 1, 2, ...,m) , K - positive Convergence-control parameters

Cw - nanoparticle volume fraction at the sheet

surface (wall)

C∞ - Ambient nanoparticle volume fraction

DB - Brownian diffusion coefficient, kg/ms

DT - Thermophoretic diffusion coefficient, kg/msK

Ec - Local Eckert number

f(η) - Dimensionless stream function
−→
f - Body force per unit mass

h - Convective heat transfer coefficient

h - Step size

H (p) , H (p, η) - Auxiliary functions

J - Flux for the conserved quantity φ

Ji - Flux

k1 - Rate of chemical reaction

kf - Effective thermal conductivity of base fluid,

W/mK
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xxiii

knf - nanofluid’s thermal conductivity

ks - thermal conductivity of the solid material

K - Dissipation function

l - initial position of the plates

L - Linear operator

Le - Lewis number

M - Magnetic parameter

n - velocity power index parameter

N - Radiation parameter

N - Nonlinear operator

Nb - Brownian motion parameter

Nt - Thermophoresis parameter

Nu - Nusselt number

Nur - Reduced Nusselt number

p - Pressure N/m2

P - generalized pressure

PE(η) - Polynomial of degree at most E

Pr - Prandtl number

qm - Wall mass flux, kg/sm2

qr - Radiative heat flux

qw - Wall heat flux, W/m2

Q - heat generation/absorption coefficient

QG(η) - Polynomial of degree at most G

R - Consumption term

Rex - Local Reynolds number

S - squeezing integer

Sc - Schmidt number

Sh - Sherwood number

Shr - Reduced Sherwood number

T - Local fluid temperature, K

t - dimensionless time

Tw - Convective surface temperature, K
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xxiv

T∞ - Ambient temperature, K

u, v - Velocity components along x and y

directions, m/s

Uw - Stretching sheet velocity at wall, m/s

U∞ - Free stream velocity, m/s
−→
V - Velocity vector

x - Coordinate along the sheet

y - Coordinate normal to the sheet

z - Independent variable

′ - Differentiation with respect to η

Greek Letters

α - Thermal diffusivity of the base fluid,

m2/s

β - Wedge angle parameter

η - Similarity variable

γ - Chemical reaction parameter

Γ - boundary

λ - heat generation parameter

µ - Absolute viscosity of the base fluid,

Ns/m2

νf - Kinematic viscosity of the base fluid,

m2/s

∇ -
∂

∂x
i+

∂

∂y
j (vector operator)

ω - vorticity function

Ω - domain of the boundary
∂
∂n

- Normal derivative pointing outward from Ω

(ρC)f - Effective heat capacity of the base

fluid, kg/m3K

(ρC)p - Effective heat capacity of the

nanoparticle material, kg/m3K

ρf - Density of the base fluid, kg/m3
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xxv

ρp - Nanoparticle mass density, kg/m3

ψ - Stream function

σe - Electrical conductivity

τ - (ρC)p/(ρC)f

τ - Viscous stress tensor

θ - Dimensional temperature

θc - Ratio of the temperature of the hot

fluid to the ambient temperature

φ - Dimensionless nanoparticle volume

fraction

Superscripts

′ - Differentiation with respect to η

Subscripts

f - fluid

nf - nanofluid

p - solid particle

w - surface (w)

∞ - condition at the free streamPTTA
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