
CODE CLONE DETECTION USING STRING BASED TREE i\'IATCi-lING

TECHNIQUE

NORFARADILLA BINTI WAHID

A project report submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computer Science and Information System

Universiti Teknologi Malaysia

OCTOBER 2008

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

III

To my heiol'ed poren/s. fiance ond/omiiy.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

IV

ACKNOWLEDGEMENT

In preparing this report. I was in contact with many people. researchers, and

academicians. They have contributed towards my understanding and thoughts. In

particular, I wish to express my sincere appreciation to my project supervisor, Dr Ali

Selamat. for encouragement. guidance, critics and friendship.

My fellow postgraduate students should also be recognized for their support.

My sincere appreciation also extends to all my colleagues and others who have

provided assistance at various occasions. Their views and tips are useful indeed.

Without their continued support and interest. this thesis would not have been the

same as presented here. PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

v

ABSTRAK

Pengklonan kod telah menjadi suatu isu sejak beberapa tahun kebelakangan

ini selari dengan peliambahan jumlah aplikasi web dan perisian berdiri sendiri pada

hari ini. Pengklonan memberi kesan yang sangat besar kepada fasa penyelenggaran

sistem kerana secm'a tidak langsung peningkatan bilangan pengulangan kod yang

sama di dalam sesebuah sistem akan menyebabkan kompleksiti sistem turut

meningkat. Terdapat banyak teknik pengesanan klon telah dihasilkan pada hari ini

dan secm'a umumnya ianya boleh dikategorikan kepada pengesanan berasaskan

jujukan perkataan. token. pepohon dan semantik. Tujuan projek ini adalah untuk

mengetahui kemungkinan untuk menggunakan suatu teknik dari pemetaan ontologi

untuk menyelesaikan masalah ini. tetapi kami tidak menggunakan ontologi di dalam

pengesanan klon. Telah dibuktikan di dalam eksperimen awalan bahawa ia mampu

untuk mengesan klon. Oi dalam tesis ini kami menggunakan dua aras pengesanan.

Aras pertama menggunakan 'pelombong sub-pepohon terkerap' di mana ia mampu

mengesan sub-pepohon yang sama antara fail yang berbeza. Kemudian sub-pepohon

yang sama dinyatakan dalam bentuk ayat dan persamaan antm'a kedua-duanya dikira

menggunakan 'metrik ayat'. Daripada eksperimen. kami mendapati bahawa sistem

kami adalah tidak berganting kepada sebarang bahasa dah menghasilkan keputusan

yang bagus dari segi precision tetapi tidak dari segi recall. Ia mampu mengesan klon

serupa dan yang hamper sama.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

VI

ABSTRACT

Code cloning have been an issue in these few years as the number of

available web application and stand alone software increase nowadays. The major

consequences of cloning is that it would risk the maintenance process as there are

many duplicated codes in the systems that practically increase the complexity of the

system. There are many code clone detection techniques that can be found nowadays

which generally can be group into string based, token based. tree based and semantic

based. The aim of this project is to find out the possibility of using a technique of

ontology mapping technique to solve the problem, but we are not using the real

ontology for the clone detection. It has been prove that there is the possibility as it

manages to detect clone code. In this thesis the clone detection is using two layers of

detection: i.e. structural similarity and string based similarity. The structural

similarity is by using subgraph miner where it capable to get the similar subtree

between different files. And then we extract all elements of that paJ1icular subtree

and treat the elements as a string. Two strings from different files then applied with

similarity metric to know whether it is a clone pair. From the experimental result we

found that the system is language independent but the result is good in precision but

not so good recall. It is also capable to detect two main types of clone. i.e identical

clones and similar clones.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

\"11

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARA TION II

DEDICATION III

ACKNOWLEDGEIvlENT 1\'

ABSTRAK \'

ABSTRACT \'1

TABLE OF CONTENTS \'11

LIST OF TABLES x

LIST OF FIGURES XI

LIST OF ABBREVIATIONS XIII

LIST OF SYMBOLS XI\'

LIST OF APPENDICES X\'

1 INTRODUCTION

1.1 Overview

1.2 Background orthe Problem ') -

1.3 Problem Statement 5

1.4 Objectives of the Project 6

1.5 Seope of the Project 7

1.7 Thesis outline 7

2 LITERATURE REVIEW

2.1 Introduction

') ') Code Cloning l)

2.2,1 Reasons of code cloning 11

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

VIII

2.2.2 Code cloning Consequences 14

2.2.3 Code Cloning versus Plagiarism 15

2.2.4 Code Cloning and the Software

Copyright Infringement Detection 16
') .., _ • .:l Code Cloning in web applications 17

2.3.1 Definition of clones from web application research

View 19

2.3.2 Source of Clones 19

2.4 Existing Work of Code Cloning Detection 20

2.4.1 String based 22

2.4.2 Token based 23

2.4.3 Tree based 24

2.4.4 Semantic based 25

2.4.5 Fingerprinting 25

2.4.6 Analysis on Current Approaches 26

') -_.J The Semantic \Veb 28

2.5.1 Architecture of the Semantic Web 29

2.5.2 Web Ontology 30

') - .., Web Ontology Description Languages
..,..,

_.J . .:l .:l.:l

2.5.4 Various Application of Ontology 34

2.5.5 Ontology Mapping 36

2.5.6 Ontology Mapping Approaches 39

2.5.7 The Ontology Mapping Technique 40

2.5.7.1 String Metrics 45

2.5.7.2 Frequent Subgraph Mining 47

2.5.7.3 MoFa, gSpan. FFSM, and Gaston 48

2.5.7.4 Representing Web Programming as Tree 50

2.6 Clone Detection Evaluation 52

2.7 Different with work by .larzabek 54

2.7.1 Clone Miner by .larzabek 55

2.7.1.1 Detection Of Simple Clones 56

2.7.1.2 Finding Structural Clone 56

2.7.2 Comparison of existing work and our 58

proposed work.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

3 RESEARCH METHODOLOGY

3.1 Introduction

., 7
j.- Proposed technique of clone detection

3.2.1 Structural Tree Similarity

., 7 7
j.-.- String based tree matching

., .,
Preprocessing j.j

3.4 Frequent subgraph mining

3.5 String based matching

3.6 Clone Detection Algorithm

3.7 Clone Detection Evaluation

4 EXPERIMENT AL RESULT AND DISCUSSION

4.1 Introduction

4.2 Data representation

4.2.1 Original source program into XML format

4.2.2 Subtree mining data representation

4.3 Frequent Subtree Mining

4.4 String metric computation

4.5 Experimental setup

4.6 Experimental results

4.7 Comparison of result using different parameters

5 CONCLUSION

5.1

5.2

5.3

REFERENCES

Appendices A - C

Introduction

Future Works

Strength of the system

IX

61

62

65

67

70

71

73

75

75

77

78

79

81

83

86

87

88

96

103

104

104

105

112

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 A summary of code cloning and plagiarism detection 16

2.2 Brief description of ontology languages

List of string metric 45

3.1 Example of cross-table used to compare programs across

two systems 71

3.2 Brief description of each frequent sub graph miner 72

4.1 Data for program testing 89

4.2 Experimental result using GSpan miner 91

4.3 Experiment using different parameter value 99

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

XI

LIST OF FIGURE

FIGURE NO TITLE PAGE

I. I A sample parse tree with generated characteristic 4

vectors.

2. I Example of a pair of cloned code in traditional program. I 1

2.2 Tree-diagram for the Reasons for Cloning 13

') ,., _ . .) Variation of clone detection research and the

classification of detection 22

2.4 Architecture of Semantic Web 29

') -_.) Simple example of ontology 32

2.6 Simple example of mapping between two ontologies. 38

2.7 Illustration of ontology mapping approaches 40

2.8 Tree representation of an XML source code 48

2.9 Clones per file 57

2. I 0 Frequent clone pattern with file coverage 58

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

XII

2.11 Similar node structure between two XML code fragments 59

2.12 Difference of work by .Tarzabek and Basit(2005) and our

proposed work 60

3.1 Mapping between concepts of O'a and O'p 65

.., /
,).- Diagrammatic view of clone detection technique 69

.., ..,
Preprocessing phase 70 ,).,)

3.4 Illustration of detected clone within two trees 73

3.5 A pair of source code fragment classified as nearly identical.

nearly-identical 74

3.6 Clone detection algorithm 75

4.1 Transformation of original PHP code into HTML code 80

4.2 XML form of the previous HTML code 81

4.3 A tree as list of nodes and edges 82

4.4 Example of tree as vertices and edges list 83

4.5 Frequent subtrees generated by graph miner. 85

4.6 Code fragment containing original frequent subtree. 87

4.7 Real output from the clone detection system 90

4.8 Recall and precision for GSpan-Jaro Winkler 93

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

XIII

4.9 Robustness of GSpan-Jaro Winkler 93

4.10 Computational time for GSpan-Jaro Winkler 94

4.11 Recall and Precision for GSpan-Levenshtein Distance 94

4.12 Robustness for GSpan-Levenshtein Distance 95

4.13 Computational time for GSpan-Levenshtein Distance 95

4.14 Two close clones cannot be taken as a single clone 98

4.15 Precision result using different minimum support and 100

threshold

4.16 Recall result using different minimum support and 101

threshold

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

XIV

LIST OF ABBREVIATIONS

\VA Web Application

TS Traditional Software

CCO Code Clone Detection

PD Plagiarism Detection

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

Sim(.\'/, s:,)

COIII/J1(.\'/, s:')

Duns/,s:,)

Winkler(.\'/. s:')

max COl71SlIhSlring

lenglh(sl)

lenglh(·\'c)

IILen,J

IILen,c

jJ

(1

LIST OF SYMBOLS

similarity between two strings. s] and S2

commonality between s] and S2

difference between s] and S2

improvement value to improve the result

the sum of the lengths of common substring

length of s]

length of S2

length of the unmatched substring from s]

length of the unmatched substring from S2

a parameter of range 0 and .::1:}

a threshold

xv

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

XVI

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Project Activities 111

B Existing Works of Code Clone Detection 113

C Experimental result tables 117

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER I

INTRODUCTION

1.1 Ovcr'vicw

As the world of computers is rapidly developing, there are tremendous needs

of software development for different purposes. And as we can see today. the

complexity of the software been developed are different between one and another.

Sometimes, developers take easier way of implementation by copying some

fragments of the existing programs and use the code in their work. This kind of work

can be called as code cloning. Somehow the attitude of cloning can lead to the other

issues of software development for example the plagiarism and software copyright

infringement (Roy and Cordy. 2007).

In most of the cases. in order to figure out the issues and to help better

software maintenance. we need to detect the codes that have been cloned (Baker.

1995). In the web applications development. the chances of doing clones are bigger

since there are too many open source software available in the Internet (Bailey and

Burd. 2005). The applications are sometimes just a 'cosmetic' of another existing

system. There are quite a number of researches in software code cloning detection.

but not so particularly in the area of web based applications.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

1.2 Background of the Problem

Software maintenance has been widely accepted as the most costly phase

of a software lifecycle. with figures as high as 80% of the total development cost

being repOlied (Baker, 1995). As cloning is one of the contributors to\yards this cost.

the software clone detection and resolution has got considerable attention from thc

software engineering research community and many clone detection tools and

techniques have been developed (Baker, 1995). However, when-it comcs to

commercialization of the software codes. most of the software house developers tend

to claim that their works are 100% done in house without using other codes copics

forrh various sources. This has made a difficulty for the intellectual property

copyright entities such as SIRIM and patent searching offices in finding the

genuineity of the software source codes developed by the in house company. Thcre is

a need to identif~y the software source submitted for patcnt copyright application to

be a genuine source code without having any copyright infringements. Besides that.

the cloning is somehow raising the issue of plagiarism. The simplest example is in

the academic area where students tend to copy their friends' works and submit the

assignments with only slight modifications.

Usually, in software development process. there is a nccd for components

reusability either in designing and coding. Reuse in object-oriented systems is made

possible through different mechanisms such as inheritance. shared librarics. object

composition. and so on. Still. programmcrs often need to reuse components which

have not been designed for reuse. This may happen during the initial of systcms

development and also when the software systems go through the cxpansion phase

and new requirements have to be satisfied. In these situations. thc programmcrs

usually follow the low cost copy-paste technique. instead of costly rcdesigning-thc­

system approach. hence causing clones. This type of codc cloning is the most basic

and widely used approach to\yards software reusc. Scyeral stuciies suggest that as

much as 20-30% of large soft\yare systcms consist of cloned codc (Krinke.

2001). The problem with code cloning is that errors in thc original must be lixcd in

every copy. Other kinds of maintenance changes. for instance. cxtensions Of

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

..,
-'

adaptations, must be applied multiple times. too. Yet. it is usually not documented

where code was copied. In such cases, one needs to detect them. For large systems.

detection is feasible only by automatic techniques. Consequently. several techniques

have been proposed to detect clones automatically (Bellon et al.. 2007).

There are quite a number of works that detect the similarity by representing

the code in tree or graph representation and also some using string-based detection.

and semantic-based detection. Almost all the clone detection technique had the

tendency of detecting syntactic similarity and only some detect the semantic part of

the clones. Baxter in his work (Baxter et al.. 1998) proposes a technique to extract

clone pairs of statements, declarations, or sequences of them from C source fi les. The

tool parses source code to build an abstract syntax tree (AST) and compares its

subtrees by characterization metrics (hash fLmctions). The parser needs a "full­

fledged" syntax analysis for C to build AST. Baxter's tool expands C macros (define.

include, etc) to compare code portions written with macros. Its computation

complexity is 0(/1). where n is the number of the subtree of the source files. The hash

function enables one to do parameterized matching. to detect gapped clones. and to

identify clones of code portions in which some statements are reordered. In AST

approaches. it is able to transform the source tree to a regular form as we do in the

transformation rules. However. the AST based transformation is generally expensi\"e

since it requires full syntax analysis and transformation.

In other work (Jiang et al. 2007) present an efficient algorithm for identifying

similar subtrees and apply it to tree representations of source code. Their algorithm is

based on a novel characterization of subtrees with numerical \"ectors in the Euclidean

space RIl and an efficient algorithm to cluster these \"ectors with respected to the

Euclidean distance metric. Subtrees \\"ith vectors in one cluster are considered

similar. They have implemented the tree similarity algorithm as a clone detection

tool called DECKARD and e\"aluated it on large code bases \\Titten in C and Ja\a

including the Linux kernel and JDK. The experiments sho\\" that DECK:\RD is both

scalable and accurate. It is also language independent. applicable to any language

with a formally specified grammar.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

4

Key:

8 " t rmm iffel-?~'a'1! , ,

(nQnlermi~al 1

: irrelevant :

(mergeable ~
I vectoT I
~ ~ ~~r9id y~~ ~ ~

Figure 1.1: A sample parse tree with generated characteristic vectors[14].

In (Krinke, 2001), Krinke presents an approach to identify similar code in

programs based on finding similar subgraphs in attributed directed graphs. This

approach is used on program dependence graphs and therefore considers not only the

syntactic structure of programs but also the data flow within (as an abstraction of the

semantics). As a result, it is said that no tradeoff between precision and recall- the

approach is very good in both.

Kamiya in one of his work in (Kamiya et al., 2002) suggest the use of suffix

tree. In the paper they have used a suffix-tree matching algorithm to compute token­

by token matching, in which the clone location information is represented as a tree

with sharing nodes for leading identical subsequences and the clone detection is

performed by searching the leading nodes on the tree. Their token-by token matching

is more expensive than line-by-line matching in terms of computing complexity since

a single line is usually composed of several tokens. They proposed several

optimization techniques especially designed for the token-by-token matching

algorithm, which enable the algorithm to be practically useful for large software.

Appendix B of this thesis, describe briefly some existing techniques of code

clone detection and plagiarism. It also discusses the strength and weaknesses of each

technique.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

5

1.3 Problem Statement

As we can see from the previous works, some of the works are scalable, can

detect more than one type of clone. But some of them face the trade off of the

computational complexity. It may be happen because most of the techniques apply

expensive syntax analysis for transformation. From the literature that have been

done, more than half of existing techniques used tree- based detection as it were

more scalable. But most of the techniques do a single layer detection which means

after the transformation into normalized data e.g. tree, graph, and etc, the process of

finding the similarity of code, i.e. code clone. were done directly by processing each

nodes in the data. All possible clones need to be search directly without some kind of

filtering, which it can cause higher cost of computational process.

As ontology has been widely used nowadays, we cannot deny the imp0l1ance

of ontology in current web technology. The major similarity of ontology and clone

detection works is that it both can be represented as tree. Beside that, there are many

works have been done to do mapping of different ontologies between each other,

which is actually to find out which concepts of the first ontology are the same with

the second one. This activity is actually almost the same with what need to be done

in detecting clone codes.

Since there are some kinds of similarity between both problems, so detecting

clone in source code may be able to be done using the same way as mapping the

ontologies. The research question of this thesis is to identW'the possibility o/using a

technique 0/ ontology mopping to detect clones in a 11'eb- based application.

Obviously there will be no ontologies that going to be used in the experiments since

we are dealino with source code and not ontology. But we will use the technique of b ~

mapping to detect clones.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

6

In order to achieve the aim, there are a few questions that need to be solved.

\Vhat are the attributes or criteria that might be possible to be cloned in web

documents? What are the approaches that had been proposed in the previous research

in the ontology mapping area than had been used in clone detection tool? What are

the issues of the recovered approach and how to solve it?

1.4 Objectives of the Project

The all11 of this research is to develop a clone detection framework by

manipulating an existing work of mapping ontology. In order to achieve this aim. the

following objectives must be fulfilled.

1. To analyze various techniques related to code clone detection that has been

proposed by previous researches.

2. To develop a clone detection program by usmg the ontology mappmg

technique that will be proposed in the project.

3. To test the program using recall and precIsIon measurements as the mam

metrics.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

Acknowledgement

ACKNOWLEDGEMENT

I would like to thank many people, without their help this thesis would not have

materialised. To my supervisor professor Keith Alexander, thank you so much for

your patience, for your time, for your academic and moral support and for reading

all those unending drafts. Grateful thank is also due to my co-supervisor Mr John

Hudson for constructive comments and constant support throughout this PhD

process.

Special thanks also go to the staff for Centre for Facilities Management (CFM);

the staff of research office for the School in Built Environment and

friends/colleagues in the post graduate room for their support, time and

friendships.

To my wonderful son, Sayid Bajrai and wonderful daughter, Hanan Bajrai, thank

you for putting up for so many years with 'ummi' who 'lived in the study', for

your love, understanding and encouragement. To my parents and family whom I

am sure would have been proud, thank you so much for believing in me.

Lastly, but most especially to my beloved husband, your love, patience and

support have been unending. Thank you for providing me with the time and space

I needed, for the lovely cards, for the cups of hot chocolate and for believing in

me. This thesis is dedicated to you.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER 2

LITERATURE REVIEW

2.1 Intr"oduction

Software is normally used in computer systems in our daily life and it is

getting larger and more complex. As the software grow biggcr and bigger. the

number of software engineers and programmers attached to thc dC\'clopment of the

software also increase at the same time. The more persons involved in thc sort\\are

development life cycle. it may influence the complexity of thc soll\vare dcpending on

their habits and style in writing software code.

In the software development. reuse in object-oricnted systems is made

possible through different mechanisms such as inheritance. shared libraries. object

composition. and so on. Still. programmers orten necd to reuse components \\hich

are not designed for reuse. This may happen during the initial or systems

development and also \vhen the sol1\vare systems go through the expansion phase

and new requirements have to be satisfied. In these situations. the programmers

usually follow the low cost copy-paste technique. instead of costly redesigning-the­

system approach. hence causing clones. This type of code cloning is the nHl~t ha~ic

and widely used approach to\vards sort\\are reuse.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

l)

There are various reasons that encourage programmers to do code cll1ning.

For whatever reason it is. the action of doing copy and paste always lead to the code

cloning in pal1icular software that at the end will difficult the so!t\\are maintenance

because of the appearance of the duplicating codes. This scenario al\\ays happens in

the implementation phase of stand alone system as \\ell as \\eb- based application.

Meanwhile. the growth of open source software also gi\"e a great impact on the

intellectual property right to the owner of the source code. There is a need to detect

and validate the genuinely of a software code to identify \\hether the code is actually

a copied code or a genuine code before a copyright status can be gi\"Cn to the

applicant.

2.2 Code Cloning

Code duplication or copying a code fragment and then reuse by pasting \\ith

or without any modifications is well known as code smell in so!t\\are maintenance.

This type of reuse approach of existing code is called coile clolling and the pasted

code fragment (with or without modifications) is called a clone of the original.

Several studies show that duplicated code is basically the result or copying existing

code fragments and using then by pasting with or without minor moliilications.

People always believe that the major cause of cloning is by the act of copy and paste.

Some say that it may happen accidentally. In some cases. a ne\\ c1e\"ClopecJ system is

actually a 'cosmetic' of another existing system. This kind or case usually happen in

the web based application. They tend to modil\ the appearance or the applicatinn or

system by changing the background color. images. etc.

Refactoring of the duplicated code is another prIme Issue 111 sn!"t\\:lre

maintenance although se\"eral studies claim that rel~1ctoring or certain elunes i" 11(\t

desirable and there is a risk of remo\ing them. IIl1\\e\er. it is alst) \\ idel:- agreed til:lt

clones should at least be detected.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

REFERENCES

Al-Ekram. R. Kapser. c., Godfrey, M. (2005), Cloning by Accident: An

Empirical Study of Source Code Cloning Across Software Systems,

International Symposium on Empirical Software Engineering.

Antoniou. G. and Van I-Iarmelen, F., (2003). Web Ontology Language: OWL. In

Handbook on Ontologies in li?{ormation Systems, 67-92.

Bailey. J. and Burd. E., (2002). Evaluating Clone Detection Tools for Use during

Preventative Maintenance, Proceeding Second IEEE International Workshop

Source Code Analysis and Manipulation (SCAM ·02).IEEE:36-43.

Baker, B. S. (1995) On finding duplication and near- duplication in large

software system. In Proc. 2"d Working C01?{erence on Reverse Engineering.

1995. Toronto, Ont.. Canada: IEEE.86-95.

Baxter, L Yahin, A., Moura. L., and Anna, M. S. (1998). Clone detection using

abstract syntax trees. In Proc. IntI. C01?{erence on Soft wore Maintenonce.

Bethesda. MD, USA:IEEE. 368-377.

Baxter, J.D. and Churchett. D., (2002). Using Clone Detection to Manage a

Product Line. In ICSR7 Workshop.
Bellon, S .. Rainer. K., and Giuliano, (2007). A. Comparison and Evaluation of

Clone Detection Tools. In Transactions on So.ft11'are Engineering. 33(9):

577-591

Benassi. R., Bergamaschi. S., Fergnani. A., and MiselL D. (2004). Extending a

Lexicon Ontology for Intelligent Information Integration, Europeon
. S . '778187

COI?!erence on Art(ficialintelligence (ECAJ200-l) .. ValencIa. pam._ ---

Borgelt B., and Berthold. M. R. (2002). Mining Molecular Fragments: Finding

IEEE I t . t' lal Conference on Data
Relevant Substructures of Molecules. "~~ n ell1a IOI ,

Mining (ICDM 2002, Maebashi. Japan). 51-58 IEEE Press. Piscataway. N.l.

USA.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

106

Brank, J., Grobelnik, M., Mladenic, D., (2005). A survey of ontology e\'aluation

techniques. In SIKDD 2005 at lIlulticonjerence IS 2005.

Breitman, K. K. Casanova, M. A. and Truszkowsk \11 (2006) S . If' l
, II. . emantlc 'e):

concepts, technologies and applications. Springer.

Calasanz, R.T., Iso, J.N., Bejar, R., Medrano, P.M. and Soria, F.Z., (2006)

Semantic interoperability based on Dublin Core hierarchical one-to-one

mappings. International Journal oj Metadata, Semantics and Ontologies.

1(3): 183-188.

Calefato, F., Lanubile, F., Mallardo, T., (2004). Function Clone Detection in Web

Applications: A Semiautomated Approach. Journal Web Engineering. 3(1):

3-21.

De Lucia, A., Scam1iello, G., and Tortora, G., (2004). Identifying Clones in

Dynamic Web Sites Using Similarity Thresholds. Proc. IntI. Con! on

Enterprise Information Systems (ICEIS'04). 391-396.

Di Lucca, G. A., Di Penta, M., Fasilio, A. R., and Granato, P., (2001). Clone

analysis in the web era: An approach to identify cloned web pages, Seventh

IEEE Workshop 011 Empirical Studies oj Software Maintenance. 107-113.

Di Lucca, G. A., Di Penta, M., Fasolino, A. R., (2002). An Approach to Identify

Duplicated Web Pages. COllIPSAC: 481-486.

Dou, D., and McDem1Ott, D (2005). Ontology Translation on the Semantic Web.

Journal on Data Semantics (JoDS) 11: 35-57.

Ducasse, S., Rieger, M. and Demeyer, S., (1999) A Language Independent

Approach for Detecting Duplicated Code, Proceeding International

Conference Software lIlaintenance (ICSM '99).

Ehrig, M. (2006). Ontology Alignment: Bridging the Semantic Gap. New York.

Springer.

Ehrig, M., and Sure, Y. (2000). Ontology Mapping - An Integrated Approach.

Lecture Notes in Computer Science, No. 3053. 76-91.

Estival,D., Nowak, c., and Zschorn, (2004). A. Towards Ontology-Based Natural

L P . DD,/RDFS and OWL in Lang1lage Technology: -1111 anguage rocessmg. r,

Workshop 011 NLP and XlIIL (NLPXML-2004). ACL 200-1. Barcelona. Spain.

d L· T (1998) "An Oroanization
Fox, M.S., Barbuceanu, M., Gruninger, M., an 111, •. , ' ~L L

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

107

Ontology for Enterprise Modeling", In Simulating Organizations:

Computational Models of Institutions and Groups, M. Prietula, K. Carley &

1. Gasser (Eds), Menlo Park CA: AAAI/MIT Press: 131-152.

Gasevic, D., and Hatala, M., (2006). "Ontology mappings to improve learning

resource search," British Journal of Educational Technology. 37(3):375-389.

Gruber, T. R., (1993). A translation approach to p011able ontologies. Knowledge

Acqllisition. 5(2): 199-220.

Huan, CC . .T., Wang, W. and Prins, L (2003)."Efficient Mining of Frequent

Subgraph in the Presence of Isomorphism", in Proceedings of the 3rd IEEE

International COT?{erence on Data Mining (ICDM), pp. 549-552.

Ichise, R. (2008). Machine Learning Approach for Ontology Mapping Using

Multiple Concept Similarity Measures. Seventh IEEEIACIS International

COT!ference on Computer and li?{ormation Science (icis 2008): IEEE: 340-

346.

Jarzabek. S and Basil. H. A. (2005).Detecting Higher-level Similarity Patterns in

Programs, Ellropean Sofill'are Engineering COT?{erence and ACM SIGSOFT

Symposillm on the FOllndations o.{Softl1'are Engineering, Lisbon.

Jiang, 1., Misherghi,G .. Su.Z., Glondu,S .. (2007). "DECKARD: Scalable and

Accurate Tree-based Detection of Code Clones", In Proc. 29th IEEE

International COT!ference on Software Engineering (ICSE 2007). IEEE:. 96-

105.

lin, T., Fu, Y., Ling, X., Liu, Q. and Cui. Z .. (2007). A Method of Ontology

Mapping Based on Subtree Kernel. IITA: 70-73.

Kamiya. T. , Kusumoto, S .. InoueX., (2002) CCFinder: a multi linguistic token­

based code clone detection system for large scale source code. IEEE

Transactions on So.fill'are Engineering. 28(7): 654-670.

Kapser, C., Godfrey, M.W. (2006). "Clones considered harmful" considered

harmfl.I1. In Working COT?{erence on Reverse Engineering.
Komondoor. R. and Honvitz, S. (2001), Using slicing to identify duplication in

I 1 . t' I SVTTlIJosiuTTl on Static
source code. In Proceedings o.{ the 8f 1 nteT na IOna - 1

Analysis. July 16-18 2001.Paris. France: In SAS. 40-56.

K . . . E G II . td and Bernstein. M. (1996).
ontogtal1l11s. K .. De Mon. R .. Merlo. ;., a el. .

. d t t" nll1fOTTlafed Soft· Eng..
Pattern matching for clone and concept e ec 10 . f .

3(1/2):77-108.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

108

Krinke, J. (2001), Identifying Similar Code with Program Dependence Graphs.

Proceedings of the Eight Working COI?ference on Reverse Engineering.

October 2001. Stuttgart, Germany: IEEE. 301-309.

Lanubile, F. and Mallardo, T., (2003). Finding Function Clones in Web

Applications. Proceeding Conference Sofill'are Maintenance and

Reengineering. 379- 386.

Li, Z., Lu, S., Myagmar, S., Zhou, Y., (2006). CP-Miner: finding copy-paste and

related bugs in large-scale software code. IEEE Computer Society

Transactions on Software Engineering. 32(3): 176-192

Maedche, A. and Staab. S. (2002). Measuring Similarity between Ontologies.

Lecture Notes in Computer Science. 251.

Mayrand, J., Leblanc, C. (1996).Experiment on the Automatic Detection of

Function Clones in a Software System Using Metrics, In Proc. COI?ference on

Sojiware ~Maintenance.

McGuinness, D. L. (1999), Ontologies for Electronic Commerce. Proceedings of

the AAAI '99 Artificial Intelligence for Electronic Commerce Workshop.

Orlando, Florida.

Meinl T., Worlein. M .. Urzova, 0., Fischer. 1. and Philippsen. M. (2006) The

PaJ'Mol Package for Frequent Subgraph Mining, Proceedings of the Third

InternationalWorks/1Op on Graph Based Tools (GraBaTs).

Nijssen, S. and Kok, .LN .. (2004). A Quickstart in Frequent Structure Mining can

make a Difference, LIACS Technical Report.

Noy, N. F. (2004). Semantic Integration: A Survey Of Ontology-Based

Approaches. 111 A eM SIGMOD Record, SpeCial Section 011 Semantic

Integration. 33(4): 65-70.

Qian, P., and Zhang. S., (2006a). Ontology Mapping Approach Based on

Concept Partial Relation. In Proceedings ofWCICA.
Qian. P., and Zhang, S., (2006b). Ontology Mapping Meta-model Based on Set

and Relation Theory. IMSCCS (1).503-509.

S f CI es" Da~st/lhl R. Koschke, (2006). "Survey of Research on 0 tware on . L

Seminar Proceedings.
. . f Clonina in \Veb

Rajapakse, D. C., and JaJ·zabek. S., (2005). An InvestIgatIOn 0 to

Oil Web EnL~ineering (ICWE'05).
Applications. 5th IntI COI?/erence

Washington. DC: IEEE. 252-262

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

109

Roy, C. K, and Cordy. J. R. (2007). A Survey on Software Clone Detection

Research. Technical Report 2007-5,/1, School of Computing. Queen's

University. Canada.

Sabou, M., D'Aquin, M., Motta, E. (2006). Using the semantic web as

background knowledge for ontology mapping. ISWC 2006 Workshop on

Ontology Mapping.

Schleimer. S. Wilkerson, D.S. and Aiken. A. (2003). Winnowing: Local

Algorithms for Document Fingerprinting. Proceeding. SIGMOD

International COI~ference Management of Data. 76-85.

Stevens, R.D., Goble, c.A. and Bechhofer. S. (2000). Ontology-based knowledge

Tepresentation for bioinformatics. Brief Bioil~form. 1 (4): 398-416.

Stoilos, G., Stamm!. G. and Kollias, S., (2005). A String Metric for Ontology

Alignment. in Proceedings of the ninth IEEE International Symposium on

Wearable Computers. Galway: 624- 237,

Stumme, G., and Maedche, A. (2001). FCA-Merge: BottomUp Merging of

Ontologies, IICAI. 225-234.

StutL A. Knowledge Engineering Ontologies, (1997). Constructivist

Epistemology, Computer Rhetoric: A Trivium for the Knowledge Age.

Proceedings of Ed-Media '97, Calgary. Canada.

The World \\Tide Web Consortium Official Site at www.w3c.org.

Todorov, K., (2008). Combining Structural and Instance-based Ontology

Similarities for Mapping Web Directories, The Third International

COI~ference on Internet and Web Applications and Services.

Ueda, Y .. Kamiya, T., Kusumoto. S. and Inoue. K., (2002). Gemini: Maintenance

. d I I ' 's III PI'oceedil7Os of the 81h support envIronment based on co e c one ana) Sl . b .

IE . fi" .' ('fET'DICS'O) I Ottawa. Canada.67-'EE Symposllfm on So. tware j 'JetllcS j 1\ -I'

76.

U d · d I K (7007) On detection of e a, Y., KaJ11lya, T .. Kusul110to, S. an noue. ., - _.
. I P' liI70s 9th Asia-Pacific

gapped code clones using gap locatIOns. n loceec, b .

., . 'PSEC'O)) Gold Coast. Queensland. So.fiware Engll1eerll1g COI~ference (;1 - .

Australia. 327-336.
Vallet D .. M. Fernandez. and P. Castells. (2005). "An Ontology-Based

". ." .. S I E r()l}can Semantic 1Fcb COI?(
Information RetrIeval ModeL Pmc. cconc u 1

(ESWC 'OS).

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

110

Visser, P.R.S., Jones. D.M., Beer, M.D .. Bench-Capon, TJ.M., Diaz. B.M .. and

Shave, MJ.R. (1999a). Resolving Ontological Heterogeneity in the KRAFT

Project, In Proceedings of Database and E:..pert Systems Applications 99.

Lecture Notes in Computer Science 1677. Berlin. Springer.688-697.

Visser, P.R.S., Tamma, V.A.M. (1999b). An experience with ontology-based

agent clustering. Proceedings of 1JCAI-99 Workshop on Ontologies and

Problem-Solving Methods (KRR5). Stockolm, Sweden. Morgan Kaufmann. 1-

12.

Winkler, W. E. (1999). The State of Record Linkage and Current Research

Problems. Statistical Society of Canada, Proceedings of the Section on

S/lrvey Methods. 73-79.

Van, X. and Han, L (2002). gSpan: Graph-Based Substructure Pattem Mining,

Proc. 2002 of Int. COI?f on Data Mining (ICDM'02). Expanded Version,

UIUC Technical Report UIUCDCS-R-2002-2296.

Zhang. Z., Xu, D. and Zhang, (2008). T. Ontology Mapping Based on

Conditional Information Quantity. IEEE International COI?ference on

Networking, Sensing and Control. 2008. ICNSC 2008. Sonya: IEEE. 587-591.

Zongjiang. \\T., Yinglin, W. and Tao, D., (2006). Ontology Mapping Approach

Based on Parsing Graph. IEEE International COI?fercnce 017 Systems. Man

and Cybernetics (SMC '06). Taipei: IEEE.309-5313. PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

	DECLARATION
	DEDICATION
	ACKNOWLEDGEIvlENT
	ABSTRAK
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	LIST OF APPENDICES
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	CHAPTER 3 RESEARCH METHODOLOGY
	CHAPTER 4 EXPERIMENTAL RESULT AND DISCUSSION
	CHAPTER 5 CONCLUSION
	REFERENCES
	APPENDICES

