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ABSTRAK 

Pengklonan kod telah menjadi suatu isu sejak beberapa tahun kebelakangan 

ini selari dengan peliambahan jumlah aplikasi web dan perisian berdiri sendiri pada 

hari ini. Pengklonan memberi kesan yang sangat besar kepada fasa penyelenggaran 

sistem kerana secm'a tidak langsung peningkatan bilangan pengulangan kod yang 

sama di dalam sesebuah sistem akan menyebabkan kompleksiti sistem turut 

meningkat. Terdapat banyak teknik pengesanan klon telah dihasilkan pada hari ini 

dan secm'a umumnya ianya boleh dikategorikan kepada pengesanan berasaskan 

jujukan perkataan. token. pepohon dan semantik. Tujuan projek ini adalah untuk 

mengetahui kemungkinan untuk menggunakan suatu teknik dari pemetaan ontologi 

untuk menyelesaikan masalah ini. tetapi kami tidak menggunakan ontologi di dalam 

pengesanan klon. Telah dibuktikan di dalam eksperimen awalan bahawa ia mampu 

untuk mengesan klon. Oi dalam tesis ini kami menggunakan dua aras pengesanan. 

Aras pertama menggunakan 'pelombong sub-pepohon terkerap' di mana ia mampu 

mengesan sub-pepohon yang sama antara fail yang berbeza. Kemudian sub-pepohon 

yang sama dinyatakan dalam bentuk ayat dan persamaan antm'a kedua-duanya dikira 

menggunakan 'metrik ayat'. Daripada eksperimen. kami mendapati bahawa sistem 

kami adalah tidak berganting kepada sebarang bahasa dah menghasilkan keputusan 

yang bagus dari segi precision tetapi tidak dari segi recall. Ia mampu mengesan klon 

serupa dan yang hamper sama. 
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ABSTRACT 

Code cloning have been an issue in these few years as the number of 

available web application and stand alone software increase nowadays. The major 

consequences of cloning is that it would risk the maintenance process as there are 

many duplicated codes in the systems that practically increase the complexity of the 

system. There are many code clone detection techniques that can be found nowadays 

which generally can be group into string based, token based. tree based and semantic 

based. The aim of this project is to find out the possibility of using a technique of 

ontology mapping technique to solve the problem, but we are not using the real 

ontology for the clone detection. It has been prove that there is the possibility as it 

manages to detect clone code. In this thesis the clone detection is using two layers of 

detection: i.e. structural similarity and string based similarity. The structural 

similarity is by using subgraph miner where it capable to get the similar subtree 

between different files. And then we extract all elements of that paJ1icular subtree 

and treat the elements as a string. Two strings from different files then applied with 

similarity metric to know whether it is a clone pair. From the experimental result we 

found that the system is language independent but the result is good in precision but 

not so good recall. It is also capable to detect two main types of clone. i.e identical 

clones and similar clones. 
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CHAPTER I 

INTRODUCTION 

1.1 Ovcr'vicw 

As the world of computers is rapidly developing, there are tremendous needs 

of software development for different purposes. And as we can see today. the 

complexity of the software been developed are different between one and another. 

Sometimes, developers take easier way of implementation by copying some 

fragments of the existing programs and use the code in their work. This kind of work 

can be called as code cloning. Somehow the attitude of cloning can lead to the other 

issues of software development for example the plagiarism and software copyright 

infringement (Roy and Cordy. 2007). 

In most of the cases. in order to figure out the issues and to help better 

software maintenance. we need to detect the codes that have been cloned (Baker. 

1995). In the web applications development. the chances of doing clones are bigger 

since there are too many open source software available in the Internet (Bailey and 

Burd. 2005). The applications are sometimes just a 'cosmetic' of another existing 

system. There are quite a number of researches in software code cloning detection. 

but not so particularly in the area of web based applications. 
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1.2 Background of the Problem 

Software maintenance has been widely accepted as the most costly phase 

of a software lifecycle. with figures as high as 80% of the total development cost 

being repOlied (Baker, 1995). As cloning is one of the contributors to\yards this cost. 

the software clone detection and resolution has got considerable attention from thc 

software engineering research community and many clone detection tools and 

techniques have been developed (Baker, 1995). However, when-it comcs to 

commercialization of the software codes. most of the software house developers tend 

to claim that their works are 100% done in house without using other codes copics 

forrh various sources. This has made a difficulty for the intellectual property 

copyright entities such as SIRIM and patent searching offices in finding the 

genuineity of the software source codes developed by the in house company. Thcre is 

a need to identif~y the software source submitted for patcnt copyright application to 

be a genuine source code without having any copyright infringements. Besides that. 

the cloning is somehow raising the issue of plagiarism. The simplest example is in 

the academic area where students tend to copy their friends' works and submit the 

assignments with only slight modifications. 

Usually, in software development process. there is a nccd for components 

reusability either in designing and coding. Reuse in object-oriented systems is made 

possible through different mechanisms such as inheritance. shared librarics. object 

composition. and so on. Still. programmcrs often need to reuse components which 

have not been designed for reuse. This may happen during the initial of systcms 

development and also when the software systems go through the cxpansion phase 

and new requirements have to be satisfied. In these situations. thc programmcrs 

usually follow the low cost copy-paste technique. instead of costly rcdesigning-thc­

system approach. hence causing clones. This type of codc cloning is the most basic 

and widely used approach to\yards software reusc. Scyeral stuciies suggest that as 

much as 20-30% of large soft\yare systcms consist of cloned codc (Krinke. 

2001). The problem with code cloning is that errors in thc original must be lixcd in 

every copy. Other kinds of maintenance changes. for instance. cxtensions Of 
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adaptations, must be applied multiple times. too. Yet. it is usually not documented 

where code was copied. In such cases, one needs to detect them. For large systems. 

detection is feasible only by automatic techniques. Consequently. several techniques 

have been proposed to detect clones automatically (Bellon et al.. 2007). 

There are quite a number of works that detect the similarity by representing 

the code in tree or graph representation and also some using string-based detection. 

and semantic-based detection. Almost all the clone detection technique had the 

tendency of detecting syntactic similarity and only some detect the semantic part of 

the clones. Baxter in his work (Baxter et al.. 1998) proposes a technique to extract 

clone pairs of statements, declarations, or sequences of them from C source fi les. The 

tool parses source code to build an abstract syntax tree (AST) and compares its 

subtrees by characterization metrics (hash fLmctions). The parser needs a "full­

fledged" syntax analysis for C to build AST. Baxter's tool expands C macros (define. 

include, etc) to compare code portions written with macros. Its computation 

complexity is 0(/1). where n is the number of the subtree of the source files. The hash 

function enables one to do parameterized matching. to detect gapped clones. and to 

identify clones of code portions in which some statements are reordered. In AST 

approaches. it is able to transform the source tree to a regular form as we do in the 

transformation rules. However. the AST based transformation is generally expensi\"e 

since it requires full syntax analysis and transformation. 

In other work (Jiang et al. 2007) present an efficient algorithm for identifying 

similar subtrees and apply it to tree representations of source code. Their algorithm is 

based on a novel characterization of subtrees with numerical \"ectors in the Euclidean 

space RIl and an efficient algorithm to cluster these \"ectors with respected to the 

Euclidean distance metric. Subtrees \\"ith vectors in one cluster are considered 

similar. They have implemented the tree similarity algorithm as a clone detection 

tool called DECKARD and e\"aluated it on large code bases \\Titten in C and Ja\a 

including the Linux kernel and JDK. The experiments sho\\" that DECK:\RD is both 

scalable and accurate. It is also language independent. applicable to any language 

with a formally specified grammar. 
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Figure 1.1: A sample parse tree with generated characteristic vectors[14]. 

In (Krinke, 2001), Krinke presents an approach to identify similar code in 

programs based on finding similar subgraphs in attributed directed graphs. This 

approach is used on program dependence graphs and therefore considers not only the 

syntactic structure of programs but also the data flow within (as an abstraction of the 

semantics). As a result, it is said that no tradeoff between precision and recall- the 

approach is very good in both. 

Kamiya in one of his work in (Kamiya et al., 2002) suggest the use of suffix 

tree. In the paper they have used a suffix-tree matching algorithm to compute token­

by token matching, in which the clone location information is represented as a tree 

with sharing nodes for leading identical subsequences and the clone detection is 

performed by searching the leading nodes on the tree. Their token-by token matching 

is more expensive than line-by-line matching in terms of computing complexity since 

a single line is usually composed of several tokens. They proposed several 

optimization techniques especially designed for the token-by-token matching 

algorithm, which enable the algorithm to be practically useful for large software. 

Appendix B of this thesis, describe briefly some existing techniques of code 

clone detection and plagiarism. It also discusses the strength and weaknesses of each 

technique. 
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1.3 Problem Statement 

As we can see from the previous works, some of the works are scalable, can 

detect more than one type of clone. But some of them face the trade off of the 

computational complexity. It may be happen because most of the techniques apply 

expensive syntax analysis for transformation. From the literature that have been 

done, more than half of existing techniques used tree- based detection as it were 

more scalable. But most of the techniques do a single layer detection which means 

after the transformation into normalized data e.g. tree, graph, and etc, the process of 

finding the similarity of code, i.e. code clone. were done directly by processing each 

nodes in the data. All possible clones need to be search directly without some kind of 

filtering, which it can cause higher cost of computational process. 

As ontology has been widely used nowadays, we cannot deny the imp0l1ance 

of ontology in current web technology. The major similarity of ontology and clone 

detection works is that it both can be represented as tree. Beside that, there are many 

works have been done to do mapping of different ontologies between each other, 

which is actually to find out which concepts of the first ontology are the same with 

the second one. This activity is actually almost the same with what need to be done 

in detecting clone codes. 

Since there are some kinds of similarity between both problems, so detecting 

clone in source code may be able to be done using the same way as mapping the 

ontologies. The research question of this thesis is to identW'the possibility o/using a 

technique 0/ ontology mopping to detect clones in a 11'eb- based application. 

Obviously there will be no ontologies that going to be used in the experiments since 

we are dealino with source code and not ontology. But we will use the technique of b ~ 

mapping to detect clones. 
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In order to achieve the aim, there are a few questions that need to be solved. 

\Vhat are the attributes or criteria that might be possible to be cloned in web 

documents? What are the approaches that had been proposed in the previous research 

in the ontology mapping area than had been used in clone detection tool? What are 

the issues of the recovered approach and how to solve it? 

1.4 Objectives of the Project 

The all11 of this research is to develop a clone detection framework by 

manipulating an existing work of mapping ontology. In order to achieve this aim. the 

following objectives must be fulfilled. 

1. To analyze various techniques related to code clone detection that has been 

proposed by previous researches. 

2. To develop a clone detection program by usmg the ontology mappmg 

technique that will be proposed in the project. 

3. To test the program using recall and precIsIon measurements as the mam 

metrics. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Intr"oduction 

Software is normally used in computer systems in our daily life and it is 

getting larger and more complex. As the software grow biggcr and bigger. the 

number of software engineers and programmers attached to thc dC\'clopment of the 

software also increase at the same time. The more persons involved in thc sort\\are 

development life cycle. it may influence the complexity of thc soll\vare dcpending on 

their habits and style in writing software code. 

In the software development. reuse in object-oricnted systems is made 

possible through different mechanisms such as inheritance. shared libraries. object 

composition. and so on. Still. programmers orten necd to reuse components \\hich 

are not designed for reuse. This may happen during the initial or systems 

development and also \vhen the sol1\vare systems go through the expansion phase 

and new requirements have to be satisfied. In these situations. the programmers 

usually follow the low cost copy-paste technique. instead of costly redesigning-the­

system approach. hence causing clones. This type of code cloning is the nHl~t ha~ic 

and widely used approach to\vards sort\\are reuse. 
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There are various reasons that encourage programmers to do code cll1ning. 

For whatever reason it is. the action of doing copy and paste always lead to the code 

cloning in pal1icular software that at the end will difficult the so!t\\are maintenance 

because of the appearance of the duplicating codes. This scenario al\\ays happens in 

the implementation phase of stand alone system as \\ell as \\eb- based application. 

Meanwhile. the growth of open source software also gi\"e a great impact on the 

intellectual property right to the owner of the source code. There is a need to detect 

and validate the genuinely of a software code to identify \\hether the code is actually 

a copied code or a genuine code before a copyright status can be gi\"Cn to the 

applicant. 

2.2 Code Cloning 

Code duplication or copying a code fragment and then reuse by pasting \\ith 

or without any modifications is well known as code smell in so!t\\are maintenance. 

This type of reuse approach of existing code is called coile clolling and the pasted 

code fragment (with or without modifications) is called a clone of the original. 

Several studies show that duplicated code is basically the result or copying existing 

code fragments and using then by pasting with or without minor moliilications. 

People always believe that the major cause of cloning is by the act of copy and paste. 

Some say that it may happen accidentally. In some cases. a ne\\ c1e\"ClopecJ system is 

actually a 'cosmetic' of another existing system. This kind or case usually happen in 

the web based application. They tend to modil\ the appearance or the applicatinn or 

system by changing the background color. images. etc. 

Refactoring of the duplicated code is another prIme Issue 111 sn!"t\\:lre 

maintenance although se\"eral studies claim that rel~1ctoring or certain elunes i" 11(\t 

desirable and there is a risk of remo\ing them. IIl1\\e\er. it is alst) \\ idel:- agreed til:lt 

clones should at least be detected. 
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