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ABSTRACT 

High Throughput Screening has been used in drug discovery to screen large numbers 

of potential compounds against a biological target by making it possible to screen 

tens of thousands to hundreds of thousands of compounds at the early stage of drug 

design. However, it is impractical to test every available compound against every 

biological target. Classification is an approach in classifYing the compounds into 

active and inactive based on already known actives. In this study, Neural Network 

and Support Vector Machines (SVM) are used to classify AIDS data represented as 

2D descriptors. Selection of compounds used is based on the most diverse 

compounds. The classification models will be tested using different ratios of the data 

set to identify whether the size of data would affect the rate of classification. Besides 

th~t, the study also analyses the effects of dimensional reduction towards the results 

of the two teclmiques. Final results indicate that SVM produces better classification 

results for both the original data and the reduced dimension data. PTTA
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ABSTRAK 

Penggunaan High Throughput Screenjng untuk menyaring sejumlah besar 

molekul kimia yang berpotensi terhadap sasUl·an biologi telah memungkinkan ratusan 

ribuan moleh .. ul kimia dikenalpasti pada peringkat awal dalam proses penghasilan 

ubat. Namun, pengujian setiap molebll kimia ke atas setiap sasaran biologi adalah 

tidak praktikal. Kajian ini mengaplikasikan teknik Rangkaian Neural Network dan 

Support Vector Machines (SVM) bagi mengkelaskan data AIDS yang berbentuk 2D. 

Pemilihan molekul kimia yang digunakan adalah berdasarkan kepada sifat 

ketaksamaan yang paling tinggi. Model pengkelasan diuji menggunakan data set 

dengan nisbah berbeza untuk mengenalpasti kesan saiz data terhadap keputusan 

pengkelasan. Selain dUlipada itu, kajian juga menganalisa kesan pengurangan 

dimensi data terhadap keputusan kedua-dua teknik. Hasil keputusan kajian 

menunjukkan bahawa tekllik SVM menghasilkan keputusan yang lebih baik bagi 

data asal dan juga data yang telah dikurangkan dimensinya. 
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CHAPTER 1 

INTRODUCTION 

1.0 Introduction 

TIle new millennium has ushered in an era of science that will revolutionize a 

great majority of our daily activities. Advances in Artificial Intelligence (Al) and its 

applications has made problem solving a much easier task. It plays a big role in the 

evolution of data mining by offering sophisticated teclmiques such as expert systems, 

heuristics, neural networks and support vector machines. Data mining seeks to 

discover hidden facts or infonnation contained within raw data that the user could act 

upon, like making a prediction. A classification problem aims to identifY the 

characteristics that indicate the group to which each case belongs. TIlis pattem can 

then be used both to understand the existing data and to predict how new instances 

will behave. 

The task of classification occurs in a wide range of fields and applications. 

Among of the applications are rainfall prediction (Chen et aI., 1993), banh.TUptcy 

prediction (Lacher et al., 1995), handwriting recognition (Guyon, 1991) and medical 

diagnosis (Liu et al., 2003; Burke, 1994). In this study, the field of interest is 

chemoinfonnatics, particularly in drug discovery. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



2 

1.1 Background of Problem 

Over the past twenty years, the philosophy behind dmg discovery has change 

radically. The traditional process of drug discovery involves an iterative process of 

finding compounds that are active against a protein target. Each iteration involves 

selecting compounds to react with that protein target in the desired manner. Better 

understanding of the reasons for activity is achieved by analyzing the resulting data 

in each iteration. This in tum will lead to a better design or compound selection in 

the next iteration. 

Thousands of compounds are tested against the target each day to find out 

which compound are active i.e. binds to the target. The iteration is repeated until the 

best active compounds are found. The compounds may come from a variety of 

sources such as combinatorial chemistry, vendor catalogues or corporate collection. 

However, it is impractical to test every available compound against every biological 

target. Therefore, there is a great need to optimize this high throughput screening by 

developing methods that can identifY promising compounds from a large chemical 

inventory on the basis of a relatively smaller set of tested compounds. One approach 

is to use the data from tested compounds to relate biological activity to molecular 

descriptors of chemical structures. A major challenge is although the data set may 

contain a large number of tested compounds, active compounds are often rare (An 

and Wang, 2001). 

At any stage of the process, three types of compounds can be distinguished: 

(a) a very small fraction of compounds that have already been identified as active, (b) 

a much larger fraction of compounds that already have been identified as inactive, 

and (c) by far the largest fraction of compounds that have not yet been tested (the 

unlabeled compowlds) (Warmuth el al., 2003). 111erefore, among the three types, 

only the active compounds will be considered for a clinical trial to produce a 

potential drug. 
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The need for a more refined search than simply producing and testing every 

single molecular combination possible has meant that statistical methods and, more 

recently, intelligent computation have become an integral part of the drug production 

process. Artificial intelligence techniques have been applied to narrow down the 

search and lessen the time needed in finding an active compound since the late 

1980s, mainly in response to increased accuracy demands. The techniques used range 

fi·om straightforward statistical classification methods, such as nearest neighbour and 

linear discriminant classifiers to more sophisticated methods, such as decision trees 

and neural networks. Unsupervised leaming techniques, such as clustering and 

Kohonen networks are also used for data visualization and compound selection 

(Trotter el at., 2001). 

Hence, this study tries to apply neural network usmg back propagation 

algorithm and SuppOIi Vector Machine (SVM) in finding out quickly which 

compounds are active, i.e., binding to a particular target. Both techniques have been 

used in drug discovery before, but not with bit string data. Neural network is applied 

as it has been widely accepted to produce accurate results. Meanwhile, SVM is 

applied because they have a simple geometric motivation and also yield very good 

results. However, more investigations are required for applying SVM in 

cheminfonnatics. 

Mathematically, a library with n compounds and represented by m (m >3) 

descriptors is an n x m dimensional matrix. There is no way to graph the matrix, 

although one would like to review the diversity graphically. In order to solve this 

problem, dimensionality needs to be reduced to two or three. Therefore, Principal 

Components Analysis (PCA) is applied to reduce data dimension. Principal 

component analysis (PCA) are usually used to filter out redundant descriptors and, 

eliminate descriptors having minor infonnation contribution. PCA transforms a 

number of potentially correlated variables (descliptors) into a number of relatively 

independent variables that then can be ranked based upon their contributions for 

explaining the whole data set. The transfonned variables that can explain most of the 

information in the data are called principal components. The components having 
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minor contribution to the data set may be discarded without losing too much 

infonnation. 

Nonetheless, its effectiveness in chemical classification is yet to proven. 

Hence, this study is conducted to identifY which technique has the ability to produce 

the best results based on the type of molecular structure used, i.e. bit string. Also to 

investigate whether by reducing the dimensionality of data can generate better output 

as compared to its original data. 

1.2 Problem Statement 

The need to produce the latest effective drugs has led to the use of 

infonnation technology in its development process. For every protein or virus, there 

are certain chemical compounds that would react to it, therefore considered against 

that target. Classification of compounds into active and inactive based on already 

known actives can eliminate compounds that have low possibilities of being active 

from being tested. 

The current situation is, there exist a large number of compounds need to be 

mined for finding out quickly which compounds are active, i.e., binding to a 

particular target. The compounds may come from different sources such as vendor 

catalogs, corporate collections, or combinatorial chemistry. In fact, the compounds 

need to exist only virtually, being defined in terms of their descriptor vectors. 

However this is difficult to achieve as the nwnber of active compounds are much 

smaller compared to inactive compounds and sometimes the chosen compounds do 

not result into a drug. 
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