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10.1 INTRODUCTION 
 

Pneumatic actuator system refers to a series of pneumatic sourced 
interconnected components (includes pneumatic actuator) that results in 
mechanical movement when operated. Pneumatic actuator system is 
commonly found in manufacturing and automation industries to execute 
high frequency and repetitive mechanical motion (linear or rotary). 
Comparing to electrical and hydraulic actuator system, the pneumatic 
actuator system possesses some absolute advantage, such as providing 
greener, cleaner and fail-safe environment (oil/spark free), and lower 
cost in operation and maintenance. Due to these advantages, the 
pneumatic actuator system gradually become the standard solution in 
industry by replacing electrical actuator system. 

The modelling of pneumatic actuator system can be done by either 
analytical method [1] [2] [3] or empirical method [4] [5] [6]. Both of the 
method has their own advantages. However, the pneumatic actuator 
system is not a singular body system, it consists of several interconnected 
components such as proportional control valve, pneumatic cylinder, and 
sensors. Due to this reason, the empirical approach could be the solution 
in modelling the system, as analytical method is complicated and 
exhausting, although nonlinearity is ignored as an assumption in 
modelling. 
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10.2 PROBLEM FORMULATION 
 

The typical analytical model of a pneumatic actuator (PA) system 
usually consists of 3 dynamics models: control valve model, pressure 
dynamics model, and motion equation of cylinder’s piston. In reality, all 
three models possess high nonlinear properties, such as the dead-zone 
effect in the control valve and friction effect in the cylinder. Due to the fact 
that most controller designs require a linearized model, the nonlinear 
term in each dynamic model must be simplified and linearized as well. 
Therefore, assumptions must be made to reduce the system’s operating 
condition towards a linearizable environment. According to [7], these 
assumptions include maintaining the air pressure supply and 
temperature at a constant level, ignoring heat transfer dynamics between 
pressurized air and surroundings, assuming the working gas is 
ideal/isothermal, and taking speed proportional friction. 
 
10.2.1  Proportional Valve Model 
Equation (10.1) is a nonlinear pressurize air mass flow rate model of a 
control valve, where the compressibility dynamics of valve flow are 
considered. Depending on the downstream and upstream pressure ratio, 
the flow phase can shift between subsonic (under choked) flow or sonic 
(choked) flow. 
 

𝑚̇ = 𝑃𝑢 ∙ 𝐶𝑣 ∙ 𝜌𝑎 ∙ √
𝑇𝑎
𝑇𝑢
∙ 𝜑(𝑃𝑢, 𝑃𝑑 , 𝑏𝑐𝑟) (10.1) 

𝜑(𝑃𝑢, 𝑃𝑑 , 𝑏𝑐𝑟)

=

{
 
 
 

 
 
 

√1− (

𝑃𝑑
𝑃𝑢
− 𝑏𝑐𝑟

1 − 𝑏𝑐𝑟
)

2

𝑓𝑜𝑟 
𝑃𝑑
𝑃𝑢
> 𝑏𝑐𝑟 (𝑆𝑢𝑏𝑠𝑜𝑛𝑖𝑐)

1 𝑓𝑜𝑟 
𝑃𝑑
𝑃𝑢
≤ 𝑏𝑐𝑟 (𝑆𝑜𝑛𝑖𝑐)

 
 

 
𝑚̇ Mass flow rate (𝑘𝑔/𝑠) 
𝑃𝑢 Upstream air pressure (𝑃𝑎) 
𝐶𝑣 Sonic conductance (𝑚3/𝑠 ∙ 𝑃𝑎) 
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𝜌𝑎 Ambient air density (𝑘𝑔/𝑚3) 
𝑇𝑎 Ambient air temperature (𝐾) 
𝑇𝑢 Upstream air temperature (𝐾) 
𝑃𝑑  Downstream air pressure (𝑃𝑎) 
𝑏𝑐𝑟 Critical pressure ratio 

 
To linearize equation (10.1), first, we could establish an equation 

using constant coefficient, 𝐾2 instead of a nonlinear term like 
𝜑(𝑃𝑢, 𝑃𝑑 , 𝑏𝑐𝑟). The assumption in modelling is neglecting valve dynamics 
and assume both upstream and downstream pressure is almost constant. 
Introducing the valve input voltage term 𝑢𝑣𝑎𝑙𝑣𝑒, we obtain equation (10.2) 
 
𝑚̇𝑛 = ±𝐾2 ∙ 𝑃𝑛 ∙ 𝑢𝑣𝑎𝑙𝑣𝑒 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ {𝐴, 𝐵} (10.2) 

 
10.2.2 Air Pressure Dynamics 
Figure 10.1 shows the relationship of control valve input voltage, air mass 
flow rate and cylinder’s chamber A and B. The linear model of air pressure 
dynamics that cause the movement of cylinder piston can be represented 
using differential pressure equation. The full derivation of the equation is 
demonstrated in [7]. 
 

 
Figure 10.1: Schematic diagram of air pressure dynamics in pneumatic 

actuator system 
 

If the initial piston displacement 𝑠𝑝𝑖𝑠𝑡𝑜𝑛 is middle of the symmetric 

cylinder, the volume and pressure change equation of both cylinder 
chamber A and B can be described as below 
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𝑉𝐴 =
𝑉𝑡𝑜𝑡𝑎𝑙
2

+ 𝐴𝑝𝑖𝑠𝑡𝑜𝑛 ∙ 𝑠𝑝𝑖𝑠𝑡𝑜𝑛

𝑉𝐵 =
𝑉𝑡𝑜𝑡𝑎𝑙
2

− 𝐴𝑝𝑖𝑠𝑡𝑜𝑛 ∙ 𝑠𝑝𝑖𝑠𝑡𝑜𝑛

 (10.3) 

  

𝑃̇𝐴 =
𝑃𝑎 ∙ 𝐾2 ∙ 𝑃𝑆 ∙ 𝑢𝑣𝑎𝑙𝑣𝑒

2𝜌𝑎 ∙ (
𝑉𝑡𝑜𝑡𝑎𝑙
2 )

−
𝑃𝑆 ∙ 𝐴𝑝𝑖𝑠𝑡𝑜𝑛 ∙ 𝑠̇𝑝𝑖𝑠𝑡𝑜𝑛

𝑉𝑡𝑜𝑡𝑎𝑙

𝑃̇𝐵 =
−𝑃𝑎 ∙ 𝐾2 ∙ 𝑃𝑆 ∙ 𝑢𝑣𝑎𝑙𝑣𝑒

2𝜌𝑎 ∙ (
𝑉𝑡𝑜𝑡𝑎𝑙
2

)
+
𝑃𝑆 ∙ 𝐴𝑝𝑖𝑠𝑡𝑜𝑛 ∙ 𝑠̇𝑝𝑖𝑠𝑡𝑜𝑛

𝑉𝑡𝑜𝑡𝑎𝑙

 (10.4) 

 
𝑃𝑆 Air pressure supply (Pa) 
𝑉𝐴,𝐵 The volume of air in chambers A, B (𝑚3) 
𝑉𝑡𝑜𝑡𝑎𝑙 The total air volume of cylinder (𝑚3) 
𝐴𝑝𝑖𝑠𝑡𝑜𝑛 Effective piston cross-section area (𝑚2) 
𝑠𝑝𝑖𝑠𝑡𝑜𝑛 Piston displacement (𝑚) 

 
By defining the differential pressure as 𝑃𝐴𝐵 = 𝑃𝐴 − 𝑃𝐵, we could obtain a 
differential equation for pressure change. 
 

𝑃̇𝐴𝐵 = [
2𝑃𝑎 ∙ 𝐾2 ∙ 𝑃𝑆
𝜌𝑎 ∙ 𝑉𝑡𝑜𝑡𝑎𝑙

] 𝑢𝑣𝑎𝑙𝑣𝑒 − [
2𝑃𝑆 ∙ 𝐴𝑝𝑖𝑠𝑡𝑜𝑛

𝑉𝑡𝑜𝑡𝑎𝑙
] 𝑠̇𝑝𝑖𝑠𝑡𝑜𝑛 (10.5) 

 
 
10.2.3 Motion Equation of Piston 
The piston acceleration can be obtained by derivation using Newton’s 
second law 
 
𝑀𝑃𝑖𝑠𝑡𝑜𝑛𝑠̈𝑝𝑖𝑠𝑡𝑜𝑛 = 𝐴𝑝𝑖𝑠𝑡𝑜𝑛 ∙ (𝑃𝐴 − 𝑃𝐵) − 𝐹𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙

− 𝐹𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 
           (10.6) 

 
𝑠̈𝑝𝑖𝑠𝑡𝑜𝑛 Piston acceleration (𝑚 𝑠2⁄ ) 

𝐹𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 External load force (𝑁) 
𝐹𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 Friction force (𝑁) 
𝑀𝑃𝑖𝑠𝑡𝑜𝑛 Piston mass (𝑘𝑔) 
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Both 𝐹𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 and 𝐹𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 could be a nonlinear term as well. The 
external load force is a constant if is a weight, or a sinusoidal term if it 
from spring force. However, the friction force is clearly nonlinear and 
hardly predictable, it could be modelled as LuGre model or Stribeck effect 
friction. Therefore, the linearization process of pneumatic actuator 
system does not consider 𝐹𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙in following derivation and 𝐹𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is 
modelled into speed proportional friction. Noted that both load and 
friction force contribute most towards the system dynamic behavior, 
therefore if one is modelling for analysis, both forces should be described 
well without simplification. 
 

However, for controller design purposes, we assume for speed 
proportional friction 𝐹𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑓𝑣 ∙ 𝑠̇𝑝𝑖𝑠𝑡𝑜𝑛 and zero external load forces 

𝐹𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 0. Then equation (10.7) is simplified from (10.6). 
 

𝑠̈𝑝𝑖𝑠𝑡𝑜𝑛 =
𝐴𝑝𝑖𝑠𝑡𝑜𝑛 ∙ 𝑃𝐴𝐵
𝑀𝑃𝑖𝑠𝑡𝑜𝑛

− 𝑓𝑣 ∙ 𝑠̇𝑝𝑖𝑠𝑡𝑜𝑛 
(10.7) 

  

By differentiating (2.7) and substitute in 𝑃̇𝐴𝐵 from (10.5),  
  

𝑠𝑝𝑖𝑠𝑡𝑜𝑛 = [
−2𝑃𝑆 ∙ 𝐴

2
𝑝𝑖𝑠𝑡𝑜𝑛

𝑀𝑃𝑖𝑠𝑡𝑜𝑛 ∙ 𝑉𝑡𝑜𝑡𝑎𝑙
] 𝑠̇𝑝𝑖𝑠𝑡𝑜𝑛 + [−𝑓𝑣]𝑠̈𝑝𝑖𝑠𝑡𝑜𝑛

+ [
2𝑃𝑎 ∙ 𝐾2 ∙ 𝑃𝑆 ∙ 𝐴𝑝𝑖𝑠𝑡𝑜𝑛

𝜌𝑎 ∙ 𝑀𝑃𝑖𝑠𝑡𝑜𝑛 ∙ 𝑉𝑡𝑜𝑡𝑎𝑙
] 𝑢𝑣𝑎𝑙𝑣𝑒 

(10.8) 

 
10.2.4 Linearized State-space Equation 
From equation (10.8), we could construct a Position-Velocity-
Acceleration (PVA) state model, by defining the state and input vector as: 

𝑥 = [
𝑥
𝑥̇
𝑥̈
] = [

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
] 𝑢 = [𝑢𝑣𝑎𝑙𝑣𝑒] 

 
The state-space equation for position tracking system of pneumatic 
actuator system is as follow: 
 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥         (10.9) 
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𝐴 = [

0 1 0
0 0 1

0
−2𝑃𝑆 ∙ 𝐴

2
𝑝𝑖𝑠𝑡𝑜𝑛

𝑀𝑃𝑖𝑠𝑡𝑜𝑛 ∙ 𝑉𝑡𝑜𝑡𝑎𝑙
−𝑓𝑣

] 

 

  

𝐵 = [

0
0

2𝑃𝑎 ∙ 𝐾2 ∙ 𝑃𝑆 ∙ 𝐴𝑝𝑖𝑠𝑡𝑜𝑛
𝜌𝑎 ∙ 𝑀𝑃𝑖𝑠𝑡𝑜𝑛 ∙ 𝑉𝑡𝑜𝑡𝑎𝑙

] 

 

  
𝐶 = [1 0 0]  

 
10.2.5 Problem with Analytical Modelling 

Generally, the linear analytical model provides insight into the core 
dynamics working on a pneumatic actuator system. After all, for the case 
of designing controller using a model-based approach, some problem 
arises First, noticed that the parameter 𝑓𝑣 and 𝐾2 in equation (10.9), these 
parameters are hardly obtained, even though the parameter range is 
controlled under a certain boundary by restricting the operating 
condition. Yet, the parameter is inaccurate and does not represent the 
system dynamic appropriately, mainly because the parameter is inserted 
by initial guessing from the range. Secondly, even if both the parameter 𝑓𝑣 
and 𝐾2 is guessed correctly, the parameters are only suitable for that 
operating condition. When we are going to operate in a different 
condition, say increase the supply pressure from 700 𝑘𝑃𝑎 to 800 𝑘𝑃𝑎, the 
parameter would change eventually. In that case, we have to tune the 
parameter again. Even though the model is assumed to be linear, two 
problems mentioned earlier make the controller design process more 
complex. 

Contrasting to the analytical model, the empirical modelling 
approach might solve the stated issues previously. The empirical method, 
also known as the System Identification technique, build the pneumatic 
actuator model directly from the input and output data, with a specified 
operating condition. The modelling process is relatively simpler than the 
analytical method: defining the input signal, running the system, 
collecting the data via data acquisition system, and performing model 
identification via scientific software: MATLAB. Thanks to the 
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development of computers, nowadays, performing iterative computation 
is no longer a time-consuming task 
 
10.3 METHODOLOGY 

 
The initiation of applying system identification comes when one 

does not have a reasonable physics law to describe the phenomenon 
during a process. Still, the necessary accuracy of the model is required. 
Moreover, system identification deals with the black-box problem, where 
the analytic characterization is difficult to achieve and make sense if the 
system is cheap and safe to be experimented on. As we know, the 
pneumatic actuator system is safe to operate and affordable to 
experiment with. Therefore, the system identification technique is 
suitable for a pneumatic actuator system. The following subsection will 
describe the methodology [8] of performing empirical modelling for the 
pneumatic actuator system, they include process rig setup, input signal 
designation, data acquisition, model structure selection, parameter 
estimation and model validation. 
 
10.3.1 System and Process Rig Setup  

The secondary data is obtained from a process rig consist of 
several components. These components include an air compressor, a 
pneumatic cylinder, two pressure sensors, an electromagnetic 
displacement sensor and a proportional control valve. Besides, the 
process rig is computer-controlled via a data acquisition system with a 
sampling time of 0.01 𝑠. Figure 10.2 shows the rig setup of the pneumatic 
actuator system, and Table 10.1 is the specification list of all components. 
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Figure 10.2: Pneumatic actuator system rig setup 

 
Table 10.1: Specification of components 

Components Specification Description 
Air Compressor 

 

Product  Air Compressor 
Brand JUN-AIR 
Model No. 3 - 4 

Function 
Pneumatic energy source 
and storage for PA system 

Control Valve 

 

Product  
High Speed 5/3 Proportional 
Directional Valve 

Brand Enfield Technologies 
Model No. LS-V15S 

Function 

Control compressed air flow 
between pneumatic cylinder 
air chambers via voltage 
manipulation 

Pneumatic Cylinder 

 

Product  Double-acting ISO cylinder 
Brand FESTO 
Model No. DNC-40-500-PPV-A 

Function 
Generate linear motion via 
manipulation of pressure 
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difference in both air 
chamber 

Electromagnetic 
Displacement Sensor 

 

Product  Magneto-restrictive Sensor 
Brand Balluff 
Model No. Micropulse AT style 

Function 
Provide cylinder position 
information as output 
voltage signal 

DAQ Card 

 

Product  Data Acquisition Card 
Brand National Instrument 
Model No. SCB-68 

Function 
Data acquisition from PA 
system (analogue) to host PC 
(digital) 

 
10.3.2 Input Signal Designation and Data Collection 

Model identification requires an experimental run on the process 
rig to obtain the data. However, the selection of the input signal must be 
carefully designated. It depends on 3 main factors: the control valve’s 
compatibility with the signal bandwidth, control valve’s operating voltage 
limit and type of signal for system identification. The control valve used 
in the rig has a maximum bandwidth frequency of 100 𝐻𝑧. It means that 
it could perform 100 cycles of switching between 3 valve positions in 1 
second, which is extremely robust and fast enough. Besides, the operating 
voltage limit of the control valve is nominally −5 𝑉 𝑡𝑜 5 𝑉.  

Regarding the type of signal used for the system identification, it 
is advised that step input should be avoided. Landau and Zito [9] states 
that the convergence towards zero of the prediction error during 
regression does not always means that the estimated model parameters 
will converge towards the ‘true’ parameters of the plant model. The 
constant (step) input is not a good input signal candidate for system 
identification. It does not allow satisfactory model parameter estimation, 
mainly because the steady-state gain of both the estimated model and 
plant model might not be the same when the frequency gets higher. This 
can be observed from the frequency characteristic plot of both models. 
Therefore, we could consider using non-zero frequency sinusoidal signal. 
In other words, to identify a ‘correct’ model, it is necessary to apply a 
frequency rich input. 
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 Based on the above consideration, three types of multi-frequency 
input signal 𝑢(𝑡) is designed as shown in equation (10.10). The 
experiments for each input signal will be repeated three times and will 
result in 9 outputs 𝑦(𝑡) in total. Due to some uncontrollable non-linearity 
and external disturbances, all three experiments from the same input 
signal are expected to be slightly different. To gain a clearer 
understanding of the input signal, the statistical properties of all input 
signal (collected from first 100 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 of experiment) is listed in Table 
10.2. 
 
𝑢1(𝑡) = 0.5 cos(2𝜋 × 0.05𝑡) + 1.5 cos(2𝜋 × 0.2𝑡)

+ 2.5 cos(2𝜋 × 0.8𝑡) 

(10.10) 
𝑢2(𝑡) = 0.8 cos(2𝜋 × 0.05𝑡) + 0.5 cos(2𝜋 × 0.2𝑡)

+ 3 cos(2𝜋 × 0.8𝑡) 
𝑢3(𝑡) = 0.75 cos(2𝜋 × 0.05𝑡) + 0.75 cos(2𝜋 × 0.2𝑡)

+ 2.5 cos(2𝜋 × 0.8𝑡) 
 

Table 10.2: Statistical properties of input signals 
 

Statistical 
Properties 

Voltage input signal 𝑢(𝑡) 
𝑢1(𝑡) 𝑢2(𝑡) 𝑢3(𝑡) 

𝑀𝑒𝑎𝑛, 𝑢̅ 4.5 × 10−4 4.5 × 10−4 3.5 × 10−4 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑢) 4.5 4.5 3.5 
𝑀𝑖𝑛𝑖𝑚𝑢𝑚(𝑢) −3.9878 −3.9308 −3.1562 
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝜎𝑢

2 4.3770 3.5645 2.5637 
 

Figure 10.3 shows the data gathering process from the pneumatic 
actuator system. The experiment run time is fixed at 100 𝑠 with a 
sampling time 𝑇𝑠 of 0.01 𝑠. Each discrete data would be saved into the host 
PC iteratively via Simulink Desktop Real-Time software. A total of 10001 
(including initial time 0 𝑠) data will be used to perform model 
identification afterwards. 
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Figure 10.3: Data collection from pneumatic actuator system 

 
 Figure 10.4, 10.5 and 10.6 shows the input and response plot after 
experimentation on pneumatic actuator system using input 𝑢1(𝑡), 𝑢2(𝑡) 
and 𝑢3(𝑡). All 9 types of data set will be used in parameter estimation 
process later on. 

 
Figure 10.4: Input and response plot of 𝑢1(𝑡) 
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Figure 10.5: Input and response plot of 𝑢2(𝑡) 

 
Figure 10.6: Input and response plot of 𝑢3(𝑡) 

 
 
10.3.3 Model Complexity Selection 

For the ease of controller design, we assume that the noise from 
the system is rather minimal, approximately near to zero. Besides, the 
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nonlinear factors are ignored during modelling, these nonlinear factors 
may be hysteresis, pressure change and frictional effect. Therefore, the 
auto-regressive exogenous (ARX) polynomial model is chosen for 
parameter estimation. Figure 10.7 and Equation (10.11) below is the 
model structure and mathematical representation of ARX model. 
 

 
Figure 10.7: ARX model structure 

𝑦(𝑡) = 𝑧−𝑛𝑘
𝐵(𝑧)

𝐴(𝑧)
𝑢(𝑡) +

1

𝐴(𝑧)
𝜉(𝑡) 

(10.11) Where, 
𝐴(𝑧) = 1 + 𝑎1𝑧

−1 + 𝑎2𝑧
−2 +⋯+ 𝑎𝑛𝑎𝑧

−𝑛𝑎 

𝐵(𝑧) = 𝑏1 + 𝑏2𝑧
−1 + 𝑎3𝑧

−2 +⋯+ 𝑎𝑛𝑏𝑧
−(𝑛𝑏−1) 

 
𝑛𝑎 Number of poles 
𝑛𝑏 Number of zeros 
𝑛𝑘 Dead time / Delay term 
𝜉(𝑡) White noise signal with zero mean and variance, 𝑁(0, 𝜎2) 

 
10.3.4 Parameter Estimation 

The parameter estimation algorithm used is least-squares 
method. However, we could easily perform parameter estimation without 
programming the least-squares regression algorithm from scratch, by 
using either MATLAB System Identification Toolbox graphical user 
interface (GUI) or MATLAB function. Both methods allow one-click 
parameter estimation by setting some configuration based on some 
requirements. 

The purpose of system identification for pneumatic actuator 
system is to estimate a linear model for simulation and controller design 
purposes. Therefore, simulation focus is chosen in the parameter 
estimation workflow. Compare to prediction focus, the main difference is 
that simulation focus model would allow the model to perform better 
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under a wide range of condition, say, using other types of input during 
simulation. In the other hand, the residual analysis is not suitable in 
validating simulation focus model as the predictive ability of the model is 
not prioritized. 
 Since we are using polynomial ARX model as the model structure, 
it is important to decide the range of poles, zeros and delay term. For 
simplicity, we started the parameter estimation from a lower polynomial, 
such as 2, 3 𝑎𝑛𝑑 4 for both 𝑛𝑎 and 𝑛𝑏, and set the delay term 𝑛𝑘 to 0. This 
parameter estimation process will be repeated for another 2 delay terms, 
which is 𝑛𝑘 = 1, 2. 
 
10.3.5 Model Validation and Selection 

Since the selected model will be used as simulation model, the model 
validation and selection criterion will be based on 3 criteria: Best Fit %, 
Loss Function value and Mean Squared Error. 
 

1. Best Fit % - A percentage expression on normalized root mean 
square error (NMRSE), it indicates that how well fitted is the real 
data towards the model data 

𝐵𝐹% = 100(1 −
‖𝑦 − 𝑦̂‖

‖𝑦 − 𝑦̅‖
) 

 
where,  
𝑦 Experiment output data 
𝑦̂ Simulated data 
𝑦̅ Mean of experiment output data 
‖∙‖ Euclidean norm, or 2-norm of a vector 

  
 

2. Loss Function – A positive function of squared simulation error 
that minimized towards 𝜃. 

𝐽(𝜃) =
1

𝑁
∑𝑒𝑇(𝑘, 𝜃) ∙ 𝑊(𝜃) ∙ 𝑒(𝑘, 𝜃)

𝑁

𝑘=1

 

 
where,  
𝑁 Data size 

𝑒(𝑘, 𝜃) Error vector term  
𝑊(𝜃) Positive semidefinite weighting matrix 



Sensor & Instrumentation System Series 28 
ISBN 978-967-2817-62-8 

2022 

139 

 

 

 
3. MSE – Mean Squared Error 

𝑀𝑆𝐸 =
1

𝑁
∑𝑒𝑇(𝑘) ∙ 𝑒(𝑘)

𝑁

𝑘=1

 

 
10.4 RESULT AND DISCUSSION 
 
Table 10.3, 10.4 and 10.5 the results of parameter estimation for 3 
different delay term, which is 𝑛𝑘 = 0,1,2. The similarities from all 3 tables 
show that model with 2 zeros / 2 poles using input 𝑢2(𝑡) has the highest 
best fit percent. Although the loss function value and mean squared error 
is not the lowest among all estimation, but the value is convincing enough, 
when compare to results in 4 zeros /4 poles.   
 

Table 10.3: System identification result for 𝒏𝒌 = 𝟎 

 Exp 

(𝑛𝑎, 𝑛𝑏 , 0) 
(2,2,0) (3,3,0) (4,4,0) 

Best 
Fit % 

LF MSE 
Best 
Fit % 

LF MSE 
Best 
Fit % 

LF MSE 

𝑢1 

1 65.93 
5.02E-

04 
0.2917 67.86 

5.50E-
04 

0.2595 78.73 
1.91E-

03 
0.1137 

2 78.98 
4.15E-

04 
0.1107 78.68 

5.18E-
04 

0.1140 78.71 
1.63E-

03 
0.1137 

3 61.10 
4.98E-

04 
0.3744 63.23 

5.23E-
04 

0.3346 75.02 
1.72E-

03 
0.1544 

𝑢2 

1 90.24 
3.91E-

04 
0.0697 87.68 

3.98E-
04 

0.1109 88.93 
1.86E-

03 
0.0896 

2 91.83 
4.20E-

04 
0.0490 89.98 

3.95E-
04 

0.0737 91.91 
1.78E-

03 
0.0481 

3 93.04 
3.82E-

04 
0.0363 90.71 

3.83E-
04 

0.0645 92.84 
2.30E-

03 
0.0384 

𝑢3 

1 87.88 
4.47E-

04 
0.0311 68.02 

2.37E-
04 

0.2164 72.44 
1.34E-

03 
0.1607 

2 85.04 
4.34E-

04 
0.0482 65.70 

2.50E-
04 

0.2533 69.07 
1.29E-

03 
0.2060 

3 89.30 
4.27E-

04 
0.0243 71.97 

2.51E-
04 

0.1667 80.83 
1.22E-

03 
0.0780 
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Table 10.4: System identification result for 𝒏𝒌 = 𝟏 

 Exp 

(𝑛𝑎 , 𝑛𝑏 , 1) 
(2,2,1) (3,3,1) (4,4,1) 

Best 
Fit % 

LF MSE 
Best 
Fit % 

LF MSE 
Best 
Fit % 

LF MSE 

𝑢1 

1 65.96 
4.68E-

04 
0.2911 69.89 

5.31E-
04 

0.2277 76.114 
1.91E-

03 
0.1433 

2 79.01 
3.99E-

04 
0.1105 78.71 

5.21E-
04 

0.1136 78.712 
1.63E-

03 
0.1136 

3 61.18 
4.71E-

04 
0.3730 67.82 

4.92E-
04 

0.2563 77.781 
1.72E-

03 
0.1222 

𝑢2 

1 90.32 
3.88E-

04 
0.0685 87.93 

3.96E-
04 

0.1066 89.058 
1.86E-

03 
0.0875 

2 91.94 
4.18E-

04 
0.0477 90.35 

4.00E-
04 

0.0683 91.940 
1.78E-

03 
0.0477 

3 93.10 
3.81E-

04 
0.0356 90.65 

3.80E-
04 

0.0654 92.883 
2.29E-

03 
0.0379 

𝑢3 

1 87.78 
4.47E-

04 
0.0316 68.14 

2.37E-
04 

0.2148 72.787 
1.34E-

03 
0.1567 

2 84.95 
4.33E-

04 
0.0488 65.59 

2.52E-
04 

0.2549 69.856 
1.30E-

03 
0.1956 

3 89.10 
4.27E-

04 
0.0252 72.50 

2.55E-
04 

0.1604 81.363 
1.22E-

03 
0.0737 
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Table 10.5: System identification result for 𝒏𝒌 = 𝟐 

 Exp 

(𝑛𝑎, 𝑛𝑏 , 2) 
(2,2,2) (3,3,2) (4,4,2) 

Best 
Fit % 

LF MSE 
Best 
Fit % 

LF MSE 
Best 
Fit % 

LF MSE 

𝑢1 

1 66.49 
4.17E-

04 
0.2822 70.37 

5.46E-
04 

0.2205 76.787 
1.92E-

03 
0.1354 

2 79.03 
3.88E-

04 
0.1102 78.15 

5.32E-
04 

0.1197 78.670 
1.63E-

03 
0.1141 

3 61.89 
4.28E-

04 
0.3594 66.93 

5.11E-
04 

0.2707 76.546 
1.72E-

03 
0.1361 

𝑢2 

1 90.44 
3.85E-

04 
0.0669 88.23 

4.00E-
04 

0.1013 89.388 
1.86E-

03 
0.0823 

2 92.02 
4.18E-

04 
0.0468 90.44 

4.02E-
04 

0.0671 91.857 
1.79E-

03 
0.0487 

3 93.13 
3.80E-

04 
0.0353 90.75 

3.84E-
04 

0.0641 92.730 
2.30E-

03 
0.0396 

𝑢3 

1 88.44 
4.46E-

04 
0.0283 66.70 

2.43E-
04 

0.2346 69.635 
1.34E-

03 
0.1951 

2 85.81 
4.31E-

04 
0.0434 66.15 

2.59E-
04 

0.2468 69.166 
1.29E-

03 
0.2047 

3 89.41 
4.26E-

04 
0.0238 73.16 

2.60E-
04 

0.1528 78.662 
1.22E-

03 
0.0966 

 
Based on observation, the 3rd experiment using input 𝑢2(𝑡) produce the 
highest best fit percent, which is 93.04%, 93.10% 𝑎𝑛𝑑 93.13%. Therefore, 
the ARX discrete polynomial model will adopt the estimated parameter of 
the configuration (arx220, arx221 and arx222). However, arx220 model 
will be selected for simulation purpose due to its simplicity. Equation 
10.12 shows the selected model parameter. 
 

𝑦(𝑡) = 𝑧−𝑛𝑘
𝐵(𝑧)

𝐴(𝑧)
𝑢(𝑡) +

1

𝐴(𝑧)
𝜉(𝑡) 

(10.12) where, 

𝐴(𝑧) = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 

𝐵(𝑧) = 𝑏1 + 𝑏2𝑧
−1 
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For 𝑛𝑘 = 0   
 𝑎1 = −1.988 𝑎2 = 0.9876 
 𝑏1 = 0.007788 𝑏2 = −0.007671 
   
For 𝑛𝑘 = 1   
 𝑎1 = −1.988 𝑎2 = 0.9885 
 𝑏1 = 0.007966 𝑏2 = −0.007856 
   
For 𝑛𝑘 = 2   
 𝑎1 = −1.988 𝑎2 = 0.9893 
 𝑏1 = 0.008141 𝑏2 = −0.00804  

 
 
Figure 10.8 shows the best fit % plot with the comparison of all simulated 
model from arx220, arx221, arx222 and measure data from 3rd experiment 
using input 𝑢2(𝑡). It can be observed that the nonlinearity and chattering  
behaviour from disturbance signal is not demonstrated by the simulation 
model response. The enlarged plot is shown in Figure 10.9. 
 

 
Figure 10.8: Best fit % plot 
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Figure 10.9: Best fit % plot (enlarged) 


