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ABSTRACT 

Nowadays, expeditious developments in the electrical and electronic territory due to 

endless demands from the markets have driven the operation frequency of the system 

into the gigahertz region. This had evolved into a more effectual-performance 

system, but also inflicts a lot of difficulties to the designers, for examples 

Electromagnetic Interference (EMI) problem and Signal Integrity (SI) issue. The 

integrity of circuit layout is inevitably compromised by bifurcated traces for 

examples T -junctions, Y -junctions, right-angle bends or left-angle-bends and steps 

planar transmission lines in order to fulfil the needs of a denser printed circuit 

boards. However, bifurcation often induces impedance mismatching resulting in 

reflection, radiated emission and power loss. This research is to investigate the 

radiated emission of 0°,45° and 90° bent microstrip lines by using an analytical 

fODnulation followed by computer simulation and experimental measurements for 

validation purposes. The novelty of this research is the implementation of travelling 

wave mode (TWM) method on bent microstrip line by adopting the equivalent wire 

model. The reliability of the formulation is proven from the agreement between the 

analytical results and computer simulation, especially in predicting the E¢ 

component. The analytical results clearly showed the significance of the bent in 

altering the radiation pattern of the microstrip line. Increasing the operating 

frequency and microstrip's width tend to produce more emission. One of the electric 

field components, Eo is almost symmetrical with respect to the bent angle/2 line on 

the plane of the microstrip line, while the E¢ component radiates strongly into the 

bent angle + bent anglel2 direction. The magnetic field on the bent microstrip line 

experiences an abrupt change at the location of the bent. This change becomes 

apparent as the bent angle increases. Future work should focus on improving the 

analytical fornmlation so that it can predict the Eo component with higher accuracy. 

FurtheDnore, effort can also be made on generating algorithm which takes into 

consideration the composite electric field radiation of all the bents on a practical 

printed circuit board. 
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ABSTRAK 

Pada zaman yang begitu pesat membangun terutamanya dalam bidang 

elektrik dan elektronik, pem1intaan yang semakin melambung dari pasaran telah 

menaikkan operasi frekuensi sistem elektronik ke tahap gigahertz. Ini telah 

memajukan sistem kepada yang lebih cekal dan effektif, tetapi ia juga mendatangkan 

kesukaran dan cabaran kepada para pereka bentuk !itar seperti kesan-kesan gangguan 

elektromagnet (EM I) dan isu-isu kualiti isyarat (SI). Tidak dapat dinafikan, 

kewujudan pelbagai cabangan seperti cabangan-T, cabangan-Y, pembengkokkan 

kekanan bersudut tegak atau pembengkokkan kekiri bersudut tegak merupakan satu 

fenomena yang tidak dapat dielakkan semasa mereka !itar elektrik yang lebih padat. 

Walaubagaimanapun, dwi cabang sering kali mengakibatkan galangan tak sepadan 

yang menghasilkan pantulan, pancaran tersinar dan kehilangan kuasa. Dwi cabang 

yang mana dipertimbangkan sebagai fenomena ketidakselanjaran adalah salah satu 

penyumbang kepada ganguan kualiti isyarat. Kajian ini adalah bertujuan untuk 

mengkaji pengagihan arus serta radiasi l11edan elektrik bagi satu surihan garisan jalur 

mikro yang dibengkok pada 00
, 45 0 dan 900 l11enggunakan analisis perumusan diikuti 

oleh simulasi kOl11puter dan pengukuran eksperil11en untuk tujuan pengesahan. 

Pembahruan di dalam penyelidikan ini adalah pelaksanaan kaedah mod gelombang 

bergerak (TWM) pada garis surihan jalur mikro bengkok dengan mengadaptasikan 

model wayar setara. Kesahihannya terbukti apabila keputusan anal isis perumusan 

l11enghal11piri keputusan yang diperolehi melalui simulasi computer terutamanya bagi 

E¢ komponen. Keputusan-keputusan analisis menunjukkan dengan jelas bahawa 

kewujudan bengkok pada garis jalur mikro telah mcngubah corak pancaran 

elektriknya. Selain itu, adalah didapati bahawa peningkatan operasi frekucnsi dan 

lebar jalur mikro akan l11eningkatkan pancaran clektriknya. Salah satu komponcn 

medan elektrik, Eo pada satah jalur l11ikro adalah sentiasa simetri pada arah SlIdlil 

bengkok 12, l11anakala kOl11ponen medan elektrik yang lain. E¢ tcrpancar dcngan 

banyak ke arah SlIdllf bcngkok + slIdlll bengkok /2. Pengagihan arus pada garisan 

jalur mikro bengkok mengalami perubahan yang ketara terutamanya pada bahagian 

pembengkokkan. Perubahan ini semakin ketara apabila sudut pembengkokkan 
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dipertingkatkan. Kajian lanjutan seharusnya memfokus pada penambahbaikkan 

analisis perumusan yang sedia ada ini supaya dapat mengira komponen Eo dengan 

lebih tepat. bukan itu sahaja, focus juga boleh diletakan untuk menghasilkan 

algoritma baru yang mempertimbangan gabungan pancaran medan elektrik bagi 

semua pembengkokkan jalur mikro di atas papan litar tercetak. 
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CHAPTER I 

INTRODUCTION 

1.1 General 

The strategy of marketing electrical and electronic products on time at the 

lowest cost is a priority for many manufacturers. But as the operating frequency 

increases, Electromagnetic Compatibility (EMC) requirements during the design 

cycle and development must be addressed accordingly. EMC is defined as the ability 

of device, equipment, or system to function satisfactorily in its enviromnent without 

introducing intolerable electromagnetic disturbance to anything in that enviromnent 

[1 ]. 

Consideration for EMC is now crucial for all electrical and electronic 

equipments from the early stage of designing until production. New electronic 

products which perform critical function will become futile if the devices do not 

meet legal requirements in the countries they are to be marketed. Consequently, 

Malaysian manufacturers are concemed about the EMC requirement in order to 

penetrate imp0l1ant intemational markets such as United States of America, 

European Union and Japan. 
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A system is classified as electromagnetically compatible if it satisfies three 

criteria, which are [2]: 

1. It does not cause interference with other systems. 

11. It is not susceptible to emissions from other systems. 

111. It does not cause interference with itself. 

EMC can be divided further into four aspects based on the mechanism of 

electromagnetic energy transfer. They are radiated emissions, radiated immunity, 

conducted emissions and conducted inmmnity as shown in Figure 1.1 and elaborated 

in Figure 1.2. 

El ectromagneti c 
Compatibility, EMC 

Figure 1.1: Aspects of EMC . 

... 
I 
I Source of 

emission 

Radiated Emission - emission of electromagnetic field from the power, or signal line 

and the equipments to the environment (air). 

2 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



I 
I 

I 
I 

Y Potentially susceptible 
component 

Radiated Immllnity - the ability of a device to perform without degradation in the 

presence of an electromagnetic disturbance from the environment. 

Source of 
emission 

Conducted Emissions - emission of electromagnetic field to external world via 

power or signal line. 

... Potentially susceptible 
component 

Conducted Immllnity- the ability of the device to handle the electromagnetic 

disturbance originated from power or signal line \vithout degradation of its 

performance. 

Figure 1.2: Elvie sub-problems. 

The emission of electromagnetic energy can be broadly classified into two 

aspects. Radiated emission is the electromagnetic field radiation through the air and 

conducted emission is the current conduction through the power or signal line. On 

the other hand, the immunity of a device is classified into two aspects. Radiated 

immunity is the ability of the device to perforn1 in the presence of electromagnetic 

disturbance from the environment and conducted immunity is the ability of the 

device to perform although there is electromagnetic disturbance originated from 

power or signal line. A good Elvie design must be able to control the emission or to 

., 
.J 
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improve the immunity of equipment so as to comply with relevant national and 

intemational standards. 

Generally, electromagnetic interference (EMI) which is a subset ofEMC, is 

the electromagnetic disturbance which causes the degradation of the performance of 

a device, or system. The mechanisms of electromagnetic interference are shown in 

Figure 1.3 and can be explained as follows: 

(1) Direct radiation from source to receptor. 

(2) Direct radiation from source picked up by the electrical power cables or 

the signal/control cables connected to the receptor, which reaches the 

receptor via conduction. 

(3) Electromagnetic interference radiated by the electrical power, signal, or 

control cables of the source and the radiation is captured by the receptor. 

(4) Electromagnetic interference directly conducted from the source to the 

receptor via common electrical power supply ground. 

, , , , 2 , , , -------- , 
I --- , 

I -- - , 
I, - .. , 

Power Cable I 
J Receptor 

I .. 
I Source I Power Cable , , 

3 ", I 
I - I 

4 ----------------------. 

Common Ground 

Figure 1.3: Mechanisms of electromagnetic interference. 

Truthfully, some important approaches can be implemented to reduce the 

EMI effects such as reducing the loop area, improving the grounding system, 

4 
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filtering, and proper trace routing. However, to eliminate all possibilities of EM I by 

all those aforementioned could result in higher cost to industry and could delay new 

teclmologies from being implemented. 

5 

A printed circuit board (PCB) is an integrated part of any equipment or 

systems because circuits and components are located on it to perform a specific task. 

It is ordinary to have bifurcated traces such as T -junction, Y -junction, right-angle 

bends or left-angle-bended and steps planar transmission lines on nearly every PCB 

in the effort to produce faster and smaller system. Unfortunately, the changing of the 

shape and size of the microstrip trace affects its impedance which can induce 

mismatching in between two sections of the microstrip line. Consequently, this 

generates unwanted electromagnetic radiation. Since it is usual to have more than 

one single bifurcation on a PCB, the total radiation effects should be paid attention. 

Waiting until the end of the development cycle to find out whether a product passes 

regulatory agency requirements can be an expensive gamble. Failing the requirement 

will result in costly retrofitting. A successful design engineer must understand 

various radiation mechanisms and able to implement various techniques to ensure 

compliance of the system to EMC standards before the products are produced. 

The use of electromagnetic simulation software in the design and 

optimisation of circuit perfom1ance is becoming an important tool in providing 

guidance towards actual design and production to achieve compliance to EMC 

standard before the products are marketed. Effective simulation software enables the 

engineers to complete the design in shortest time without sacrificing the accuracy. 

The actual operation behind the simulation software involves a lot of modelling 

approach based on the numerical method, for example, finite difference time domain 

(FDTD), method of moment (MoM), and finite element method. Efficient modelling 

approach which results in relatively faster and providing acceptably accurate results 

is always a challenge to the researches in order to further improve the reliability of 

the existing simulation techniques. 
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6 

It should be realised that total reliance on commercial software. which is 

based on certain numerical method can implicitly retrench some important findings 

which the circuit designers should detect and utilise in their circuit design. 

Consequently, when dealing with high speed circuit design, it is desirable to apply 

the analytical approach in solving some of the fundamental aspects such as current 

distribution and emission. The work presented in this thesis is to explore a novel and 

accurate analytical approach to detennine the radiated emissions of 0°,45°, and 90° 

bent microstrip lines. 

1.2 Problem Statement 

Recently, as the demands from the markets are increasing endlessly, in order 

to enhance the product so it can perform faster and more intelligently, not only the 

clock frequency increases but also the density of the circuits. Therefore, issues 

regarding the EMI start to receive attention from the circuit designers. 

Among all of the EMI sources, the radiation from the bifurcations has been 

realized since the integrity of circuit layout is inevitably compromised by bifurcated 

traces (T -junction, Y -junction, right-angle bends or left -angle-bended and steps 

planar transmission lines). This phenomenon often results in the reflection and 

mismatching if the impedance of the bifurcated traces is not known accurately. Since 

there is not only one bifurcation exist in the printed circuit design, radiation from 

PCB will definitely becoming a critical issue and will definitely degrade the 

performance of the system in achieving the compliances of ElvlC regulation. 

Hence, the prediction and reduction of ElvlI are important so that thc 

performance of electronic products can be impro\'cd to suit thc intcmational 

standard. The prediction of the radiation is frequcntly assistcd by clectromagnetic 
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