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ABSTRACT 

The louvered fin is most widely used in automotive applications. Compared 

to other geometrical parameters ofthe fin, the louver angle has a stronger effect on 

heat transfer. This study is carried out by computational method to determine the 

louver inclination of a rectangular channel heat exchanger that has the greatest 

influence on flow and heat transfer and invariant with other geometrical parameters. 

The meshed CAD model is validated with an established correlation in literature. In 

the earlier years of study, the mean flow angle was defined in two dimensional 

flows. ANSYS-CFD is capable of defining a mean flow angle was defined in three 

dimensional flows. The validation agrees weB, with about 5.39% of error. Various 

graphs are plotted to determine the optimized louver inclination. From the plotted 

graphs ofNusselt number and pumping power against the Reynolds Number, it is 

observed that the louver angle has a strong influence on the heat transfer rate. Then, 

a ratio of heat transfer rate to pumping power is used in the graphs as the non

dimensional number representation to determine the optimum angle. In addition to 

this study, a general correlation is developed to represent the behavior oflouver 

angle at different ranges of pumping power. With a practical range of Reynolds 

numbers and louver angles, the optimum angle is found to be 20 degrees. This 

numerical result has a high confidence level where a good agreement between the 

meshed models with the established finding is obtained. The study has succeeded in 

obtaining the result that was set out as the objective. 
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ABSTRAK 

Louver fin adalah yang paling sesuai untuk aplikasi automotif. Berbanding 

dengan parameter yang lain, sudut louver fin adalah paling mendorong kepada 

perubahan aliran dan keboleh pindahan haba. Oalam tesis ini, kajian dilakukan 

secara simulasi berkomputer untuk menentukan sudut louver fin yang optimum dari 

segi keboleh pindahan dan ketelusan pengaliran udara. Model yang dimesh, telah 

menjalani peringkat pengesahan dengan formula dari kajian yang terdahulu. Oi awal 

kajian, defininasi adalah dalam aliran dua dimensi. Perisian ANSYS-CFO boleh 

memberi definisi dalam bentuk tiga dimensi. Pengesahan adalah sahih dalam 5.39% 

ralat. Pelbagai graftelah diplot dan didapati definisi pumping power adalah yang 

paling sesuai digunakan dalam optimisasi. Melalui graf-graf iaitu Nusselt number 

dan pumping power yang diplot berlawanan dengan Reynolds Number, ia didapati 

bahawa sudut louver mempunyai pengaruh yang kuat terhadap keupayaan pindah 

haba. Maka, satu nisbah antara keupayaan pindah haba kepada pumping power 

digunakan sebagai perwakilan nombor tidak berdimensi bagi menentukan sudut 

optimum louver. Sebagai tambahan kepada kajian ini, persamaan matematik yang 

merangkumi keseluruhan sifat sudut louver fin dengan pumping power dalam kaj ian 

juga dibinakan. Oalam lingkungan Re yang pratikal, sudut louver fin yang optimum 

adalah 20 degree. Hasil kajian ini adalah selari dengan hasilan dapatan dari Iiteratur 

oleh pengkaji yang terdahulu. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Compact heat transfer surfaces play an important part in heat exchanger 

technology because they are lighter and more efficient. Newer surfaces are constantly 

evolving as a result of recent developments in compact heat exchangers. Of the many 

types of fins that have been studied in compact heat exchangers, such as strip fin, offset 

fin, wavy fin etc., the louvered fin is most widely used in automotive applications. The 

various forms of louvered fin flat-tube surface are shown in figure 1.1. According to 

Kraus et al. (2001), the design of or performance calculation for a compact heat 

exchanger for rejection of heat in automotive applications, such as a radiator, it is 

necessary to establish the heat transfer capability and the associated system resistances. 

The louvered fin is the preferred fin geometry in radiators because (i) it can be 

manufactured by automated process (ii) it can be accommodated in a small space, as 

compactness is important in an automobile, and (iii) unlike other types, it gives high heat 
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duty which reduces the radiator frontal area, which is advantageous for the 

aerodynamics of the automobile. 
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Figure 1.1: Forms oflouvered fin-flat tube surface as illustrated by 

Hesselgreaves (2001). 

The hydrodynamic characteristics of a stack of louvered fins have a complex 

dependence on a number of variables such as fin pitch, fin material, fin thickness, 

number of louvers, louver pitch, louver height and louver angle. The geometric 

parameters that can be varied include louver pitch L, louver length LL, louver angle a, 

and fin pitch F as shown in figure 1.2. Louver pitch is the same as louver length since it 

is the same length of the louver forming cuts in the metal. As describe by Shah and 
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Sekulic (2003), such finning enhances heat transfer by a factor of2 or 3 compared with 

unlouvered surfaces. 

North face 

-----G> duct directed flow ----t> 

South face 

3 

Figure 1.2: Section through louvered fin as illustrated by Achaichia and Cowell (1998a) 

At first sight, the function of the louvered fins seems to be as turbulence 

generators. This was found not true because the louvered fms act rather by causing the 

fluid flow to be deflected from its incident direction and become aligned with the plane 

of the louvers which was shown by Beauvais (1965) in large-scale models. Thus, the 

louvered fins tend to act as multiple flat plates with their associated leading edge laminar 

boundary layers which enhance heat transfer without a disproportionate increase in flow 

resistance. 

According to Cowell et al (1995), this behavior of flow has been experimentally 

confirmed by many others- by Davenport (1980), using smoke traces; by Wong and 

Smith (1973) and Antoniou et al. (1990) using hot-wire anemometry; by Button et al. 

(1984), using LDA; and by others (Hiramatsu and Ota (1982), Tanaka et al. (1984), Tura 
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(1986), Hiramatsu et al. (1990), Webb (1990) using water channels and flow 

visualization techniques. Further evidence of this behavior comes from the numerical 

analyses of flow through louvered arrays published by Achaichia and Cowell (1988a), 

Baldwin et al (1987), and Ikuta et al (1990). 

1.2 Importance of the Study 

4 

Past studies have shown that the flow in the compact heat exchanger is strongly 

dependent on geometrical parameters. Thus, the optimum heat transfer rate could be 

obtained by manipUlating the geometrical parameters of the fm. In this study was done 

by selecting the most influential geometrical parameter. In general, the efficiency ofthe 

compact heat exchanger increases with air velocity and louver angle, while decreasing 

with fin pitch and thickness ratio. According to Zhang and Tafti (2003), louver angle has 

a stronger effect on heat transfer as compared to the other geometrical parameters. 

Therefore, selecting the louver inclination is a mean to reduce pressure loss without 

extensive modification in the design of the compact heat exchanger, yet achieve the 

required heat transfer duty with limited fan power. 

1.3 Rationale of the Study 

The louvered fin on flat tube with rectangular channel (figure 1.1) is the 

preferred type of compact heat exchanger for automobile applications. Correlating the 

friction factor for such an important geometry was done by the past researcher as shown 
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in equations 2.18 to 2.24. However, these correlations are generalized and the 

percentage of deviation between these is as large as ± 15% and no consideration of the 

louver thickness parameter. Zhang and Tafti (2003) detennined that for small louver 

angles there is a significant thickness ratio effect on the heat transfer and the flow 

efficiency, defined in section 2.3. Detennining the optimum condition of the louver 

angle by using generalized correlations of Chang and Wang (1997) is unlikely to lead to 

the right answers. Therefore in this study the ratio of heat transfer rate to pumping power 

is considered to detennine the optimum angle. 

In a typical reliability test of a radiator, the air flow is conducted at 10 m1s 

(corresponding to a typical Reynolds number of 1000). Analogy of a real situation for 

such a reliability test is one where the heat load from engine becomes high when the 

automobile encounters a long upward slope. In such a case when the ram air velocity 

becomes low, the heat rejection of the radiator can no more depend on the ram air 

velocity, and has to depend on the fan. 

Below Reynolds number of about 300, Davenport (1980) noted that an 

inconsistency occurred in the heat transfer due to the thickness of the boundary layer 

developing on the louvers. This idea was also continned by the results of Achaichia and 

Cowell (1988). A review of the past literature, in section 2.7 of this thesis, showed that 

the heat transfer correlation is yet to have a continnation of which correlation has the 

strongest agreement. Besides, such a low Reynolds number is not in the practical range. 

To exclude this uncertainty, therefore, Reynolds numbers below 300 are not considered 

in this study. 

The importance of the thennal wake on the local heat transfer coefficients along 

a particular louver had been studied experimentally by Kurosaki et al. (1998), and 

numerically by Suga and Aoki (1991) and Zhang and Tafti (2001). Zhang and Tafti 
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(2001) state that neglecting thennal wake effects at low flow efficiencies can introduce 

errors as high as 100% in the heat transfer. To perfonn such a study in large scale 

experiment would induce even more errors when the heating on louver fins is not 

unifonn. Therefore, to avoid such large errors, it is preferable to do this study fully by a 

computational method. Furthennore, errors are eliminated at validation stage. The 

6 

results are validated by comparison with previous published correlations. The purpose of 

validation is to verify that the mesh distribution and solution procedure are suitable 

before the study is carried further. 

1.4 Problem Statement 

This study is carried out numerically to detennine the louver inclination that has 

the greatest influence on flow and heat transfer of the compact heat exchanger with 

rectangular channels, in which, other geometrical parameters are invariant. The study is 

directed towards automobile applications, although the results can be extended to other 

situations. 

1.5 Objectives 

The objectives of this study are: 

(i) To develop a model using Computational Fluid Dynamics to analyze the flow 

and its heat transfer from compact louvered fins. 
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(ii) To validate the model with the published work on flow through the compact 

finned passages. 

7 

(iii) To determine the optimum louver inclination from the viewpoint of flow and 

heat transfer for automobile application. 

1.6 Scope 

The scope of this study is: 

(i) Using ANSYS-CFD software to represent the analytical model of rectangular 

channel compact heat exchanger with louvered fin on flat tube. The model is 

with fin pitch ratio (ratio of fin pitch over louver length) of 1.5 and thickness 

0.05 mrn. The model is 2 cm3 in size and no gravitation effect is considered in 

such size of control volume. The fin base temperature of the model is assumed 

as constant temperature. 

(ii) The mathematical model, whose validity is confirmed by the previous published 

research is used in this work. 

(iii) A 3-D approach is used in view of the capability of ANSYS-CFD to define a 

mean flow angle by ratio of average volume, though in earlier studies, the mean 

flow angle was defined by the ratio of two dimensional flows. 

(iv) Reynolds number in the range 0[300 to 1200 and louver angles in the range of 

15° to 30° are considered. 
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CHAPTERll 

LITERATURE REVIEW 

2.1 Davenport's Observation 

Davenport (1980) first recognized that the degree of flow alignment with the 

louver plane is a function of the flow Reynolds number. He also noted that the fluid flow 

tended to be down the gap between fins at very low Reynolds numbers because the 

laminar boundary layers on the louvers are sufficiently thick to effectively block off the 

gaps between adjacent louvers in the same fin. 

Davenport linked the fluid flow down the gap with an inconsistent heat transfer 

effect when the j factor curves show a tendency to flatten off at low Reynolds number 

(below Re = 300). This idea was confinned by the results of Achaichia and Cowell 

(1988b) when they undertook a two-dimensional finite-difference analysis of the fully 

developed periodic flow situation in an infinite louver array with infinitely thin louvers. 

The resulting curves are given in Figure 2.1. 
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Figure 2.1: Mean flow angles in louver arrays from Achaichia and Cowell (1988b). 

2.2 The Mean Flow Angle (fJmcan ) 

The mean flow angle (fJmcan ) was first introduced by Achaichia and Cowell 

(1988a) Referring to figure 1.2, it was defined as arctangent of the ratio of flows out and 

into of the north and west faces, respectively. They equated the mean flow angle with 

other parameters to describe the fall-off effect as shown in equation (2.1). Similarly, 

Zhang and Tafti (2003) defined it as arctangent of the ratio of average normal velocity 

across the top boundary to that across the west boundary but in an individual block 

surrounding a given louver and expressed as in equation (2.2)_ 

fJmcan = 0.936-(243/ReL ) -1.76(F / L) + O.995a (2.1) 
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-tan-I ( JVdxIL] 
P~= - JUdY I F 

(2.2) 

2.3 Flow efficiency (IJ) 

Flow efficiency is used to describe the percentage of the fluid flowing along the 

louver direction. 100% efficiency represents ideal louver-directed flow while 0% 

represents complete duct-directed flow. Two kinds of definition of flow efficiency have 

been used in the past studies. In experimental dye injection studies flow efficiency is 

defined as the ratio of actual transverse distance (N) traveled by the dye to the ideal 

distance (D) ifthe flow were aligned with the louvers. 

N 
7]exp = D (2.3) 

In numerical simulation, flow efficiency is defined as ratio of mean flow angle (Pmean ) 

to louver angle (0:). 

7] = Pmean 
a 

(2.4) 
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2.4 The Relation of Flow Efficiency (1')) and Heat Transfer (St) 

Flow efficiency measures not only the tendency of the fluid flow to follow the 

louver direction but also the capability of heat transfer from the louvered fins. The 

louvers tend to act as multiple flat plates as shown by Beauvais (1965) in large-scale 

models. 

In an attempt to relate the mean flow angle and its heat transfer effect, a 

correlation had been proposed by Achaichia and Cowell (I 988b) that makes use of the 

theoretical results in Figure 2.1. A simple polynomial equation was developed to 

describe the ratio of mean flow angle to louver angle as a function oflouver angle, the 

ratio of fin pitch to louver pitch and Reynolds number. 

11 

f3mean = O.936-(243/ReL )-1.76(F / L)+O.995a 
(2.5) 

a a 

Incorporating this ratio with experimental results from Achaichia and Cowell 

(1988b), the following expression for Stanton number was obtained. 

(2.6) 

This expression had ignored the duct flow component since it is negligible at 

Reynolds numbers of practical interest and the above equation is found to describe all 
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