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ABSTRACT

Cuprous oxide (Cuz0) is a promising semiconductor that has been getting attention as
the alternative material for solar cell application. It is abundant, low cost and non-toxic
to the environment. A homojunction Cuz0 is said to provide high conversion
efficiency for solar cell. However, as Cu20 is a natural p-type semiconductor, it is a
challenge to make an n-type CuzO. In this study, n-Cu;O was prepared by using
electrochemical deposition. The structural, morphological, optical and electrical
properties of the electrodeposited CuxO were evaluated after optimizing the parameters
for Cuz0 fabrication. Structural characterization of the deposited thin film was also
done via X-Ray Diffractions (XRD) to confirm the existence of Cu20O particles on
fluorine-doped tin oxide (FTO) substrate and to determine the crystalline phases of
Cu20 in the sample. The surface morphology of CuzO thin films were characterized
by Field Emission-Scanning Electron Microscopy (FE-SEM) in order to examine the
changes in the surface morphology of the film as the parameter varied. Ultra violet-
visible (UV-Vis) spectrophotometer was used to study the optical absorption of Cu20
and to determine the band gap of the deposited thin film with further calculation
including the thickness values of the thin film measured by surface profiler. The
resistivity and sheet resistance of Cuz0 thin film were determined via four-point probe
measurement test. Lastly, the deposited Cuz0 thin film was confirmed as n-type by
using the photoelectrochemical cell (PEC) test. The parameters for electrodeposition
of Cuz0 such as the deposition potential, pH solution, solution temperature, and
deposition time were optimized at -0.10 V vs. Ag/AgCI, pH 6.5, 60 °C, and 60 minutes,
respectively. The band gap obtained from UV-Vis spectrophotometer was 2.45 eV.
The successful fabrication of n-Cu;O will open a new door of CuyO-based

homojunction development for thin film solar cell application.
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ABSTRAK

Kuprum (I) oksida (Cuz0) merupakan semikonduktor yang telah mendapat perhatian
sebagai bahan alternatif bagi aplikasi sel solar. Bahan ini boleh didapati dengan
banyak, dalam kos yang rendah dan tidak toksik kepada alam sekitar. Homosimpang
Cu0 dikatakan mempunyai kecekapan penukaran yang tinggi untuk sel solar. Walau
bagaimanapun, secara semulajadinya, Cu20O adalah semikonduktor jenis-p dan untuk
membuat jenis-n adalah satu cabaran. Dalam kajian ini, n-CuyO telah disediakan
dengan menggunakan pengendapan elektrokimia. Sifat-sifat struktur, morfologi,
optikal dan elektrikal Cuz0 yang telah dimendapkan dinilai selepas parameter untuk
fabrikasi Cu20 dioptimumkan. Pencirian struktur filem nipis yang telah dimendapkan
melalui difraksi sinar-x (XRD) untuk mengesahkan kewujudan partikel Cu20 pada
substrat ‘fluorine-doped tin oxide’ (FTO) dan untuk menentukan fasa kristal CuxO
dalam sampel. Morfologi permukaan filem nipis CuzO telah dicirikan oleh pancaran
medan-mikroskopi imbasan elektron (FE-SEM) untuk meneliti perubahan morfologi
permukaan filem apabila parameter diubah-ubah. Spektrofotometer ‘wltra violet-
visible’ (UV-Vis) telah digunakan untuk mengkaji penyerapan optik Cuz20 dan untuk
menentukan jurang jalur filem nipis yang telah dimendapkan termasuk pengiraan
membabitkan nilai ketebalan filem nipis yang diukur menggunakan pembukah
permukaan. Kerintangan dan rintangan keping filem nipis CuxO telah ditentukan
melalui ujian ‘four-point probe’. Akhir sekali, filem nipis Cu20 yang telah
dimendapkan disahkan sebagai jenis-n dengan menggunakan ujian sel
fotoelektrokimia (PEC). Parameter untuk pemendapan CuxO seperti voltan
pemendapan, pH larutan, suhu larutan, dan masa pemendapan telah dioptimumkan
masing-masing pada -0.10 V vs. Ag/AgCl, pH 6.5, 60 °C, dan 60 minit. Jurang jalur
yang diperoleh dari spektrofotometer UV-Vis adalah 2.45 eV. Kejayaan memfabrikasi

Cuz0 jenis-n akan membuka ruang baru kepada industri homosimpang berasaskan

Cu20 untuk aplikasi sel solar.
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CHAPTER 1

INTRODUCTION

Introduction covers the overview, history and development of solar cell technology.
Problem statement, objectives, scope, and thesis organization of this study are also

stated.

1.1 Overview

Solar cell has become the most attractive future source of energy due to the depletion
of current energy sources such as fossil fuels and nuclear energy. Over the past three
decades, more fossil fuels and nuclear energy were consumed rather than new reserves
were found. Thus a new energy source is needed and a renewable energy is a better
option as it is naturally replenished, energy secured, climate change mitigated and
economically benefited. Solar energy shows a promising outcome as an energy source
because the radiation power that it provides to the earth is 1.8 x 10'! MW which is
multiple times larger than the current energy demanded by the planet [1-2]. So,
harvesting even a small amount of it gives a great source of energy.

Solar cells are devices used to convert sunlight into electricity by the
photovoltaic effect. Photovoltaic effect is defined as the creation of voltage or electric
current in a material upon exposure of light. This happens because when the light is
incident upon a material surface, the electrons in the valence band absorbs energy and
become excited, making them jump to the conduction band and become free electrons
[3]. There are three basic attributes required in the operation of photovoltaic cell as
listed below:

i.  the light absorption which generates either electron-hole pairs or excitons,
ii.  the charge carriers of opposite type being separated,

iii.  the separated carriers being extracted to an external circuit.



Basically, a solar cell structure consists of antireflective coating, p-type
semiconductor, n-type semiconductor, a depletion zone between the two
semiconductors, an external circuit and front-back electrical contacts. Antireflective
coating is used to minimize light from being reflected and guide the light through the
photovoltaic cell. While front-back electrical contacts serve as conductors to collect
electrons and usually is made out of metal. Electric current is generated inside the
depletion zone of the p-n junction. When a photon of light is absorbed by one of the
atoms, an electron will be dislodged, creating a free electron and a hole. They have
sufficient energy to jump out of the depletion zone and if a wire is connected from
cathode to anode, electrons will flow through the wire. This happens due to the
attraction between electron and the positive charge of the p-type material. An electric
current will be supplied if an external load (e.g. light bulb) is placed on the wire. While
the free hole created by the dislodged electron will be attracted to the negative charge
of electron and migrates to the back electrical contact and electron-hole recombination

happens to restore the electrical neutrality [4-5].

1.2 Background of study

Solar technology is not new as it has long been used as early as the 7" Century when
magnifying glass was used to make fire and burn ants by concentrating sun’s rays.
During this period also, in Alexandria, Egypt, solar energy was used to fire alembics
for herbal extractions or for concentrating dilute alcoholic solutions to produce wine
and various perfume oils [6]. Until 1200s AD, the applications of solar technology
have widen including burning mirrors to light torches for religious purposes, setting
fire to wooden ships, providing warmth into houses by building south-facing windows,
and etc. This technology advanced into a more complex phase in 1767 when a Swiss
scientist, Horace de Saussure built the world’s first solar collector which later was used
to cook food by Sir John Herschel during his South Africa expedition [7]. On
September 27, 1816, a minister in the Church of Scotland, Robert Stirling patented his
economiser, a heat engine. One of the working models was used by Lord Kevin during
his university classes, and later was used in the Stirling system that concentrates the

sun’s thermal energy to produce power [8-9].



However, the technology of solar cell truly started only in 1839 when a French
physicist, Alexandre-Edmond Becquerel discovered the photovoltaic effect [3, 10]. In
his experiment, two electrodes were coated by light sensitive materials, silver chloride
(AgCl) or silver bromide (AgBr), and were illuminated with different types of light in
a black box that covered an acid solution. The result showed that when the light
intensity increased, the electricity increased. Later, after 34 years of the discovery, an
English electrical engineer, Willoughby Smith, discovered that selenium is
photoconductive, followed with the discovery by William Grylls Adams and Richard
Evans Day in 1876, that selenium produces electricity when exposed to light. Even
though the power conversion was not enough to run any electrical equipment, the duo
scientists proved that a solid material could directly convert light into electricity
without heat or moving parts [10]. Over 100 years, researchers worked on the
theoretical parts of solar technology such as the discovery of outer photoelectric effect
and quantum mechanics, the recognition of the importance of single-crystal
semiconductors and the explanation of p/n junction behaviour. Besides that, elements
such as copper, cuprous oxide and cadmium sulphide, were discovered to be
photoconductive. By 1954, the invention of the first modem silicon solar cell by Daryl
Chapin, Gerald Pearson and Calvin Fuller, was announced by Bell Labs with 4%
efficiency, and later was increased to 11% [11]. Towards the present time, the
efficiencies of solar cell have been improved and material studies for solar cell
application have been widened.

All the while, silicon-based cells have been the dominant material for solar cell
because of its high conversion efficiency. However, it is difficult and expensive to be
produced as it consumes more electricity rather than producing electricity when it is
being manufactured [12]. So, researchers were trying to find other materials as
alternatives and found out that cuprous oxide (Cu20) was one of them. With the
material come in abundance, non-toxic and having low cost in production, CuO has
been receiving attention as p-type active layer. This is also due to its direct band gap
of 2 eV (appropriate range for photovoltaic cells), and its high absorption coefficient
[13-14]. In earlier work, Cu20 has been used as p-type because, even though it is not
intentionally doped, the presence of Cu** ions instead of Cu* ions at some lattice cites
cause Cu" vacancies. This happens in order to maintain the charge neutrality and

consequently result in formation of p-type conductivity [15]. Due to that, over the past



three decades have shown the fabrication of p-Cu0 solar cell with metal/Cu,0
Schottky junctions [16], and p-n heterojunctions such as n*-ZnO/n-Ga;Os/p-Cuz0
[17], n-MgxZnixO/p-Cu20 [18], n-TiO2/p-Cuz0 [19], n-TCO/p-Cu;0O [20], and
CdO/Cu0 [21].

In terms of CuzO thin film fabrication, there are several methods such as
electrodeposition [15, 22], thermal oxidation [23], chemical vapor deposition [24], sol-
gel process [25], sputtering [26], and activated reactive evaporation [27]. In this study,
the method that will be used to fabricate n-CuzO thin film is electrodeposition method.
The process of deposition from aqueous solution is simple, inexpensive, producing
controllable film thickness, producing large scale deposition, and it can also be done
at low temperature. Moreover, the parameters such as pH solution, bath temperature,
electrode potential, and deposition time can be manipulated and controlled in order to
determine the effects that they will have on the structural, optical, morphological, and
electrical properties of the thin film [28]. Thus, by using electrodeposition method, the
optimal conditions for better n-Cuz0 thin film can be chosen. The structures of n-Cu.0
are expected to be compact and homogenous with preferential plane of (111) in order
to get smooth and good electron transfer, and further to reduce lattice mismatch when

coupled with p-CuxO for thin film solar cell.

1.3 Problem statement

Latest studies focus on increasing the conversion efficiency of solar cell for other
materials in order to replace silicon due to reasons mentioned before. Nevertheless, to
this date, Cuz0 as the active layer in a p-n heterojunction structure achieved the highest
conversion efficiency of around 5%, even though theoretically, the efficiency of Cu20
solar cells should be around 20%. Generally, researchers have proposed that the best
way to increase the efficiency of CuyO-based solar cells is to produce a p-n
homojunction that has a large built-in potential of 1.7 eV [14]. Homojunction also
performs better compared to heterojunction due to lack of interface strain between n-
and p-type [29]. Problems faced by heterojunction solar cell such as finding proper
energy level alignment between p- and n-type, and lattice mismatch between
semiconductors, can be disregarded in homojunction solar cell [30]. However, Cu20

is naturally p-type, so to fabricate an n-type is difficult and rarely reported. Thus, this



work on improving the properties of n-Cuz0 thin films as a part of homojunction thin
film solar cell is much needed and indispensable.

Another factor affecting the overall performance of thin film solar cell
fabricated by electrodeposition is the substrate. Different substrates have been used in
previous studies including metals such as copper, titanium, platinum, gold, etc. and
transparent conducting oxide glass such as indium-doped tin oxide (ITO) and fluorine-
doped tin oxide (FTO). There were not many studies using FTO compared to ITO even
though it serves many advantages. It is more transparent which allows more lights to
be absorbed, has larger conductivity, more stable against heating and environment and
less expensive. Moreover, indium can diffuse to adjacent layers which will alter the
characteristics of p-n materials. In this study, the chosen substrate was FTO as it offers
many benefits towards performance of thin film solar cell where other substrate which

the previous studies used were lack of.

14 Objective

This study aims on fulfilling several objectives which are:
i.  To fabricate n-type Cu20 thin film by using electrodeposition method.
ii.  To characterize the surface morphology, structural, optical and electrical
properties of the deposited n-Cu2O thin films.
iii.  To determine the optimal condition of n-Cu;O thin film for homojunction solar
cell application by manipulating deposition potential, pH solution, solution

temperature, and deposition time.

1.5 Project scope

The scopes of this study are as follows:
i.  Fabrication of n-type Cu20 thin film via electrodeposition method.
ii.  Optimization of deposition potential range via cyclic voltammetry when
solution temperature and pH solution are manipulated. (40 - 60 °C, pH 5.0 -

6.5) [57-61]



iii.  Deposition of n-type CuxO thin film when the deposition parameters:
deposition potential, pH solution, solution temperature, and deposition time are
manipulated. (-0.05 to — 0.2 V vs. Ag/AgCl, pH 5 -6.5,30—-70°C, 5 — 70
minutes) [57-61]

iv.  Investigation of the parameters manipulation effects on the structural,
morphological and optical properties via X-Ray Diffractometer (XRD), Field
Emission Scanning Electron Microscopy (FE-SEM) and Ultraviolet-Visible
Spectrophotometer (UV-Vis), respectively. Determination of polarization of
Cu20 deposit using Photoelectrochemical Cell (PEC), the four-point probe
measurement test and determining the thickness of Cu2O deposit using surface

profiler.

1.6 Thesis organization

Chapter 1 covers the overview of solar cell history, background of study, problem
statement, objectives and project scope. Chapter 2 includes literature review such as
solar cell development, details on cuprous oxide and photoelectrochemical cell.
Chapter 3 describes the methodology of this study consisting of fluorine-doped tin
oxide substrate preparation, cuprous oxide solution preparation, electrodeposition
process and characterization tests. Chapter 4 discusses the findings of this study which
include the deposition potential range of cuprous oxide and the effect of deposition
parameters on fabricated cuprous oxide. Chapter 5 concludes the results of this study

and offers recommendation on improvements for future study.



CHAPTER 2

LITERATURE REVIEW

The literature review covers the theoretical explanation, historical, development and
problem discussions of the subjects related to this study. Fabrication of n-Cuz0 thin
film and homojunction solar cell will be discussed in detail in order to realize this

project.

2.1 Solar cell

Generally, the development of solar cell has gone through three generations which are
crystalline silicon (first generation), thin film solar cell (second generation) and
emerging photovoltaic (third generation).

The first generation cells, also called conventional wafer-based cells were
made up of materials such as monocrystalline silicon and polysilicon. Monocrystalline
or single crystalline solar cells are the most unique among other solar cells. They are
not only easily recognizable by their color, they are also considered to be made from
a very pure type of silicon. The solar cell is more efficient at converting sunlight into
electricity when the alignment of the silicon molecules are purer. This type of solar
cell is the most efficient among solar cells with the recorded efficiencies of almost
20% [31]. Monocrystalline solar cells are made of a cylindrical-shaped design called
‘silicon ingots’ that increase the performance. To make up the solar panel, the
cylindrical ingots are cut on four sides making them having rounded edges rather than
being square like other types of solar cells. In addition to being the most efficient,
monocrystalline solar cells are also the most space-efficient. This being said as fewer
cells are needed per unit of electrical output. They also last the longest among all types
of solar cells with the warranties being offered by manufacturers up to 25 years.

However, with many advantages, monocrystalline cells comes with a price tag [32].



This type of solar cells is the most expensive and the manufacturing process is
complex. This is because, the material being cut on four sides waste a lot of silicon
which sometimes take up more than half. On investors and consumers point of view,
this disadvantage discredits all the advantages that monocrystalline cells offer.

Another first generation cell, polycrystalline solar cells were first introduced
to the industry in 1981. Instead of going through cutting process like monocrystalline,
the silicon for polycrystalline is melted and poured into a square mold. By using this
way, less silicon is wasted during the manufacturing process, making it more
affordable on costing [31]. However, due to lower purity, polycrystalline is less
efficient with the efficiency of around 13-16%. Consequently, more space are needed
in polycrystalline cells for a similar amount of power output generated by
monocrystalline cells. Compared to monocrystalline, polycrystalline has lower heat
tolerance that makes it less efficient in high temperatures.

The second generation solar cells is called thin film solar cell. From 2002 to
2007, the growth rates were around 60% and by 2011, the thin film solar cell industry
covered 5% of all cells on the market. One major advantage that this solar cell offers
is the use of small amount of active material compared to silicon solar cell [33]. The
active material is sandwiched between two panes of glass. Even though the weight is
doubled compared to silicon cells that use single glass pane, the ecological impact is
lesser, which was determined from life cycle analysis. In thin film solar cells
generation, various type of semiconducting material are used such as cadmium
telluride (CdTe), copper indium gallium selenide (CIGS), gallium arsenide (GaAs) and
amorphous silicon (a-Si). By December 2013, the installation of CdTe per watt costed
at $0.59 and the CIGS technology achieved 20.4% conversion efficiency in laboratory
demonstrations while GaAs technology reached 28%. The production cost is their
another advantage where the mass production is a lot easier compared to crystalline-
based modules, consequently needed relatively lower cost. Besides that, thin film
technologies are less impacted by high heat and shading which lead to the continuous
grow of the research and development [34].

The third generation solar cell is called the emerging photovoltaic or organic
photovoltaic cell. Like its name, this generation uses organic materials, often
organometallic compounds which most of them are still in the development process

and not yet been commercially applied. Some electronic conductive polymers, small



molecules and inorganic substances are also included in this generation. Despite being
low in efficiency, stability and strength compared to traditional solar cells, researchers
are positive towards this generation as it promises a low cost, high efficiency solar
cells with a flexible large scale production capability [35]. For now, emerging
photovoltaic technology is still being developed aggressively and not ready for mass
commercialization. Table 2.1 summarizes the different types of solar cells and the

challenges occur in each type.

Table 2.1: Types of solar cells and their challenges [36]

Generation Type Challenges
Single crystalline i) Device structure
development
First (Silicon) Polycrystalline if) Crystal quality
improvement
Silicon Amorphous i) Junctions
multiplication
Second I-vV
(Compound/Thin | Semiconductor GaAs/InP i) Band gap control
Film) 11-V1 ii) Junctions
Semiconductor | CdTe/Cds — Cu,S/Cds multiplication
Chalcopyrite
Semiconductor CIGS
Organic Pentancene 1) Materials
Third (Emerging) development
Photochemical Dye sensitized if) Device
development
2.1.1 Thin film solar cells

Thin film solar cells (TFSC) are the second generation solar cells which consist of
multiple thin film layers of photovoltaic materials, deposited on a substrate such as
metal, glass or plastic. Unlike the conventional solar cells, the film thickness of TFSC
is much thinner which varies from a few nanometres (nm) to tens of micrometres (pm)
[37]. This enables TFSC to be flexible, lighter and lesser in friction or drag which give
benefit in terms of solar panels implementation. More areas can be covered such as

forests, solar fields, remote government sites, street and traffic lights, etc.
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A typical thin film solar cell is not the same as most single crystal cells where
a metal grid serves as the top electrical contact. Instead, a thin layer of a transparent
conducting oxide (TCO) such as tin oxide is used. These oxides are highly transparent
with good electrical conductivity. An antireflection coating might be placed at the top
of the cell if the TCO does not provide the function. Many small crystalline grains
made of semiconductor materials used to form a polycrystalline thin film cells which
have different properties than those of silicon. Thus, a better electric field with an
interface between two different semiconductor materials can be created. An interface
made up of two different materials is called heterojunction while two doped layers of
the same material is called homojunction. A thin layer on top of the cell serves as the
“window” layer with thickness of less than 0.1 pum to absorb light energy from the
high-end of the spectrum. This layer must be thin enough but has wide enough band
gap (> 2.8 eV) in order to let all available light through the interface to the absorbing
layer. A usually doped p-type absorbing layer (1 — 2 pm) under the window must be
able to absorb photons for high current and has a suitable band gap to provide good

voltage [38]. Figure 2.1 shows a standard structure of a thin film solar cell [39].
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Figure 2.1: Schematic diagram of a solar cell structure [39]
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2:2 Cuprous oxide (Cuz20)

Cuz0 forms in a simple cubic structure where the copper atoms align in a face-centered
cubic (fcc) sublattice and oxygen atoms placed in a body-centered cubic (bcc)
sublattice. The lattice constant of this structure is a; = 4.2696 A and one sublattice is
shifted by a quarter of the body diagonal. In the crystal structure of cuprous oxide, the
stoichiometry is 2:1 with one copper atom linearly coordinated by two neighboring
oxygen and one oxygen atom is surrounded by four copper atoms. Due to this, Cu20
tends to show p-type conductivity due to the defects in it. A stoichiometric crystal
compound (denoted as XY) usually assumed as having equal numbers of X and Y.
However, the fact that most solids do not follow this rule makes them to have
unbalance ratio of atoms. Thus, these non-stoichiometric compounds balance their
structures by having defects such as vacancies, interstitial or both of them. Cuprous
oxide with the formula Cu2-50 maintains its stoichiometry by having an excess oxygen
which acts as the major active impurity that gives a p-doped characteristic [33-35].

Crystal structure of Cu20 is shown in Figure 2.2 [40].

Figure 2.2: Crystal structure of cuprous oxide

Two stable oxides exist in the Cu-O system which are cupric oxide (CuO) and Cu20.
Each oxides display different crystal structures and physical properties. They are
similar in the sense that they are both semiconductors with band gaps in the visible or
near infrared regions. However, Cu20 possesses better crystallinity, bigger grains and

direct band gap structure. The properties of Cu20 are summarized in Table 2.2 [41].
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