DISTRIBUTED PROCESSING OF MPEG-2 VIDEO ENCODING ON MICROSOFT WINDOWS PLATFORM

CHEW CHANG CHOON

This thesis is submitted to comply with the requirement for the award of Master Degree of Electrical Engineering

> Faculty of Electrical and Electronic Engineering Kolej Universiti Teknologi Tun Hussein Onn

> > **APRIL**, 2005

For my beloved mum, sister and late father

DEDICATION

I would like to express my deep appreciation especially to my supervisors Assoc. Prof. Awtar Singh A/L Karnail Singh and Assoc. Prof. Mun'im B. Ahmad Zabidi for helping me throughout my research for these few years. They always guide me in preparing my research and providing me with all the necessary materials, ideas and suggestions for improving my research.

I am grateful to Mr. Abd Ahmad Farid B. Md. Said, Madam Zuraidah Bte. Bachok, Mr. Hamsan B. Sidek and all other staff of the Center for Graduates Study, for helping me in facilitating the research in the computer labs.

I wish to thank my parent, sister, aunt and uncle for their support. Their continued encouragement and strong support have made my journey in doing this project enjoyable.

I also wish to express my appreciation to my fellow friends who had helped me a lot in this project. To all of those that I could not mention by name, accept my apologies and rest assured I appreciate everything you all have done for me.

Needless to say, without all the above help and support, the writing and production of this report would not have been possible.

PAPERS PUBLISHED ARISING FROM THIS WORK

v

- C. C. Chew, Awtar Singh, Baharuddin Mohamed, Mun'im Ahmad Zabidi. (2002). "Distributed MPEG-2 Video Encoding on Microsoft Windows Platform." Proc. of 2nd Student Conference on Research and Development (SCOReD 2002). Shah Alam, Malaysia: Universiti Teknologi MARA and IEEE. 502 – 504.
 - C. C. Chew, Awtar Singh, Mun'im Ahmad Zabidi. (2003). "Distributed MPEG-2 Video Encoding on Microsoft Windows Platform." *Colloquium KUiTTHO*.

3.

- C. C. Chew, Awtar Singh a/l Karnail Singh, Baharuddin Mohamed, Mun'im Ahmad Zabidi, (2003). "Cost Effective Distributed MPEG-2 Video Encoding On Microsoft Windows Platform." Conference in Conjunction with The Public Institutions of Higher Learning (IPTA) Research & Development Exposition 2003. Kuala Lumpur, Malaysia: Universiti Putra Malaysia.
- C. C. Chew, Awtar Singh, Mun'im Ahmad Zabidi. (2004). "Distributed MPEG-2 Video Encoding on Microsoft Windows." Proc. of 4th Information and Computer Engineering Postgraduate Workshop (ICEP2004) 22-23 January 2004. Phuket, Thailand: Prince of Songkla University.

ABSTRACT

MPEG-2 Video standard is a high resolution digital video format developed by the Moving Picture Experts Group (MPEG) that specifies the coded bit stream for high quality digital video. MPEG-2 Video encoding is a heavy-duty task that needs a lot of processing power. The video encoding time depends mostly on the computer's CPU clock speed. To make the encoding process faster and better on existing Microsoft Windows (MS) platform (98/Me/2000/XP), distributed processing of MPEG-2 Video encoding (DPMVE) system can be implemented using TCP/IP with existing PCs on a 10/100 Mbps Local Area Network (LAN). The video encoding process can be distributed to all connected computers that are idle and fully utilize them. When each computer finishes the encoding process, the result will be returned and combined at the main computer that originated the job. Instead of doing the MPEG-2 Video encoding job alone, distribution of the MPEG-2 Video encoding process is better and faster by utilizing idle PCs. It also saves a lot of time over doing such heavy-duty processing with just one computer. Multiple experiments were carried out from one to fifteen PCs in the computer lab of Masters of Education, KUITTHO. The results obtained from this research prove that the DPMVE system has met the DP feature, which is, the combination of a numbers of PCs to do MPEG-2 Video encoding at the speed of a super computer on MS Windows platform.

vi

ABSTRAK

Kepiawaian video MPEG-2 merupakan sejenis video digital resolusi tinggi yang dibangunkan oleh Moving Picture Experts Group (MPEG). Kepiawaian MPEG-2 ini juga menentukan taraf bait yang berkod untuk video digital yang berkualiti tinggi. Pengekodan video MPEG-2 adalah kerja berat yang memerlukan banyak kuasa pemprosesan komputer. Masa yang digunakan untuk pengekodan video kebanyakannya bergantung kepada kelajuan jam pemproses (CPU) sesebuah komputer. Untuk mempercepat dan memperbaiki lagi proses pengekodan di dalam sistem operasi Microsoft Windows (MS 98/Me/2000/XP), pengekodan video MPEG-2 (DPMVE) boleh dilaksanakan dengan menggunakan kaedah pengagihan kuasa pemproses. Proses ini dilaksanakan dengan menggunakan TCP/IP dan rangkaian tempatan (LAN) berkelajuan 10/100 Mbps yang sedia ada. Proses pengekodan video boleh dibahagikan kepada setiap komputer yang sentiasa berada dalam keadaan lega dan menggunakan semua masa lega ini dengan sepenuhnya. Apabila setiap komputer ini telah menghabiskan proses pengekodan video, hasilnya akan dikembalikan kepada komputer utama dan digabungkan di situ untuk menghasilkan video MPEG-2. Kaedah ini dapat menjimatkan masa yang digunakan untuk proses pengekodan video di mana ia merupakan sejenis proses yang amat beban mengambil masa yang lama pada sesebuah komputer. Pelbagai eksperimen untuk satu hingga 15 buah komputer telah dijalankan di Makmal Komputer Sarjana Pendidikan, KUiTTHO. Keputusan yang diperolehi daripada penyelidikan ini membuktikan bahawa sistem DPMVE telah memenuhi ciri-ciri pengedaran kuasa pemproses, iaitu kombinasi beberapa buah komputer untuk melaksanakan kerja pengekodan video MPEG-2 pada kelajuan yang tinggi dalam sistem operasi Microsoft Windows.

TABLE OF CONTENTS

CHAPTER TITLE

I

PAGE

DEDICATION	iv
PAPERS PUBLISHED ARISING FROM THIS	
WORK	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvii
LIST OF APPENDIX	XX

INTRODUCTION

1.1	An Introduction to Distributed Processing and			
	MPEG-2	1		
	1.1.1 Distributed Processing	1		
	1.1.2 MPEG-2	2		
	1.1.3 MPEG-2 Video Encoding	3		
	1.1.4 Microsoft Windows	4		
1.2	Research Objectives	4		
1.3	Scope of Research	5		
1.4	Stages of Research Work	5		
1.5	Problems Statement 6			
	1.5.1 Introduction to Problems of DPM	AVE		
	on MS Windows Platform	6		

viii

		1.5.2	Solutions to Problems of DPMVE on		
			MS Windows Platform	7	
	1.6	Overa	ll Architecture	7	
п	LITE	RATU	RE REVIEW		
	2.1	Introd	uction	9	
	2.2	Distri	buted Processing	9	
		2.2.1	Hardware Architectures of DP	10	
		2.2.2	Communication Mechanisms of DP	11	
			2.2.2.1 Message Passing Interface	12	
			2.2.2.2 MPI: Parallel Algorithms	13	
		2.2.3	Distributed Computer Systems	14	
		2.2.4	DP in MPEG Video	16	
		2.2.5	DP of MPEG-2 Video Encoding	21	
	2.3	Case S	Study: MP3 Encoding With Distributed	21	
		Syster	m On Microsoft Windows	21	
		2.3.1	A Rob Fantastic MP3 Encoder	22	
		2.3.2	Distributed Processing of MP3	24	
	2.4	TCP/I	P Networking Connection	29	
		2.4.1.	TCP/IP Application Interfaces	29	
		2.4.2.	IP Address and Subnet Mask	31	
		2.4.3.	IP Packets	32	
	2.5	MPE	G-2	33	
		2.5.1	History of MPEG	33	
		2.5.2	An Introduction to MPEG-2	34	
		2.5.3	An Introduction to MPEG-2 Video	37	
		2.5.4	An Introduction to MPEG-2 Systems	38	
		2.5.5	Summary of Image and Video		
			Compression Standards	39	
	2.6	MPE	G-2 Video Encoding	41	
		2.6.1	Parameter of MPEG-2 Video		
			Encoding: Group of Pictures	41	

ix

	2.6.2	Parameter of MPEG-2 Video	
		Encoding: Macro Blocks	43
	2.6.3	Hardware and Software Based MPEG-	
		2 Video Encoder	45
	2.6.4	Movie Splitter	49
	2.6.5	Movie Finalizer	49
2.7	Summ	hary	52
3.1.		uction	53
		TURE OF DPMVE	50
3.2.	Distri	buted Processing	54
3.3.	The D	esign of DPMVE Server and Client with	
	MS V	isual Basic 6.0	56
	3.3.1.	The Programming of DPMVE Server	
		0	
		and Client	57
	3.3.2.		57 58

Х

- 3.3.1. The Programming of DPMVE Server and Client 3.3.2. Flowchart for The DPMVE System
- 3.3.3. Package and Deployment Wizard

Summary 3.4.

III

IV

3.4.	Summ	nary	67
		LOGY	
MET	HODO	LOGY	
4.1	Introd	luction	68
4.2	Comn	non Procedures Used For All the	
	Exper	iments	70
	4.2.1	Common Audio and Video Settings	
		Used For All the Experiments	70
		4.2.1.1 Input Audio and Video Type	70
		4.2.1.2 Output Audio and Video Type:	71
	4.2.2	Common Computer Specifications	
		Used For All The Experiments	71
	4.2.3	Precautionary Steps	72
4.3	The N	Aovie Splitter	73
4.4	DPM	VE Server: Raw Video Part Sender	74
4.5	DPM	VE Client: Raw Video Part Receiver	78

4.6	MPEG-2 Video Encoder	80
4.7	DPMVE Client: MPEG-2 Video Part Sender	87
4.8	DPMVE Server: MPEG-2 Video Part Receiver	90
4.9	Movie Finalizer	92
4.10	Summary	93

xi

V

RESULT ANALYSIS AND DISCUSSION

5.1	Introd	uction	95
5.2	Experiment Based on Two to Ten PCs with		
	Test V	lideo 1	95
	5.2.1	Raw Video Files Transfer Time and	
		Encoding Time	95
	5.2.2	Video Encoding Time and Speed	
		Increment of Distributed Processing	101
5.3	Exper	iment Based on Two to Ten PCs with	
	Test V	Video 2	103
	5.3.1	Raw Video Files Transfer Time and	
		Encoding Time	104
	5.3.2	Video Encoding Time and Speed	
		Increment of Distributed Processing	109
5.4	Exper	iment Based on 11 to 15 PCs with Test	
	Video	2	111
	5.4.1	Raw Video Files Transfer Time and	
		Encoding Time	112
	5.4.2	Video Encoding Time and Speed	
		Increment of Distributed Processing	117
5.5	The Ic	leal Case of DPMVE System	126
5.6	The R	eal Time Case of DPMVE System	127
5.7	Limita	ation of DPMVE System on Microsoft	
	Winde	ows platform	131
5.8	Summ	nary	132

VI CONCLUSION

6.1	Conclusion	133
6.2	Future Recommendation	134

BIBLIOGRAPHY 135

APPENDIX	140

ERPUSTAKAAN TUNKU TUN AMINAH

хii

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Key fields in the IP header	32
2.2	Improvement of MPEG-2 over MPEG-1 in terms of syntax	
	and algorithm	36
2.3	Summary of image/video compression standards	39
2.4	Overview of hardware type MPEG-2 encoder card	46
5.1	Raw video files transfer time for N numbers of PC	96
5.2	Raw video files encoding time for N numbers of PC	98
5.3	Total time required for DPMVE	101
5.4	Raw video files transfer time for N numbers of PC	104
5.5	Raw video files encoding time for N numbers of PC	106
5.6	Total time required for DPMVE	109
5.7	Raw video files transfer time for N numbers of PC	112
5.8	Raw video files encoding time for N numbers of PC	115
5.9	Total time required for DPMVE	117
5.10	Comparison between ideal case and real time case for	
	DPMVE with 15 PCs	128

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	LAN between client and server in DPMVE	8
2.1	The master-slave paradigm	14
2.2	(a) Slice, (b) Group of Slice, (c) Macroslice, (d) Group of	
	Macroslice	19
2.3	A Rob Fantastic MP3 Encoder	22
2.4	Trial version of Rob Fantastic MP3 Encoder	19 22 23
2.5	Options of The Rob Fantastic MP3 Encoder	24
2.6	Network setting at client 1(Cad09)	25
2.7	Network setting at client 2(Cad006)	25
2.8	Network setting at the server side(Cad07)	26
2.9	MP3 encoding process at server side	27
2.10	MP3 encoding process at client (Cad006)	28
2.11	MP3 encoding process at client (Cad09)	28
2.12	Application interfaces for TCP/IP	30
2.13	Representation of 30 frames in 1 second	42
2.14	Superior compression of GOP	42
2.15	Image fragmentation: MPEG can interpret image spots for	
	the DCT one after the other according to two rules	44
2.16	DCT: The secret of MPEG	44
2.17	The COPY command within Command Prompt	51
2.18	Movie Finalizer for 15 PCs	51
3.1	The overall of DPMVE system	53
3.2	Cluster Computer Architecture	55
3.3	Startup screen of VB 6	56

3.4	Overall architecture of DPMVE System	59
3.5	Flowchart of Movie Splitter	60
3.6	Flowchart of DPMVE Server sending raw video part	61
3.7	Flowchart of DPMVE Client receiving raw video part	62
3.8	Flowchart of MPEG-2 Video Encoder	63
3.9	Flowchart of DPMVE Client sending MPEG-2 Video part	64
3.10	Flowchart of DPMVE Server receiving MPEG-2 Video part	65
3.11	Flowchart of MPEG-2 Video Finalizer	66
3.12	Package and Deployment Wizard	67
4.1	The implementation of DPMVE system	69
4.2	VCDCutter	73
4.3	Splitting of raw video file with VCDCutter	74
4.4	The DPMVE Server	75
4.5	Successful connection on DPMVE Server with DPMVE	
	Client 1	76
4.6	Failed connection with DPMVE Client	76
4.7	Acquired raw video part	77
4.8	Transferring raw video file to DPMVE Client 1	77
4.9	File transfer complete at DPMVE Server	78
4.10	DPMVE Client in state of listen for incoming connection	79
4.11	Incoming connection from DPMVE Server	79
4.12	TMPGEnc by Hiroyuki Hori	80
4.13	The video stream setting of MPEG	81
4.14	The video source setting of MPEG	82
4.15	The GOP structure of MPEG	83
4.16	The quantize matrix of MPEG	84
4.17	The audio stream setting of MPEG	85
4.18	The system stream setting of MPEG	86
4.19	MPEG-2 Video encoding with TMPGEnc	87
4.20	The DPMVE Client	88
4.21	Successful connection on DPMVE Client with Server	88
4.22	Failed connection with DPMVE Server	89
4.23	Acquired MPEG-2 Video part	89

xv

4.24	Transferring MPEG-2 Video file to DPMVE Server	89	
4.25	File transfer complete at DPMVE Client	90	
4.26	DPMVE Server in state of listen for incoming connection	91	
4.27	Incoming connection from DPMVE Client	91	
4.28	Coding of Movie Finalizer for 15 PCs	92	
4.29	Movie Finalizer for 15 DPMVE Client	93	
4.30	The DPMVE system on MS Windows platform with five		
	clients online	94	
5.1	Raw video file size versus file transfer time	97	
5.2	File transfer time versus number of PC(s)	98	
5.3	Raw video file size versus file encoding time	99	
5.4	Raw video file size versus number of PC(s)	100	
5.5	DPMVE time versus number of PC(s)	102	
5.6	Speed increment of DPMVE versus number of PC(s)	103	
5.7	Raw video file size versus file transfer time	103 105	
5.8	File transfer time versus number of PC(s)	106	
5.9	Raw video file size versus file encoding time	107	
5.10	Raw video file size versus number of PC(s)	108	
5.11	DPMVE time versus number of PC(s)	110	
<mark>5</mark> .12	Speed increment of DPMVE versus number of PC(s)	111	
5.13	Raw video file size versus file transfer time	113	
5.14	File transfer time versus number of PC(s)	114	
5.15	Raw video file size versus file encoding time	115	
5.16	Raw video file size versus number of PC(s)	116	
5.17	Total DP MPEG-2 Video encoding time with 11 PCs	119	
5.18	Total DP MPEG-2 Video encoding time with 12 PCs	120	
5.19	Total DP MPEG-2 Video encoding time with 13 PCs	121	
5.20	Total DP MPEG-2 Video encoding time with 14 PCs	122	
5.21	Total DP MPEG-2 Video encoding time with 15 PCs	123	
5.22	DP MPEG-2 video encoding time versus number of PC(s)	124	
5.23	Speed increment of DPMVE versus number of PC(s)	125	
5.24	Ideal case of DPMVE time for 15 PCs	128	
5.25	Speed increment of DP and the raw video file size for15 PCs	130	

LIST OF ABBREVIATIONS

AAC	-	Advanced Audio Coding
AAL	-	ATM Adaptation Layer
API	-	Application Programming Interface
ARPANET	-	Advanced Research Projects Agency Network
ATA	-	Advanced Technology Attachment
ATM	-	Asynchronous Transfer Mode
ATS	-	Academic Technology Services
AVI	-	Academic Technology Services Audio-Video Interleave
CCIR	-	Consultative Committee for International Radio
CPU	-	Central Processing Unit
DC	-	Discrete Cosine
DCT	_	DC Transformation
DDR RAM		Double Data Rate Random Access Memory
DP	FR	Distributed processing
DPMVE	-	DP of MPEG-2 Video Encoding
DVD	-	Digital Versatile Disc
DVI	-	Digital Video Interactive
e.g.	-	As an example
EBU	-	European Broadcast Union
etc.	-	etcetera
GoM	-	Group of Macroslices
GOP	-	Group of Pictures
GUI	~	Graphical User Interface
HDD	-	Hard Disk Drive
HDTV	-	High Definition Television
i.e.	-	Id est (that is).

IBM	_	International Business Machines
ICMP	-	Internet Control Message Protocol
IDCT	-	Inverse DCT
IDE	_	Integrated Device Electronics
IEC	-	International Electrotechnical Commission
IP	-	Internet Protocol
IS	-	International Standard
ISDN	-	Integrated Services Digital Network
ISO	-	International Organization for Standardization
ITU	-	International Telecommunications Union
ITU-RS	-	ITU-Radiocommunication Sector
ITU-TS	-	ITU-Telecommunications Standardization
JTC1	-	Joint Technical Committee 1
LAN	-	Local Area Network
MAC	-	Media Access Control
MB/s	-	Megabyte per second
Mbps	-	Local Area Network Media Access Control Megabyte per second Megabit per second
MIMD	-	Multiple Instruction Multiple Data
MPEG		Moving Picture Experts Group
MPI	-	Message Passing Interface
MS	205	Microsoft
MS-DOS	EK	Microsoft Disk Operating System
NTSC	-	National Television System Committee
OS	-	Operating System
PAL	-	Phase Alternating Line
PC	-	Personal Computer
RFCs	-	Requests for Comments
SATA	-	Serial ATA
SC29	-	Sub-committee 29
SDTV	-	Standard Definition Television
SECAM	-	SEquential Couleur Avec Memoire
SIF	-	Source Input Format
SIMD	-	Single Instruction Multiple Data
SMP	-	Symmetric Multiprocessor

xviii

SMPTE-Society of Motion Picture and Television EngineersSPMD-Single Program Multiple DataSVCD-Super VCDTCP/IP-Transmission Control Protocol/Internet ProtocolTMC-Thinking Machines CorporationTTL-time-to-liveUDP-User Datagram ProtocolUS-United StatesUSD-United States DollarVB-Visual BasicVCD-Video Compact DiscVHS-Vorking Group 11			
SVCDSuper VCDTCP/IP-Transmission Control Protocol/Internet ProtocolTMC-Thinking Machines CorporationTTL-time-to-liveUDP-User Datagram ProtocolUS-United StatesUSD-United States DollarVB-Visual BasicVCD-Video Compact DiscVHS-Video Home System	SMPTE	-	Society of Motion Picture and Television Engineers
TCP/IP-Transmission Control Protocol/Internet ProtocolTMC-Thinking Machines CorporationTTL-time-to-liveUDP-User Datagram ProtocolUS-United StatesUSD-United States DollarVB-Visual BasicVCD-Video Compact DiscVHS-Video Home System	SPMD	-	Single Program Multiple Data
TMC-Thinking Machines CorporationTTL-time-to-liveUDP-User Datagram ProtocolUS-United StatesUSD-United States DollarVB-Visual BasicVCD-Video Compact DiscVHS-Video Home System	SVCD	-	Super VCD
TTL-time-to-liveUDP-User Datagram ProtocolUS-United StatesUSD-United States DollarVB-Visual BasicVCD-Video Compact DiscVHS-Video Home SystemWG11Warking Group 11	TCP/IP	-	Transmission Control Protocol/Internet Protocol
UDP-User Datagram ProtocolUS-United StatesUSD-United States DollarVB-Visual BasicVCD-Video Compact DiscVHS-Video Home System	ТМС	-	Thinking Machines Corporation
US-United StatesUSD-United States DollarVB-Visual BasicVCD-Video Compact DiscVHS-Video Home System	TTL	-	time-to-live
USD-United States DollarVB-Visual BasicVCD-Video Compact DiscVHS-Video Home SystemWGU1We king Group 11	UDP	-	User Datagram Protocol
VB-Visual BasicVCD-Video Compact DiscVHS-Video Home SystemWGU1-Washing Group 11	US	-	United States
VCD - Video Compact Disc VHS - Video Home System	USD	-	United States Dollar
VHS - Video Home System	VB	-	Visual Basic
WO11 We line Group 11	VCD	-	Video Compact Disc
WG11 - Working Group 11	VHS	-	Video Home System
	WG11	ER	Working Group 11

LIST OF APPENDIX

APPENDIX

TITLE

PAGE

XX

А	Cost of mainframe servers	140	
В	Features of IBM Desktop Compared to IBM Workstation	142	
С	Test result for two to ten PCs based on Test Video 1	143	
D	Test result for two to ten PCs based on Test Video 2	170	
Е	Test result for 11-15 PCs based on Test Video 2	197	
F	Visual Basic codes for DPMVE Server and DPMVE Client	203	

CHAPTER I

INTRODUCTION

1.1 An Introduction to Distributed Processing and MPEG-2

This chapter gives a brief preview of distributed processing, MPEG-2 Video and MPEG-2 Video encoding. The research objectives, scope of research, problem statement and overall architecture of DPMVE are also discussed in this chapter.

1.1.1 Distributed Processing

Since computers existed, some people have dreamt of combining the power of more than one processor. When this is done with several processors physically linked together in one box, it's called a parallel processor. When it is done with several boxes closely linked together, usually in the same room, it is called a cluster. When it is done using several computers in widely separated locations, it is called distributed processing (DP) or distributed computing.

DP computer systems are clusters of low-end personal computers dedicated to distributing computation and running software that allows the system to be viewed as a unified computer system or a high-end computer.

When a big and complicated task is split into many smaller tasks to distribute the workload, a network of typical home computers or lab computers can be used to process the original task. The power of these networks such as LAN can rival larger and more expensive supercomputers at a fraction of the cost and time. Typical participation in a DP project involves downloading and installing a client program on the user's computer. This client then fetches an operation unit from a server. Once the client machine processes the operation, the result is returned to the server in exchange for a new operation unit.

1.1.2 MPEG-2

MPEG (pronounced M-peg), which stands for Moving Picture Coding Experts Group, is the acronym given to a family of international standards used for coding audio-visual information in a digital compressed format. The MPEG family of standards includes MPEG-1, MPEG-2, MPEG-7 and MPEG-21, formally known as ISO/IEC-11172, ISO/IEC-13818, ISO/IEC-14496, ISO/IEC-15938 and ISO/IEC-21000.

Established in 1988, the MPEG group has produced MPEG-1, the standard on which such products as Video CD and MP3 are based, MPEG-2, the standard on which such products as Digital Television set top boxes and DVD are based, MPEG-4, the standard for multimedia for the fixed and mobile web and MPEG-7, the standard for description and search of audio and visual content. The group is now working on the new standard MPEG-21 "Multimedia Framework" that started in June 2000.

The MPEG-1 standard, established in 1992, is designed to produce reasonable quality images and sound at low bit rates. It was designed to reproduce VHS/VCR quality in a digital format such as 352x240 images with VHS quality at 1.5 Mbits/sec [1]. The MPEG-2 standard, established in 1994, is a generic method for compressed representation of video sequences using a common coding syntax defined in the document ISO/IEC 13818 Part 2 by the ISO and the IEC, in collaboration with the ITU as Recommendation H.262. The MPEG-2 standard, is designed to produce higher quality images at higher bit rates. The MPEG-2 concept, similar to MPEG-1, is intended to cover a wider range of applications including DVD quality and its primary goal of an all-digital transmission of broadcast TV at coded bitrates between 4 and 15 Mbps. For example, 720x485 studio quality CCIR-601 images at up to 15 Mbits/sec [2].

The following are summary of currently available image/video compression standards [3] – [6]:

- (a) CCITT G3/G4 Binary images (non-adaptive)
- (b) JBIG Binary images
- (c) JPEG Still gray scale and color images
- (d) JPEG2000 Still images
- (e) H.261 ISDN applications (p×64 kbps).
- (f) H.263 PSTN applications (less than 64 kbps).
- (g) H.263+ Low bit rate PSTN applications.
- (h) MPEG-1 Optical storage media (1.5 Mbps).
- (i) MPEG-2 Genetic coding (4-15 Mbps).
- (j) MPEG-4 Object-based functionality.
- (k) MPEG-7 Construct metadata for multimedia contents.
- (1) MPEG-21 Multimedia contents delivery and use.

1.1.3 MPEG-2 Video Encoding

MPEG-2 Video encoding is a task that lends itself easily to parallel/distributed processing. The main problem of creating a DP of MPEG-2 Video encoder is the movement of raw data. Cook and Delp wrote that "the greatest difficulty lies not with the compression algorithm inherently, but with the parallel architecture" [7]. The solution to this problem lies mainly in expensive high-end hardware type real time encoder.

There are two types of MPEG-2 encoder, software-based and hardware-based. A software-based MPEG-2 Video encoding is considerably CPU-intensive while a hardware-based MPEG-2 encoder (such as encoder card/box) is a costly independent device and not CPU-intensive. The latter also cannot be upgraded directly after new types of video encoding techniques are introduced.

The software based MPEG-2 Video encoder is far cheaper than hardware based video encoder card, and some software video encoders are even available as freeware. MPEG-2 Video encoding mainly involves three main parameters: bit rate, encoding performance and quality. Normally, an increase in one of the three parameters produces degradation in either or both of the other two. Each potential application for the coded video has different constraints and each of these applications implies different policies as to which parameters are important [7] -[21].

1.1.4 Microsoft Windows

MS Windows is a type of operating system by Microsoft Corporation. For home user type operating system, there is MS Windows 95, MS Windows 98, MS Windows Me and the latest release MS Windows XP Home Edition. While for advance system such as networking and server type, there is MS Windows NT, MS Windows 2000, MS Windows XP Professional and MS Windows Server 2003.

1.2 Research Objectives

The objectives of this research are:

- (a) To implement the MPEG-2 Video encoding system on MS Windows platform (MS Windows 98, MS Windows Me, MS Windows 2000 and MS Windows XP) in a distributed processing environment.
- (b) To develop a graphical user interface (GUI) that can be used for DP of MPEG-2 Video encoding (DPMVE) system on MS Windows

platform (MS Windows 98, MS Windows Me, MS Windows 2000 and MS Windows XP).

1.3 Scope of Research

This research covers the study of currently available software based MPEG-2 Video encoding in both standard and distributed methods. The MPEG-2 Video encoder will encode raw video data into MPEG-2 Video format.

Besides MPEG-2 Video encoding, the study of other DP system software will be carried out also on both MS Windows and Non-MS Windows's operating system. With the most suitable video encoding method being used, a DPMVE GUI combine with video cutting and video encoding shareware on 100Mbps LAN Ethernet can be designed within MS Windows 98, MS Windows Me, MS Windows 2000 and MS Windows XP platforms. The DPMVE GUI can be used for other heavy-duty processing purposes on MS Windows platform.

The whole distributed encoding process that ran continuously, was carried out in the computer lab of Masters of Education which was equipped with 100Mbps LAN Ethernet infrastructure located at Kolej Universiti Teknology Tun Hussein Onn (KUITTHO). All PCs used for the DPMVE were normal PCs equipped with the same CPU clock speed, ATA133 IDE hard disk drive and 100 Mbps network interface card.

1.4 Stages of Research Work

The stages of research involved in the MPEG-2 encoding with distributed computer on MS Windows platform are as follow:

a) Literature survey and understanding of MPEG video encoding method.

BIBLIOGRAPHY

- Webmaster. (2001). "Berkeley MPEG Tools." Berkeley Multimedia Research Center. Berkeley, California: University of California.
- Eckart, S., Fogg, C. (1996). "MPEG-2 Encoder / Decoder." MPEG Software Simulation Group.
- IEEE Trans. (1998). "Image and Video Coding Emerging Standards and Beyond." IEEE Trans. on Circuits and Systems for Video Technology, Vol. 8, No. 7. 814 – 837.
- Sayood, K. and Kaufman, M. (2000). "Introduction to Data Compression." Morgan Kaufmann Publishers.
- 5. Shi, Y. Q. and Sun. H. (2000). "Image and Video Compression for Multimedia Fundamentals, Algorithms, and Standards." CRC Press.
- 6. Symes, P. (2001). "Video Compression Demystified." New York: McGraw-Hill.
- Cook, G. W. and Delp, E. J. (1993). "The use of high performance computing in JPEG image compression." Twenty-Seventh Asilomar Conference on Signals, Systems, and Computers. California: Pacific Grove. 846 – 851.
- González, J. M. and Geweke, A. (1997). "The Design of a Parallel MPEG-2 Encoder." Course Projects. Electrical Engineering and Computer Sciences, Computer Science Division. Berkeley, California: University of California.

- Le Gall, D. (1991). "MPEG: A video compression standard for multimedia applications." Communications of the ACM, vol. 34, no. 4. 46 – 58.
- Advanced Television Systems Committee. (1997). "A compilation of Advanced Television System Committee Standards." Advanced Television Systems.
- Gong, K. L. and Rowe, L. A. (1999). "Parallel MPEG-1 Video Encoding."
 Picture Coding Symposium. Sacramento, CA. 67 70.
- Shen, K., Rowe, L. A. and Delp, E. J. (1995). "A Parallel Implementation of an MPEG1 Encoder: Faster Than Real-Time!" Proceedings of the SPIE Conference on Digital Video Compression: Algorithms and Technologies. San José, CA.
- Shen, K. and Delp, E. J. (1996). "A spatial-temporal parallel approach for real-time MPEG video compression." Proceedings of the 25th International Conference on Parallel Processing. Bloomingdale, Illinois. II-100 – II-107.
- Banks D. and Rowe, L. A. (1997). "Analysis Tools for MPEG-1 Video Streams." Research Projects. Department of Computer Science – EECS, University of California. Berkeley, California: Berkeley Multimedia Research Center Publication.
- Jacobson V. and Karels M. J. (1988). "Congestion Avoidance and Control." Course Projects. Electrical Engineering and Computer Sciences, Computer Science Division. Berkeley, California: University of California.
- Harty K. and Cheriton D. R. (2002). "Application-Controlled Physical Memory using External Page-Cache Management." Research Projects. Computer Science Department. California: Stanford University.

- Leslie I. et al. (1997). "The Design and Implementation of an Operating System to Support Distributed Multimedia Applications." Research Projects. Computer Based Learning Unit. United Kingdom: University of Leeds.
- Shen, K., Cook, G. W., Jamieson, L. H. and Delp, E. J. (1994). "An overview of parallel processing approaches to image compression." Proceedings of the SPIE Conference on Image and Video Compression, vol. 2186. San José, California. 197 – 208.
- Wallace, G. K. (1991). "The JPEG Still Picture Compression Standard." Communications of the ACM, vol. 34, No. 4. 30 – 44.
- Shen, K. and Delp, E. J. (1995). "A fast algorithm for video parsing using MPEG compressed sequences." Proceedings of the International Conference on Image Processing. Washington, D.C. 252 – 255.
 Haskell B.G. Burint
- Haskell, B. G., Puri, A. and Netravali, A. N. (1996). "Digital Video: An introduction to MPEG-2." New York: Kluwer Academic Publishers.
- Meyer-Patel, K.(1999). "A Parallel Software-Only Video Effects Processing System." Computer Science Division - EECS, University of California, Berkeley, CA. Thesis.
- Webmaster. (2001). An Introduction to Parallel Computing on Clusters of Machines and on the SP. Academic Technology Services: UCLA.
- Webmaster. (1999). "An Introduction to MPI the Message-Passing Interface." Academic Technology Services: UCLA.
- Message Passing Interface Forum. (1994). "MPI: A Message-Passing Interface." Knoxville, Tennessee: University of Tennessee

- Rajkumar Buyya. (1999). "High Performance Cluster Computing: Architecture and Systems (Volume 2)." USA: Prentice Hall PTR. 48 – 56.
- Goscinski, A., Hobbs, M. and Silcock, J. (2001). "A Cluster Operating System Supporting Parallel Computing." Cluster Computing 4. The Netherlands: Kluwer Academic Publishers. 145 – 156.
- Gong, K. L. and Rowe, L. A. (1994). "Parallel MPEG-1 Video Encoding." Technical Report. Computer Science Division – EECS. Berkeley: University of Berkeley.
- Siddhartha Devadhar, Cederic Krumbein and Liu, Kim Man. (1998). "The Parallel Berkeley Encoder." Berkeley Multimedia Research Center. Berkeley, California: University of California.
- 30. Liam P. (2001). "Understanding TCP/IP." USA: PC Network Advisor, ITP.
- Microsoft Corporation. (2000). "MSDN Library January 2000." USA: Microsoft Corporation.
- 32. Fogg, C. (1996). "MPEG-2 FAQ: What is MPEG?" Berkeley Multimedia Research Center. Berkeley, California: University of California.
- Renelt, G., Suck, M. and Goldmann, S. (2001). "From TV to DVD or CD: How to back up your fave films." CHIP July 2001. Malaysia: Fortune Vogel Publishing Sdn. Bhd. 30 – 39.
- Webmaster. (1996). "MPEG-2 FAQ." Berkeley Multimedia Research Center. Berkeley, California: University of California.
- Bormans, J. and Hill, K. (2002). "MPEG-21 Overview v.5." Requirements Group. Shanghai: ISO/IEC JTC1/SC29/WG11/N5231.

- Jiang, Kai (2001). "MPEG-4: Video and audio in the future." CHIP September 2001. Malaysia: Fortune Vogel Publishing Sdn. Bhd. 26 – 31.
- Renelt, G. (2002). "Secret of MPEG Unveiled." CHIP January 2002.
 Malaysia: Fortune Vogel Publishing Sdn. Bhd. 61 62.
- Webmaster. (2001). "MPEG Background." Berkeley Multimedia Research Center. Berkeley, California: University of California.
- Dawson S., William Lee and M. Jeff. (1995). "Optimal Parallel MPEG Encoding." Research Projects. Department of Computer Science, Ithaca, NY. USA: Cornell University.
- S.M. Akramullah, I. Ahmad, M.L. Liou. (1995). "A Data-Parallel Approach for Real-Time MPEG-2 Video Encoding." Journal of Parallel and Distributed Computing, Vol. 30, No. 2. USA:Academic Press Inc.
- 41. Rajkumar Buyya. (1999). "High Performance Cluster Computing: Architecture and Systems (Volume 1)." USA: Prentice Hall PTR. 5 – 11.