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ABSTRACT

Compact microwave hairpin band pass filter using half-wavelength folded
resonator as a method to miniaturize resonator structure has been thoroughly studied in
this thesis. Design were done by using the mathematic formulas and verified by using
SONNET LITEPIus 8.0 software. Synthesis of the filter is using the insertion loss
method. The initial design of a miniature hairpin filter was achieved by carefully
selecting the resonator shape and the initial frequency. The shape was then fine tuned,
and the response for the changes was plotted. This would indirectly represent the
behavior of the circuit when parameter variation occurs. The step by step procedure to
design the filter is presented. The design performance and characteristics in terms of
electrical and physical parameters were compared with the conventional hairpin filter.
The final design of the miniaturized hairpin filter has an overall size of 46% smaller
compared to the conventional hairpin size. Better return loss properties were also
observed from the miniaturized version. The first spurious frequency occurs at a higher
frequency compared to that of the conventional hairpin filter. It is tunable depending on
the value of the even-mode impedance that was chosen at the early stage of the design
process. The bandwidth, however, was slightly narrower, which is 80% of the
desired100 MHz. In terms of the response, miniaturized hairpin filter is having steeper

skirting. However, it 1s comparable to that of the conventional hairpin filter.
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ABSTRAK

Rekabentuk akhir penapis pin rambut model kecil mempunyai saiz keseluruhan
yang 46% lebih kecil berbanding saiz pin rambut konvensional. Ciri kehilangan kembali
yang lebih baik diperolehi. Frekuensi spurious pertama wujud pada nilai yang lebih
tinggi. Ini pula boleh dilaraskan bergantung kepada nilai galangan mod genap yang telah
dipilih pada peringkat awal proses rekabentuk. Walaubagaimanapun, lebar jalur adalah
sempit sedikit iaitu 80% daripada lebarjalur yang dikehendaki iaitu 100 Mhz. Cerun
sambutan pula lebih curam.Namun, ini sebanding dengan penapis pin rambut

konvensional.
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CHAPTER1

INTRODUCTION

Band pass filter is widely used in telecommunication system, be it in
receiving or transmitting devices, to filter out unwanted frequency. Smaller size and
high performance filters are always desired to enhance system performance and to
reduce the system cost. There are various ways of designing a filter. The most
attractive configuration is planar structure due to its compactness and fairly easy to
be manufactured [1]. There has been much research on planar resonators, which is
the main component of a planar filter. Examples are parallel-coupled resonator,
hairpin resonator, stepped-impedance resonator and miniaturized hairpin resonator.

The main purpose of all these studies is to make the filters more compact.

The resonator is the main and basic component of a planar filter, hence it is
necessary to properly select the resonator type to ensure the compact size of a filter is
maximized. Conventional parallel-coupled filter is too space consuming. Hairpin-line
resonator was then introduced to reduce the resonator size and shape [2]. The
concepts of miniaturize hairpin resonator was introduced by Sagawa ef a/ in 1989
[3]. The brilliant concept integrates lumped element capacitor and the planar
resonator to reduce the size further. Therefore, this type of resonator posses smaller
size compared to conventional hairpin. This type of resonator is actually a variation
of stepped-impedance resonator. Thus, combining stepped-impedance resonator in
conventional hairpin structure has eliminated the need of the lumped-element
capacitor and hence enhanced the whole structure. Consequently, this made it more

stable in terms of frequency variations.

This thesis presents the concept pioneered by Sagawa ef af and improved by
CM Tsai in developing a miniaturize hairpin resonator that operates at 2.45 GHz, the

common frequency for ISM band application. A method to select proper resonator



design is presented. Besides resonator design, filter topology is also taken into
consideration. For microwave circuits, parallel-coupled-line and hairpin filters are
widely used. These topologies can only be realized by using Chebyshev and
Butterworth response. Since miniature hairpin resonator is a modified version of
conventional hairpin resonator, the selection of the initial frequency has to be
carefully considered. The study of filter parameters and the effect to filter response
are also presented. These information is important especially for circuit

optimizations.

Finally, SonnetLite Plus [4] software is then used to optimize and simulate
the circuits with the aid of MathCAD [5] software for computation of design

formulations.

1.1  Project abjective

The objective of this project is to design a compact version of hairpin-line resonator

configuration operating at 2.45 GHz.

1.2 Project scope

The scopes of the project are:
i) To modify the conventional hairpin resonator structure into more compact
design configuration.
ii) To simulate the response and compare the results with the conventional
hairpin filter in terms of performance and physical size.
iii) To study circuit behavior in terms of resonator element and in terms of

filter configuration.



1.3 Project motivation

The trend of today’s telecommunication device is to have high performance
but small and handy devices. As people gets busier, electronic devices that allow
users to be mobile, has become a necessity. The smaller the size, the easier for them
to be carried around. The better the performance, the higher is the reliability. The
factor that determines the overall size is the size of the components itself. Hence, if
there are ways to reduce component size, this will indirectly compact the overall
device appearance. The challenge is to built smaller circuit component but with same
material and with minor changes in the manufacturing process and also able to
maintain attractive features of the original circuit. One such component is the band
pass filter. It is widely used in telecommunications system especially at the receiver
and transmitter. Most of electronics components nowadays are made of VLSI
technology that make them smaller relative to the band pass filter size that uses
microstrip technology. Hence, in order to enhance the overall circuit compactness

and integrate them together, compact filter structures have to be designed and

developed.
1.4 Layout of thesis

The report consists of five chapters. The first chapter describes the objective,
the project scope and project motivation. Chapter two covers theories on filters
relevant to this project. This includes S-parameters application in microwave circuits,
a brief discussion on the subject and equations concemning the theory were presented.
Filter synthesis technique method were described together with discussion on filter
response. This chapter also covers theories of resonator miniaturization, hairpin filter
realization and characteristics of internal coupled resonator. Design methodology,
specification and the discussion on the tools involved for circuit simulation was
covered in chapter three. Chapter four discussed the result and analysis of the
findings. These include the study of resonator behavior and all parameter variations
that affect filter performance. Finally, chapter five covers the project conclusion and
discuss in detail on recommendation and possible future work that can be done to

enhance the application of miniaturize resonator and improve the perforiance.



CHAPTER 11

BANDPASS FILTER THEORIES

This chapter describes briefly the history, requirements and considerations
taken related to the development of a conventional hairpin band pass filter and
miniaturized hairpin band pass filter. This includes all the related mathematical
formulae and calculations of the responses. The concept of miniaturization is also

presented to give clearer idea on how the process is being done.

2.1 Scattering Parameter (S-Parameter)

To characterize a microwave circuit, incident and reflected amplitudes of
microwave at any port are referred {6],[10]. The incident and reflected wave
amplitudes are normalized so that the square of these variables gives the average

power in that wave in the following manner:

2.1)

Input power at the #th port, P =

Reflected power at the nth port, F =



Where a, and b, represent the normalized incident and reflected wave amplitude at
nth port. Supposed, a two port network is considered. The net power flows into any

port is given by:

Net power, P is:

(2.3)

The relation between incient wave and reflected wave are expressed in term of

scattering parameter Sj’s, SO

by=Sna; +Spa;

by=Sxya;+Sna; (2.4)

The physical significance of the S-parameters is described as:

This is the reflection coefficient at port 1 when port 2 in terminated with matched
load (a,=0)

_ whenag; =0
Sp =— ’ !

This is the reflection coefficient at port 2 when port 1 in terminated with a matched
load (a; =0)



S. =2 ,whenag,=0
12
a,

Attenuation of wave traveling from port 2 to port 1.

=D whena,=0
Spy=— ’ -

Attenuation of wave traveling from port 1 to port 2.

When considering microwave circuits it is important to express scveral losses
in term of S-Parameter (when the ports are matched terminated). For two ports
network, if power fed at port 1 is Py, power reflected at same port is 7, and power

out put at port 2 is P, the following losses are defined in term of S-Parameter.

2
Pin lall
Insertion loss (dB) = 1010g7 = 1010gw
e 02
1
= 20log
S
1
=20log— 5 <
5.1 @5
. . [)l’l - Pr
Transmission loss or = 10log
Attenuation (dB)
]-—]Sn‘2
- 10]0g—-—————: (2.6)

‘Sn




Reflection loss (dB) = 10log——
= 10log ] 2.7
- — ,
1-15,)]
Return loss (dB) = 10log—
_ 1
= 20log (2.8)
[Sul

2.2 Synthesis technique

Two most popular techniques of filter synthesizing are image parameter
method and insertion loss method [6]. The insertion loss method gives complete
specification of a physically realizable frequency characteristic over entire stop and

pass bands. It is the most preferred method for microwave filter design.

The basic design of microwave filters are made from a prototype low pass
design. In the insertion loss method, a physically realizable network is synthesized
that will give the desired insertion loss versus frequency characteristic. This method

consists of the steps below:

(1) Design of a prototype low pass filter with the desired pass
band characteristic.

(i)  Transformation of this prototype network to the required type
filters with the specified center and band-edge frequency.

(iii)  Realization of the network in microwave form using sections
of microwave transmission lines whose reactance correspond

to those of distributed circuit element.



2.3  Filter Responses

Filter response is defined by its insertion loss or power loss ratio, Prr

Power available from source

P
Power delivered to load

This quantity is the reciprocal of | S;, |* if both load and source are matched.

There are three main filter responses approximation, they are:

(a) Buterworth Response

Butterworth response is also known as Maximally flat response. The response
is optimum in providing the flattest possible pass-band response for a given order.

The insertion loss characteristic can be represented with formula :

IL=1+ amzwmz"; where @ = d, (2.9)
)

c

The Butterworth approximation exhibits a flat response in the pass-band and
an increased of attenuation (monotonically) in the stop band. The rate of increase of
the insertion loss for w> w.depends on the exponent 2#, which is related to the
number of filter order used in the filter network. The response is illustrated in Figure
2.1



(b)  Chebyshev Response

The second approximation is Chebyshev response or well known as equal
ripple response. As the name specified, Chebyshev response has ripple in the pass-
band and stop-band. Compared to Butterworth, the insertion loss exhibits a much
faster increment rate beyond cut off frequency, w. Hence, this response is expected
to have steeper skirting properties if compared to Butterworth. The ripple size of
Chebyshev response is however controllable. It depends to the application
requirement and a designer can specify the desired magnitude of the ripple. It is
however related to the number of filter order in the filter system. Approximation of

low-pass Chebyshev insertion loss response can be expressed as:
IL=1+a,’T7(w") (2.10)
where w' = / w.and T,” = cos(n cos’x) for x<1 or cos(i7 cosh™x) for x>1.

The notation ‘»” denotes the number of reactive element. Comparison of both

responses is illustrated in Figure 2.1,
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()5

References:

10.

11.

12.

Sheng Yuan Lee and Chih Ming Tsai “ New Cross-( oupled Filter Design
Using Improved Hairpin Resonator”, IEEE, vol 48, NO. 12 pp.2482-2490.
Dec 2000.

E.G Cristal and S. Frankel, “Hairpin-line and hybrid hairpm-lme half-wave
parallel-coupled-line filters,” IEEE Trans. Microwave Theory Tech . vol
MTT-20, pp. 719-728, Nov. 1972.

Morikazu Sagawa, Kenichi Takahashi and Mitsuo Makimoto. “Afimaturized
Hairpin Resonator Filters and Their Application to Recerver Front-Fnd
MIC’s”, IEEE vol 37, No 12, pp.1991-1997, Dec. 1989.

Sonnet 8.51-Lite User’s Guide (1986-2002). Sonnet Software Inc. USA
MathCAD 2000 User’s Guide. (1999). MathSoft Inc. USA.

Annapurna Das and Sisir Das “Microwave Engineering ", McGrawHill 2001,
Singapore.

Mitsuo Makimoto and S.Yamashita “Microwave Resonators and Filters for
Wireless Communication Theory, Design and Application”, Spninger 2000,
New York.

David M. Pozar “ Microwave Engineering”, John Wiley & Son 1989, Inc
USA.

Chi-Yang Chang and Cheng Chun Chen * 4 Novel Coupling Structure
Suitable for Cross-Coupled Filters With Cross-C “oupled Filters With I'olded
Quarter-Wave Resonators”. IEEE VOL.13.NO.12, pp. 517-519, DEC 2003.
Cheng Chung Chen, Yi-Ru Chen and Chi Yang Chang " Mimaturized
Microstrip Cross-Coupled Filters Using Quarter-wave or Quasi-Quarter-
Wave Resonators”, IEEE VOL.51,NO. I, pp. 120-131, JAN 2003.

Jun Sik Yuk, Jun Seok Park, Dal Ahn, Kwan Sun Choi and Juno Kim ™ .
Novel Accurate Design Method For The Hatrpin Type Coupled Line
Bandpass Filter”, pp. 2171- 2174, 2001 IEEE MTF-S Digest

Sheng Yuan Lee and Chih Ming Tsai " 4 New Network Model For
Miniaturized Hairpin Resonators And 11 Apphcations”. pp. 1161-1 164
IEEE MTT-S Digest 2000.



13.

14.

15.

16.

17.

18.

19.

20.

21

Cfy

Shigetoshi Ohshima, Takafumi Tomiyama, Tomoyuki Kimpara and Tetsus
Sato “Design and Fabrication of Superconducting ( ompact Filters” pp
821-824, IEEE 1999

Jia Sheng Hong and Michael J Lancaster “Cross-Coupled Aic rostrip
Hairpin-Resonator Filters”, IEEE VOL 46, NO.1_pp 118-122. Januan
1998. |
George L. Matthaei, Neal O. Fenzi, Roger J. Forse and Stephen M Rohlfing
Hairpin-Comb Filters for HTS and Other Narrow-Band Applicanons ™ 1L
VOL. 45, NO.8, pp. 1226-1231, AUG 1997.

Calestino A. Corral, Claude S. Lindquist * On The Bund-Fdge Selecnvin 01
Elliptic Filter” | pp. 177-180, IEEE 1991,

B.Rawat and Rex Miller “ Band pass Filter for Mobile Communications ™,
Microwave Journal, Vol. 27, NO. 10, pp. 146-150. Sept 1984,

Matthaei, Young and MT Jones “Microwave Filters, Impedance-Matching
Networks, And Coupling Structure”’, Artech House 1980, Inc USA.

J.S Wong, “Microstrip tapped-line filter design,” IEEE Trans Microwave
Theory Tech., vol. MTT-27, pp. 44-50, Jan. 1979.

R.Levy “Filters with Single Transmission Zeros dt Real or Imagmary
Frequencies”, IEEE, VOL MTT-24, No4 . pp. 172-181. Apnl 1976

Ralph Levy and John David Rhodes ** 4 Combh-Line Elhpue Fideer ™ 1EEE
VOL. MTT-19, NO. 1, pp. 26-29. JAN 1971



	TITLE PAGE
	TESTIMONY
	DEDICATION
	ACKNOWLEDGEMENT
	ABSTRACT (ENGLISH)
	ABSTRAK (MALAY)
	CONTENT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	LIST OF APPENDICES
	CHAPTER I INTRODUCTION
	CHAPTER II BANDPASS FILTER THEORIES
	CHAPTER III METHODOLOGY
	CHAPTER IV RESULT AND ANALYSIS
	CHAPTER V RECOMMENDATION AND CONCLUSION
	REFERENCES
	APPENDICES



