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ABSTRACT 

An optical fiber plays a significant role to cater the increasing transmission capacity. 

In optical fiber, there is a few nonlinear effects. One of the nonlinear effects is four-

wave mixing (FWM). In-depth analysis of FWM is conducted and it is found that one 

of the applications in the FWM is a fiber optical parametric amplifier (FOPA). An 

FOPA has an ability to achieve a high gain and bandwidth. One of the approaches is a 

cascaded FOPA. A cascaded FOPA is a FOPA with two or more active media, 

commonly known as a highly nonlinear fiber (HNLF). Previous experimental work 

shows that the improvement in gain and bandwidth of the cascaded FOPA depends on 

the passive or active devices inserted in between the HNLF. However, the results at 

each stage of the cascaded FOPA are not discussed. The result at each stage is crucial 

to ensure that the cascaded FOPA is amplifying power at the respective stage which is 

the essence of this work. The cascaded FOPA is demonstrated by using an OptiSystem 

software with four stages of HNLF with different parameters. Two research work 

related to the cascaded FOPA are presented in this thesis. The first work focusses on 

the effects of pump dithering to the cascaded FOPA, while the second work discusses 

the effects of passive components to cascaded FOPA. The passive components 

selected are isolator and optical bandpass filter (OBPF). The results show that the 

FOPA with pump dithering can achieved the gain up to 27 dB, while without pump 

dithering, only 9 dB gain is achieved. For the performance of the cascaded FOPA with 

isolators, a high gain of 30 dB is obtained, while the cascaded FOPA with OBPFs, a 

wider bandwidth of 36 nm is obtained. In conclusion, the pump dithering and isolator 

can be used to achieved a high gain of FOPA and OBPF can be used to obtain a wider 

bandwidth of FOPA. 
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ABSTRAK 

Gentian optik memainkan peranan yang penting bagi menampung peningkatan 

kapasiti penghantaran. Terdapat beberapa jenis kesan tidak linear dalam gentian optik. 

Salah satu kesan tidak linear tersebut ialah percampuran empat gelombang (FWM). 

Kajian yang mendalam terhadap FWM telah dijalankan dan didapati bahawa FWM 

mempunyai salah satu applikasi yang dikenali sebagai penguat parametrik gentian 

optik (FOPA). FOPA mempunyai keupayaan untuk mencapai nisbah dan lebar jalur 

yang tinggi.  Salah satu pendekatan yang digunakan ialah lata FOPA. Lata FOPA 

adalah FOPA dengan dua atau lebih aktif media, biasanya gentian silika amat tidak 

linear (HNLF). Beberapa eksperimen lepas menunjukkan lata FOPA akan mempunyai 

nisbah dan lebar jalur yang lebih baik jika peranti pasif atau aktif dimasukkan di antara 

HNLF. Walau bagaimanapun, keputusan di setiap peringkat lata FOPA tidak 

dibincangkan. Hasil disetiap peringkat adalah penting untuk memastikan bahawa lata 

FOPA ditambah kuasa di setiap peringkat dan telah dikaji di dalam kajian ini. Dalam 

kajian ini, simulasi lata FOPA dijalankan dengan menggunakan perisian OptiSystem 

dengan empat peringkat HNLF yang mempunyai parameter berbeza. Dua kajian 

penyelidikan berkaitan dengan lata FOPA secara simulasi telah ditunjukkan dalam 

tesis ini. Kajian pertama memberi tumpuan kepada kesan penditeran pam terhadap lata 

FOPA, manakala kajian kedua membincangkan kesan komponen pasif kepada lata 

FOPA. Komponen pasif yang dipilih ialah pemencil dan tapis pita optik. Hasil kajian 

menunjukan bahawa lata FOPA dengan penditeran pam mampu menjana gandaan 

sehingga 27 dB, manakal tanpa pam penditeran hanya mampu mencapai gandaan 

sebanyak 9 dB. Bagi prestasi lata FOPA bersama komponen pasif, pemencil berjaya 

mendapat gandaan yang tinggi iaitu 30 dB manakala tapis pita optik berjaya 

melebarkan lebar jalur lata FOPA sebanyak 36 nm.  Konklusinya, penditeran pam dan 

pemencil boleh digunakan bagi mendapatkan gandaan yang tinggi untuk FOPA dan 

tapis pita optik mampu mendapatkan lebar jalur yang lebar. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Preamble 

In the past, the way people communicate with each other is different from what that 

have been practiced today. Back then, most of the communication were realized via 

voice, writing and signals.  

The technology keeps evolving from the increasing demands. One of them is 

the transfer of the information within the considerable distance. From the historical 

point of view, the rapid growth of the electrical communication is the result of the 

invention of the telegraph by Samuel F. B. Morse. The Morse code is represented by 

letters and numbers with a series of dots and dashes. The major invention in 

communication history is the discovery of the telephone in 1876 by Alexander Graham 

Bell [1].  

As time goes by, the increasing portion of the electromagnetic spectrum has 

enhanced the medium of communication to be more reliable and has the ability to cater 

the high capacity to convey messages from one place to another. Optical fiber is one 

of the approaches to send messages via long distance transmission. The long-haul 

transmission of data is not a problem to optical fiber because of the lower transmission 

loss. Besides that, the low operation cost can be achieved by reducing the number of 

repeaters. At the same time, the reduction of elements will reduce the complexity of 

the systems. The optical fiber is also immune from the electromagnetic interference 

since
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it is made from dielectric materials. The demanding factor of high data rate application 

is the reason wider bandwidth is needed. The optical fiber is the medium that can 

realize that purpose.  

The optical fiber itself experiences nonlinear effects that start to appear at the 

increasing level of optical power. The nonlinear effects in an optical fiber are four-

wave mixing (FWM), cross-phase modulation (XPM), self-phase modulation (SPM), 

stimulated Brillouin scattering (SBS) and stimulated Raman Scattering (SRS). In this 

work, the focus is on the FWM nonlinearities. 

Basically, FWM occurs when a light of two or more with different wavelengths 

is launched into the optical fiber. When the lights are fed into the fiber, a new 

wavelength will appear which is known as an idler [2]. The idler has a different 

wavelength as compared to the light that is launched into the fiber. When the two 

pumps of FWM have the same frequency, it is known as the degenerated FWM. 

In the transmission of the wavelength-division multiplexing (WDM), FWM is 

commonly avoided because it can cause crosstalk in the signal that is transmitted 

through the optical fiber [3][4]. However, FWM is a practical technological basis for 

certain applications. There are many applications for the FWM such as phase 

conjugation, parametric amplification, wavelength conversion, ultrafast optical 

sampling, optical switching and all-optical regeneration. In this research, attention is 

diverted to the fiber optical parametric amplifier (FOPA). FOPA is an amplifier that 

can have an amplification bandwidth outside Erbium Doped Fiber Amplifier (EDFA). 

FOPA has a potential for amplification and wavelength conversion in multi-terabit/s 

dense wavelength division multiplexing (DWDM). There are two types of FOPA 

which are one-pump FOPA and two-pumps FOPA [5][6]. In this study, the one-pump 

FOPA is chosen because of its simplicity. Besides that, FOPA can offer high gain and 

low noise. However, narrow bandwidth of FOPA is the problem. Thus, in this work, a 

method to obtain high gain with a wider bandwidth of FOPA is investigated. 

1.2 Problem Background 

The currents trends of FOPA demand a high gain and bandwidth. One of the 

technique to achieved a high gain and wider bandwidth is by using a cascaded FOPA. 

Cascaded FOPA is a concatenation technique of a few fibers that had been cut into 
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short pieces and been splice together. The cascaded FOPA is chosen due to its ability 

to achieve a high gain or wider bandwidth depending on the components inserted in 

between the two fibers. The latest trend involved a four-stage of cascaded FOPA and 

show a reliable gain and bandwidth despite it splice loss [7].  

However, the result at each stage is not presented. The result at each stage is 

an added contribution towards the analysis. The spectrum at each stage of four-stage 

cascaded FOPA is observed where the spectrum of pump, signal and idler light is 

shown. The observation is focussed on the signal power due to it is related to the gain 

and bandwidth. The observation at each stage of cascaded FOPA is quite complicated 

to apply in the experimental work. This is one of the reason to conduct a simulation 

and observing a spectrum at each stage of cascaded FOPA.  

 

1.3 Problem Statement 

The cascaded FOPA can increased the gain and bandwidth with an in-line of highly 

nonlinear fiber (HNLF) configurations. A previous work has been conducted which 

discussed the effects of passive devices that are added in between the HNLF. However, 

the results at each stage of cascaded FOPA is not presented. The results at each stage 

is crucial to ensure the cascaded FOPA runs successfully.  

This work investigates the effects of components inserted at each stage on the 

gain and bandwidth of cascaded FOPA. The in-depth study is also conducted at each 

stage to observe the output spectrum of the cascaded FOPA. 

1.4 Research Objectives 

The objectives of this work are: 

(i) To perform four-stage cascaded FOPA configurations. 

(ii) To investigate the effects of pump dithering and inserted components towards 

cascaded FOPA 

(iii) To analyse the signal power at each stage of the four-stage cascaded FOPA 

and the gain and bandwidth of the whole system.  
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1.5 Research Scopes 

This research is conducted by using an Optisystem software. This four-stage 

cascaded FOPA is only focused on the Non-Return to Zero-On Off Keying (NRZ-

OOK) modulation. Besides that, the inserted passive components chosen in this 

research are isolators and optical bandpass filter (OBPF). However, there is a 

limitation in the characterization at each stage of the four-stage cascaded FOPA. The 

analysis only involves the value of signal powers at each stage because it related to the 

gain and bandwidth. The bandwidth range involve in this research are from 1535 nm 

until 1570 nm.  

This research is not considering the splice loss of the four-stage concatenation 

fiber. It also neglected the polarization and the phase of the pump and signal light.  

1.6 Report Outline 

This thesis consists of five (5) chapters. The introduction of this research is 

discussed in Chapter 1. The literature review is elaborated in detail in Chapter 2. Next, 

the methodology is being examined in Chapter 3. It described the method conducted 

to achieve the objective in this study. Subsequently, the results of this study are 

presented in Chapter 4 and the analysis towards the cascaded performance is discussed. 

Lastly, the study is concluded in Chapter 5.  
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2CHAPTER 2 
 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter describes the theoretical background of nonlinear effects and FWM 

phenomenon. In addition, this chapter discusses the nonlinear fiber optics, dispersion, 

phase matching, zero dispersion wavelength, fiber optic parametric amplifier (FOPA) 

and cascaded FOPA.  

 

2.2 Nonlinear Fiber Optics 

Transmission of data in the optical fiber is a challenging process. One of the factors 

that need to be considered is the nonlinear effects in the optical fiber. In the next 

section, the nonlinear effects are discussed that include Stimulated Raman Scattering 

(SRS), Stimulated Brillouin Scattering (SBS), Self-Phase Modulation (SPM),                

Cross-Phase Modulation (XPM) and Four-Wave Mixing (FWM). The nonlinearities 

can be divided into two categories, which are summarized in Table 2.1 [8]. 
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Table 2.1: Summary of nonlinear effects in optical fiber 

Nonlinearity category Single Channel Multiple Channel 

Index related Self-phase modulation Cross-phase modulation 

Four-wave mixing 

Scattering related Stimulated Brillouin 

Scattering 

Stimulated Raman 

Scattering 

 

From the table, the first group arises from intensity-dependent variations in the 

refractive index in silica fiber. It is known as Kerr effect. These are SPM, XPM and 

FWM.  The second group is scattering related which comprises of nonlinear inelastic 

scattering processes. These are SRS and SBS.  The SBS, SRS and FWM results in gain 

or losses in a wavelength channel. The power variations, on the other hand, depend on 

the optical signal intensity.  

2.2.1 Stimulated Raman Scattering 

Stimulated Raman Scattering is an interaction between light waves and vibrational 

modes of silica molecules [9]. The SRS process generates scattered light at a 

wavelength longer than the incident light. If there is a light present in this longer 

wavelength, the SRS light will amplify it. This will reduce the power of the pump 

wavelength. Consequently, SRS can severely limit the performance of a multichannel 

optical communication system by transferring energy from short -wavelength channels 

to neighboring higher-wavelength channels.  

Figure 2.1 demonstrates the effect. Figure 2.1 (a) illustrates the lights launched 

into the fiber before its experience SRS effects. Figure 2.1 (b) shows the light 

experience the SRS effects and it scattered the wavelength longer than incident light 

up to 125 nm. SRS amplify the signal at the longer wavelength. The pump-wavelength 

limiting the power of the signal.  
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Figure 2.1: The optical power transfer (a) before and (b) after the SRS effects [8].   

2.2.2 Stimulated Brillouin Scattering 

Stimulated Brillouin Scattering (SBS) occurs when the high optical signal generated 

an acoustic wave that produces differences in the refractive index. It will cause the 

depletion of signal power because the backscattered light receives the gain from the 

forward propagating signals. The backscattered light exists when there are variations 

in the refractive index. The lightwave will scatter in the backward direction of the 

transmitter. Figure 2.2 illustrates the power depletion of SBS. 

 

 

Figure 2.2: The SBS power depletion from the original signals [8]. 

 

SBS is limiting the maximum amount of optical power that can be coupled into 

a waveguide [10]. SBS implies a strict limit to the power that will be delivered into the 
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fiber due to the generated backward propagating wave due to the material properties. 

This input is known as SBS threshold and can be define as equation 2.1. 

 

 
21 eff B P

th

o eff B

kA v v
P

g L v

  
 

 
  (2.1) 

where: 

 k is the polarization state, 

 
effA  is the effective modal area, 

effL is an effective interaction length, 

og is the Brillouin gain parameter, 

Bv  is the Brillouin gain bandwidth, 

Pv  is the incident pump linewidths 

 

 Most of the fiber that useful for FOPA systems is expected having an extremely 

small value of the SBS threshold. Because of this limitation, the SBS suppression 

methods must be employed to create a FOPA with net gain.  

2.2.2.1 Pump Dithering Method 

 One of the method to suppress the SBS is by using a pump dithering. In the 

pump dithering, the phase or frequency of the pump dithering manipulates the incident 

pump linewidth, 
Pv  to minimize the spectral overlap between the incident laser and 

the Brillouin bandwidth [11]. Usually, the pump is modulated by using several RF 

signals to broaden the linewidth of the pump. It results a limited gain experienced by 

the back-reflection.  

2.2.3 Self-Phase Modulation 

Self-phase modulation (SPM) refers to the phenomenon in which the laser beam 

propagating in a medium interacts with the medium and imposes a phase modulation 

itself. The nonlinearity in the refractive index is known as Kerr nonlinearity. The 

nonlinearity produces a carrier-induced phase modulation of the propagating signal 
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