AN IMPROVED HIERARCHICAL CLUSTERING COMBINATION APPROACH
FOR SOFTWARE MODULARIZATION

RASHID NASEEM

A thesis submitted in
fulfillment of the requirement for the award of the

Doctor of Philosophy in Information Technology

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

JANUARY 2017



To my family.

iii



iv

ACKNOWLEDGEMENT

First, I want to thank ALLAH Almighty for giving me the strength and courage to
accomplish my goal. HE has been the biggest source of strength for me.

I would like to express my deepest gratitude to my supervisor Prof. Dr.
Mustafa Mat Deris. It has been an honor to be his PhD student. I am grateful for
all his contributions of time, ideas, and knowledge to make my research experience
productive and exciting.

I benefited from the expertise and support of Dr. Onaiza Mabool of Quaid-
I-Azam University, Pakistan, in all aspects of my research work. Her guidance and
instructions were particularly valuable during preparing research papers and the thesis.

I would like to thank University Tun Hussein Onn Malaysia (UTHM) for
supporting this research under Graduate Researcher Incentive Grant (GIPS) Vote No.
U063.

I am grateful to Siraj Muhammad and Abdul Qadoos Abbasi who shared
my interests and helped me a lot to clarify my views through conversations and
implementation concerning my research and provide me the test systems for my
research.

I would like to show my appreciation and pleasure to all my friends from
Nigeria, Somalia, Irag, Yemen, Malaysia, and Pakistan, especially the friends of Parit
Raja (our house on rent in Batu Pahat, Malaysia). The loving and caring friends of
Parit Raja: Zinda Abad.

Lastly, 1 would like to thank my family for all their pray, love and
encouragement. The moral support of all my family member was the main stream
to complete my PhD.

Thanks Malaysia.

Rashid Naseem



ABSTRACT

Software modularization plays an important role in software maintenance phase.
Modularization is the breaking down of a software system into sub-systems so that
most similar entities (e.g., classes or functions) are collected in clusters to get the
modular architecture. To check the accuracy of collected clusters, authoritativeness is
calculated which finds the correspondence between collected clusters and a software
decomposition prepared by a human expert. To improve the authoritativeness,
different techniques have been proposed in the literature. However, agglomerative
hierarchical clusterings (AHCs) are preferred due to their resemblance with internal
tree structure of the software systems because AHC results in a tree like structure,
called dendrogram. AHC uses similarity measures to find association values between
entities and makes clusters of similar entities. This research addresses the strengths
and weakness of existing similarity measures (i.e., Jaccard (JC), JaccardNM (INM),
and Russal&Rao (RR)). For example JC measure produces large number of clusters
(NoC) and number of arbitrary decisions (AD). Large NoC is considered to be
better for improving the authoritativeness but large AD deteriorates it. To overcome
this trade-off, new combined binary similarity measures are proposed. To further
improve the authoritativeness, this research explores the idea of hierarchical clustering
combination (HCC) for software modularization which is based on combining results
(dendrograms) of individual AHCs (IAHCs). This research proposes an improved
HCC approach in which the dendrograms are represented in a 4+N (4 is the number
of features and can be extended to N) dimensional Euclidean space (4+NDES). The
proposed binary similarity me'asures and 44+NDES based HCC approach are tested
on several test software systems. Experimental results revealed [13.5% - 63.5%]
improvement in authoritativeness as compared to existing approaches. Thus the
combined measures and 4+NDES-HCC have shown better potential to be used for

software modularization. -
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ABSTRAK

Modularisasi perisian memainkan peranan yang penting dalam fasa penyelenggaraan
perisian. Modularisasi adalah pecahan daripada sistem perisian ke dalam sub-sistem
supaya kebanyakan entiti yang sama (contohnya, kelas atau fungsi) dikumpulkan
dalam kelompok tertentu untuk mendapatkan seni bina modular. Untuk memeriksa
ketepatan kelompok yang telah dikumpul, keberkesanan dikira dari segi kesesuaian
di antara kelompok yang telah dikumpul dan penguraian perisian yang diperincikan
oleh pakar. Untuk meningkatkan keberkesanannya, pelbagai teknik yang berbeza
telah dicadangkan dalam literatur. Walau bagaimanapun, agglomerative hierarchical
clusterings (AHCs) lebih digemari kerana persamaan struktur dalaman sistem.
perisian kerana AHC membentuk sebuah struktur berbentuk pokok, yang dipanggil
dendrogram. AHC menggunakan penilaian persamaan untuk mencari nilai-nilai
persatuan antara entiti dan membentuk kelompok entiti yang sama. Kajian ini
menangani kekuatan dan kelemahan penilaian persamaan yang sedia ada (iaitu,
Jaccard (JC), JaccardNM (JNM), dan Russal&Rao (RR)). Sebagai contoh, teknik
penilaian JC menghasilkan sejumlah besar kelompok (NoC) dan beberapa arbitrary
decisions (AD). NoC dianggap lebih baik untuk meningkatkan keberkesanan,
tetapi AD besar kemungkinan merosot dari aspek tertentu. Untuk mengatasi
masalah keseimbangan ini, langkah-langkah persamaan binari gabungan baru telah
dicadangkan. Untuk meningkatkan lagi kewibawaan, penyelidikan ini meneroka
idea hierarchical clustering combination (HCC) untuk perisian modularisasi yang
berasaskan menggabungkan hasil (dendrograms) individu AHCs (IAHCs). Kajian
ini mencadangkan pendekatan HCC bertambah baik di mana dendrograms diwakili
dalam 4+N (4 adalah bilangan ciri-ciri dan boleh dilanjutkan kepada N) dimensi ruang
Euclidean (4+NDES). Kajian ini telah melaksanakan langkah-langkah persamaan
binari yang dicadangkan dan 4+NDES berdasarkan pendekatan HCC telah diuji
pada beberapa sistem perisian ujian. Oleh itu 4+NDES-HCC dan langkah-langkah
persamaan binari yang dicadangkan adalah lebih berpotensi untuk digunakan untuk

perisian modularisasi.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The software development life cycle comprises of many phases, perhaps the most
important phase being maintenance, because it increases the operational life of a
software after it has been deployed. Software maintenance is considered to be a
difficult phase since it dominates other phases in terms of cost and efforts required
(Garcia et al., 2011). Bavota et al. (2013) stated that a typical system’s maintenance
costs up to 90% of the total project expenses. In addition to that, Kumari et al. (2013)
reported that maintenance phase requires 50% of the human and computer resources.
According to Antonellis et al. (2009), United States spends $60 billion per year of
its economy on the maintenance of software systems. Keeping in view the above,
software maintenance may be considered a competitive research area to reduce the
efforts required for maintenance.

In the software maintenance phase, “understanding the architecture” of
software systems is an important and challenging activity to start adding new
requirements or to start reverse engineering (Muhammad et al., 2012). However,
when new requirements are incorporated in software systems, the systems’ size and
complexity increases (Shtern & Tzerpos, 2014), while architecture may deteriorate
and diverge from the original documentation (Shtern & Tzerpos, 2014; Chardigny
et al., 2008) due to the many reasons: 1) software development without an architecture
design phase; 2) original developer may not be available; 3) documentation may not

be uptodated and; 4) copied source code without understanding the code segments.



Therefore, it becomes difficult to understand the systems and introduce
changes to them. Corazza et al. (2011), Cornelissen et al. (2009) and Kuhn et al.
(2007) reported that “understanding” the systems costs up to 60% of the whole
maintenance cost. Hence, researchers have explored the problem and are working
to solve it using automated techniques for the last two decades. These techniques
support the software maintenance team in terms of gathering and presenting the
basic architectural information for better understanding and improvement of the
software systems. Architectural information comprises of a software architecture
(structures of the systems, e.g., module architecture), which plays a vital role to
understand the software systems (Ducasse & Pollet, 2009). Therefore, a number
of approaches have been developed and proposed in the literature to recover the
architecture of software systems mainly from their source code in order to improve the
authoritativeness. Authoritativeness determines how much the automatically obtained
decomposition is similar to manual decomposition prepared by human expert (Wu
et al., 2005). Besides hierarchical clustering (Magbool & Babri, 2007b; Cui & Chae,
2011; Andritsos & Tzerpos, 2005), these approaches include, supervised clustering
(Hall et al., 2012), optimization techniques (Praditwong et al., 2011), role based
recovery (Dugerdil & Jossi, 2009), graph based techniques (Bittencourt & Guerrero,
2009), association based approaches (Vasconcelos & Werner, 2007), spectral method
(Xanthos & Goodwin, 2006), rough set theory (Jahnke, 2004), concept analysis
(Tonella, 2001), and visualization tools (Synytskyy et al., 2005).

Clustering is an emerging research area to acquire different types of knowledge
from the data by forming meaningful clusters (groups). Thus, entities within a
cluster have similar characteristics or features, and are dissimilar from entities in other
clusters. To determine similarity based on features of an entity, a similarity measure is
employed. Finding a good clustering is an NP-complete problem (Tumer & Agogino,
2008). To address the problem, a number of clustering algorithms exist. Moreover
algorithms have been proposed for various domains, e.g., DNA analysis (Avogadri
& Valentini, 2009), software modularization (Wang et al., 2010), bioinformatics

(Janssens et al., 2007), image processing (Gong et al., 2013) and information retrieval



(Campos et al., 2014) and for general data mining (Liao et al., 2012). Each clustering
algorithm produces results according to some criteria and bias of the technique (Faceli
et al., 2007). For example, Complete linkage clustering algorithm creates small
size of clusters because this algorithm considers maximum distance between clusters
while Single linkage algorithm considers minimum distance between the clusters and
therefore makes large size clusters.

Clustering techniques can be mainly divided into two categories: 1) partitional
and 2) hierarchical. Partitional clustering makes flat partitions (or clusters) in the input
data, while hierarchical clustering results in a tree like nested structure of clusters
called “dendrogram”. The two main types of hierarchical clustering are divisive and
agglomerative. The divisive approach starts by considering the whole data as one big
cluster and then iteratively splits the clusters into two nested clusters in a top-down
manner. Agglomerative hierarchical clustering (AHC) starts with singleton clusters

and merges two most similar clusters at every step in a bottom-up manner as shown in

Figure 1.1.
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Figure 1.1: Hierarchical clustering approaches and dendrogram

Due to the ill-posed problem of clustering (Kashef & Kamel, 2010; Ghaemi
et al., 2009), different clustering algorithms usually produce different results from the
given data. For example, if a clustering algorithm produces results which are stable

(results are stable if affect of slight modification in input is also slight on output



of algorithm), it may produce less authoritative results and vice versa. To improve
clustering results many of the existing methods have been modified and improved
(Chen et al., 2014; Wang & Su, 2011; Forestier et al., 2010; Kashef & Kamel, 2010).
Some efforts have been made to improve the results by using prior information, e.g.,
user input and number of clusters, but this information is very difficult to obtain in
advance (Ghaemi er al., 2009).

Recently, combining the individual AHC (IAHC) algorithms in an ensemble
fashion has gained the attention of the researchers to boost the clustering accuracy,
known as Hierarchical Clustering Combination (HCC). This ensemble clustering is
achieved by combining the dendrograms created by different IAHCs, to obtain a
consensus result (Rashedi et al., 2015; Zheng et al., 2014). Generally this combination
has four phases as shown in Figure 1.2. In the first phase the IAHCs are applied to
the input data to create dendrograms. Then the dendrograms are translated into an
intermediate format (mostly in a matrix format called Description Matrix), so that they
can be aggregated into a single intermediate format. Lastly a recovery tool is applied

to recover a single consensus integrated dendrogram for the input data.

Using a Descriptor Using an Aggregator IUsIng a Recowery Tool

) IAHC:

Dataset Single Aggregated Hierarchy

Dendrogram1 " Description Matrix1 ] I
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IAHCn |- Dendrogramnr Descn'tptlon Matrixa

Figure 1.2: General framework of the HCC

For software modularization AHC algorithms have been widely used by
researchers to cluster the software systems in order to improve the authoritativeness
(Muhammad et al., 2012; Shtern & Tzerpos, 2010; Patel et al., 2009; Magbool & Babri,
2007b; Mitchell, 2006). However, the similarity measures used by AHCs perform
better for one assessment criteria and poor for another. To overcome this trade off,
integration of the existing similarity measures are performed. Moreover, HCC which
has never been explored for software modularization is introduced. In addition to that,

the existing HCC approach has the limitation of describing dendrogram using only



a single feature and considering that feature as a distance value to make the clusters
for final dendrogram. Therefore, in this research, a new improved HCC approach is
proposed which is based on Euclidean space theory and is named as 4+NDES-HCC.
This approach translate the dendrogram using four new features as vector dimensions
in Euclidean space. The entity points in dendrograms are represented as vectors. Then,
the corresponding vectors of two dendrograms are added using vector addition property
to get the aggregated vector matrix. Then, Euclidean distance measure is applied to get
the distance matrix. At the end a recovery tool is used such as IAHC to get the final

consensus dendrogram which provides high authoritativeness.

1.2 Problem Statement

HCC has gain the attention of the researcher due to its promising results (Rashedi
et al., 2015; Zheng et al., 2014; Rashedi & Mirzaei, 2013; Ghosh & Acharya,
2011). HCC bases on the results (dendrogram) of IAHCs while IAHC bases on
a linkage method and a similarity measure. However, similarity measures have a
major influence on the clustering results as compared to a linkage method (Shtern
& Tzerpos, 2012). For software modularization comparative studies reported that
Jaccard (JC), Jaccard-New-Measure(JNM), and Russal&Rao (RR) binary similarity
measures produced better clustering results as compared to Euclidean, Simple and
Rogers&Tanimoto measures (Naseem et al., 2013; Shtern & Tzerpos, 2012; Cui &
Chae, 2011). These similarity measures have different characteristics, for example,
JC creates large number of clusters with large number arbitrary decisions while JNM
reduces the arbitrary decisions but at the cost of reducing number of clusters. Similarly
RR has the strengths to reduce the arbitrary decisions where JC creates. Producing
large number of clusters and reducing the arbitrary decisions ensue into better and
qualitative software modularization results (Naseem et al., 2013; Shtern & Tzerpos,
2012; Cui & Chae, 2011). This research is motivated by the idea of “integrating the
strengths of these measures (i.e., large number of clusters while taking less arbitrary

decisions) in a single binary similarity measures to improve the clustering quality”.
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