AN IMPROVED HIERARCHICAL CLUSTERING COMBINATION APPROACH
FOR SOFTWARE MODULARIZATION

RASHID NASEEM

A thesis submitted in
fulfillment of the requirement for the award of the

Doctor of Philosophy in Information Technology

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

JANUARY 2017

To my family.

iii

iv

ACKNOWLEDGEMENT

First, I want to thank ALLAH Almighty for giving me the strength and courage to
accomplish my goal. HE has been the biggest source of strength for me.

I would like to express my deepest gratitude to my supervisor Prof. Dr.
Mustafa Mat Deris. It has been an honor to be his PhD student. I am grateful for
all his contributions of time, ideas, and knowledge to make my research experience
productive and exciting.

I benefited from the expertise and support of Dr. Onaiza Mabool of Quaid-
I-Azam University, Pakistan, in all aspects of my research work. Her guidance and
instructions were particularly valuable during preparing research papers and the thesis.

I would like to thank University Tun Hussein Onn Malaysia (UTHM) for
supporting this research under Graduate Researcher Incentive Grant (GIPS) Vote No.
U063.

I am grateful to Siraj Muhammad and Abdul Qadoos Abbasi who shared
my interests and helped me a lot to clarify my views through conversations and
implementation concerning my research and provide me the test systems for my
research.

I would like to show my appreciation and pleasure to all my friends from
Nigeria, Somalia, Irag, Yemen, Malaysia, and Pakistan, especially the friends of Parit
Raja (our house on rent in Batu Pahat, Malaysia). The loving and caring friends of
Parit Raja: Zinda Abad.

Lastly, 1 would like to thank my family for all their pray, love and
encouragement. The moral support of all my family member was the main stream
to complete my PhD.

Thanks Malaysia.

Rashid Naseem

ABSTRACT

Software modularization plays an important role in software maintenance phase.
Modularization is the breaking down of a software system into sub-systems so that
most similar entities (e.g., classes or functions) are collected in clusters to get the
modular architecture. To check the accuracy of collected clusters, authoritativeness is
calculated which finds the correspondence between collected clusters and a software
decomposition prepared by a human expert. To improve the authoritativeness,
different techniques have been proposed in the literature. However, agglomerative
hierarchical clusterings (AHCs) are preferred due to their resemblance with internal
tree structure of the software systems because AHC results in a tree like structure,
called dendrogram. AHC uses similarity measures to find association values between
entities and makes clusters of similar entities. This research addresses the strengths
and weakness of existing similarity measures (i.e., Jaccard (JC), JaccardNM (INM),
and Russal&Rao (RR)). For example JC measure produces large number of clusters
(NoC) and number of arbitrary decisions (AD). Large NoC is considered to be
better for improving the authoritativeness but large AD deteriorates it. To overcome
this trade-off, new combined binary similarity measures are proposed. To further
improve the authoritativeness, this research explores the idea of hierarchical clustering
combination (HCC) for software modularization which is based on combining results
(dendrograms) of individual AHCs (IAHCs). This research proposes an improved
HCC approach in which the dendrograms are represented in a 4+N (4 is the number
of features and can be extended to N) dimensional Euclidean space (4+NDES). The
proposed binary similarity me'asures and 44+NDES based HCC approach are tested
on several test software systems. Experimental results revealed [13.5% - 63.5%]
improvement in authoritativeness as compared to existing approaches. Thus the
combined measures and 4+NDES-HCC have shown better potential to be used for

software modularization. -

vi

ABSTRAK

Modularisasi perisian memainkan peranan yang penting dalam fasa penyelenggaraan
perisian. Modularisasi adalah pecahan daripada sistem perisian ke dalam sub-sistem
supaya kebanyakan entiti yang sama (contohnya, kelas atau fungsi) dikumpulkan
dalam kelompok tertentu untuk mendapatkan seni bina modular. Untuk memeriksa
ketepatan kelompok yang telah dikumpul, keberkesanan dikira dari segi kesesuaian
di antara kelompok yang telah dikumpul dan penguraian perisian yang diperincikan
oleh pakar. Untuk meningkatkan keberkesanannya, pelbagai teknik yang berbeza
telah dicadangkan dalam literatur. Walau bagaimanapun, agglomerative hierarchical
clusterings (AHCs) lebih digemari kerana persamaan struktur dalaman sistem.
perisian kerana AHC membentuk sebuah struktur berbentuk pokok, yang dipanggil
dendrogram. AHC menggunakan penilaian persamaan untuk mencari nilai-nilai
persatuan antara entiti dan membentuk kelompok entiti yang sama. Kajian ini
menangani kekuatan dan kelemahan penilaian persamaan yang sedia ada (iaitu,
Jaccard (JC), JaccardNM (JNM), dan Russal&Rao (RR)). Sebagai contoh, teknik
penilaian JC menghasilkan sejumlah besar kelompok (NoC) dan beberapa arbitrary
decisions (AD). NoC dianggap lebih baik untuk meningkatkan keberkesanan,
tetapi AD besar kemungkinan merosot dari aspek tertentu. Untuk mengatasi
masalah keseimbangan ini, langkah-langkah persamaan binari gabungan baru telah
dicadangkan. Untuk meningkatkan lagi kewibawaan, penyelidikan ini meneroka
idea hierarchical clustering combination (HCC) untuk perisian modularisasi yang
berasaskan menggabungkan hasil (dendrograms) individu AHCs (IAHCs). Kajian
ini mencadangkan pendekatan HCC bertambah baik di mana dendrograms diwakili
dalam 4+N (4 adalah bilangan ciri-ciri dan boleh dilanjutkan kepada N) dimensi ruang
Euclidean (4+NDES). Kajian ini telah melaksanakan langkah-langkah persamaan
binari yang dicadangkan dan 4+NDES berdasarkan pendekatan HCC telah diuji
pada beberapa sistem perisian ujian. Oleh itu 4+NDES-HCC dan langkah-langkah
persamaan binari yang dicadangkan adalah lebih berpotensi untuk digunakan untuk

perisian modularisasi.

CHAPTER 1

CHAPTER 2

CONTENTS

DECLARATION

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ALGORITHMS

LIST OF APPENDICES

LIST OF SYMBOLS AND ABBREVIATIONS

LIST OF PUBLICATIONS

INTRODUCTION

1.1 Overview

1.2 Problem Statement

1.3 Objectives

14 Scope

1.5 Dissertation Outline

LITERATURE REVIEW

2.1 Introduction

22 Software Maintenance

23 Aspects of Software Modularization using Clustering
2.4 Application of JAHC for Software Modularization

2.4.1 Selection of Entities and Features
242 Selection of Similarity Measure

vii

i
iii

iv

vi

vii

Xi

Xiv

Xvi

Xvii

Xviil

11
14
14
16

CHAPTER 3

24.3

Selection of the Linkage Method

25 Software Modularization using IAHCs
2.6 Software Modularization using Non-JAHCs
2.6.1 Search based Software Modularization
2.6.2 Graph based Approaches
2.6.3 Lexical Information based Approach
2.6.4 Other Approaches
2.7 Comparative Analysis
2.8 Hierarchical Clustering Combinations (HCC)
2.9 Works Related to Evaluation Criteria
2.10 Overall Scenario
2.11 Chapter Summary
RESEARCH METHODOLOGY
3.1 Introduction
3.2 Phase 1
3.2.1 Study the Performance of Existing Similar-
ity Measures
3.2.2 Combined Binary Similarity Measures
3.23 Comparison of Combined Binary Similar-
ity'Measures
3.2.3.1 Test Systems
3.2.3.2 Entities and Features
3.24 Strategies for Comparing Combined Mea-
sures
3.25 Selected Assessment Criteria for Phase 1
3.2.5.1 External Assessment
3.2.5.2 Expert Decompositions
3.2.5.3 Internal Assessment
3.2.6 Research Questions
33 Phase 2
3.3.1 Study the Performance of the Existing
HCCs
33.2 4+N Dimensions in Euclidean Space Based
HCC
3.3.3 Selection of the Best Parameters
3.34 Comparison of HCC
3.3.5 Selected Evaluation Criteria for HCC
34 Chapter Summary

viii

18
20
34
34
37
39
40
41
43
46
50
51

52

52
8.2

54
54

54
54
56

57
59
60
60
61
62
62

62

63
63
63
65
67

CHAPTER4 COMBINED BINARY SIMILARITY MEASURES

CHAPTER 5

4.1 Introduction
4.2 Analysis of the JC, JNM, and RR Measures
42.1 JC with CL Clustering Process
422 JNM with CL Clustering Process
423 RR with CL Clustering Process
424 Discussion on the Results of JC, JNM and
RR Measures
43 Design of the Combined Binary Similarity Measures
43.1 Combination of the JC and JNM Measures:
“CJCINM” Similarity Measure
432 Analysis of CICJNM Measure
433 Combination of the JC and RR Measures:
“CJCRR” Similarity Measure
434 Combination of the JNM and RR Mea-
sures: “CINMRR” Similarity Measure
435 Addition of the JC and JNM and RR Mea-
sures: “CJCINMRR” Similarity Measure
44 Chapter Summary
EUCLIDEAN SPACE BASED HIERARCHICAL CLUS-
TERING COMBINATION
5.1 Introduction
5.2 4+NDES-HCC Algorithm
5.2.1 Step 1, Initialization of the Variables
522 Step?2, Repeat
523 Step 3, Applying Base Clusterer (IAHC)
5.2.4 Step 4, Dendrogram Descriptor
5.2.4.1 (4+N)dimensions in a Euclidean
Space Based Descriptor:
5.2.4.2 BE Features
5.2.4.3 ES Features
52.5 Step S, Loop Termination
5.2.6 Step 6, Vectors Addition
5.2.7 Step 7, Euclidean Distance
5.2.8 Step 8, Recovery Technique
5.3 Tlustration of (4+NDES-HCC) Algorithm
54 Complexity Analysis
5.5 Chapter Summary

ix

68

68
68
69
70
70

72
76

76
77

33

&3

84
85

86

86
87
87
88
88
88

89
90
91
92
92
93
94
94
%4
96

CHAPTER 6 RESULTS AND ANALYSIS

6.1
6.2

6.3

6.4
6.5

Introduction

Assessment of the Combined Similarity Measures
6.2.1 Arbitrary Decisions

6.2.2 Number of Clusters

6.2.3 Authoritativeness

6.2.4 Overview of Results

6.2.5 Comparison with COUSM

6.2.6 Significance of the Authoritativeness
Assessment of the 4+NDES-HCC

6.3.1 Number of Clusters

6.3.2 Cluster-to-Cluster (c2¢) Comparison
6.3.3 Authoritativeness

6.3.4 Significance of the Results
Overview of the Results for NDES

Chapter Summary

CHAPTER7 CONCLUSIONS AND FUTURE WORKS

7.1 Introduction
7.2 Objectives Accomplished
7.3 Contributions
7.4 Directions for Future Work
7.4.1 Integration of More Similarity Measures
7.4.2 Integration of Partitioning Algorithms with
Hierarchical Algorithms
743 Application of Consensus Based Tech-
niques
7.4.4 Feature Extraction
7.4.5 Description of Dendrogram
7.4.6 Experiments on Other Test Systems
7.4.7 Use of Other Assessment Criteria
7.4.8 BigData
REFERENCES
APPENDIX A

VITAE

97

97

97

97
106
115
119
121
122
123
123
126
128
131
132
134

135

135
136
139
140
140

141

141
141
141
142
142
142

143

160
169

Z:1
2.2
2.3

24
3.1
3.2

33

3.4
35
3.6
4.1
4.2
4.3
44
4.5
4.6
4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15

4.16

LIST OF TABLES

An Example Feature Matrix

Similarity Matrix of Table 2.1 using the JC Measure

Iteration 1: Updated Similarity Matrix from Table 2.2 using
the CL Method

Details of the Literatures

Details of the Test Software Systems

Relationships Between Classes that were used for Experi-
ments

Statistics for the Indirect Features of Classes in Industrial Test
Software Systems that were Used for Experiments
Clustering Stratagems for IAHCs

Personnel Statistics

Clusterers Stratagems for HCC

Iteration 2: Updated Similarity Matrix from Table 2.3
Iteration 3: Updated Similarity Matrix from Table 4.1
Iteration 4: Updated Similarity Matrix from Table 4.2
Iteration 5: Updated Similarity Matrix from Table 4.3
Iteration 6: Updated Similarity Matrix from Table 4.4
Iteration 7: Updated Similarity Matrix from Table 4.5
Similarity Matrix of Feature Matrix in Table 2.1 Using the
JNM Measure

Iteration 1: Updated Similarity Matrix from Table 4.7 Using
the CL Method

Iteration 2: Updated Similarity Matrix from Table 4.8
Iteration 3: Updated Similarity Matrix from Table 4.9
Iteration 4: Updated Similarity Matrix from Table 4.10
Iteration 5: Updated Similarity Matrix from Table 4.11
Iteration 6: Updated Similarity Matrix from Table 4.12
Iteration 7: Updated Similarity Matrix from Table 4.13
Similarity Matrix of Feature Matrix in Table 2.1 Using the
RR Measure

Iteration 1: Updated Similarity Matrix from Table 4.15 Using
the CL Method

xi

15
18

18
29
55

57

57
59
61
66
69
69
69
70
70
70

71

71
71
71
72
12
72
12

73

73

4.17
4.18
4.19
4.20
4.21
4.22
4.23

4.24

4.25
4.26
4.27
4.28
4.29
4.30
6.1

6.2
6.3
6.4
6.5
6.6
6.7

6.8
6.9

6.10
6.11

6.12

6.13

6.14
6.15

Iteration 2: Updated Similarity Matrix from Table 4.16
Iteration 3: Updated Similarity Matrix from Table 4.17
Iteration 4: Updated Similarity Matrix from Table 4.18
Iteration 5: Updated Similarity Matrix from Table 4.19
Iteration 6: Updated Similarity Matrix from Table 4.20
Iteration 7: Updated Similarity Matrix from Table 4.21
Similarity Matrix of Feature Matrix in Table 2.1 using the
CJCINM Measure

Iteration 1: Updated Similarity Matrix from Table 4.23 using
the CL Method

Iteration 2: Updated Similarity Matrix from Table 4.24
Iteration 3: Updated Similarity Matrix from Table 4.25
Iteration 4: Updated Similarity Matrix from Table 4.26
Iteration S: Updated Similarity Matrix from Table 4.27
Iteration 6: Updated Similarity Matrix from Table 4.28
Iteration 7: Updated Similarity Matrix from Table 4.29
Experimental Results using Arbitrary Decisions for all
Similarity Measures

Average Number of Arbitrary Decisions for all Similarity
Measures

Experimental Results using Number of Clusters for all
Similarity Measures

A fvc for PLC Test System

Average Number of Clusters for All Similarity Measures
MoJoFM Results for all Similarity Measures

Correlations of MoJoFM with Arbitrary Decisions (AD) and
Number of Clusters (NoC)

Average MoJoFM Results for all Similarity Measures
Experimental Results using MoJoFM for COUSM (J-JNM)
and Combined Measures

Statistics of fcvy, fuep and fucs

The T-test Values between the MoJoFM Results of the
Combibed and Existing Measures using CL and SL Method
Descriptive Statistics of Results Achieved for Number of
Clusters .

Percentage Improvement of Number of Clusters for NDES
over CD and IAHCs

Descriptive Statistics of Results Achieved for c2¢
Percentage Improvement of c2c Values for NDES over CD
and IAHCs

Xii

73
73
74
74
74
74

79

79
79
79
80
80
80
80

104
106
111
114
115

116

117
119

121
122

122

125

126
127

128

6.16
6.17

6.18

Descriptive Statistics of Results Achieved for MoJoFM
Percentage Improvement of MoJoFM Values for NDES over
CD and IAHCs

The T-test Values between the MoJoFM Results of the NDES
and, CD and IAHC

Xiii

128

130

132

1.1
1.2
2.1

2.2
2.3
24
3.1
3.2
33

34
4.1

5.1
B>

6.1

6.1

6.1

6.2

6.3

6.3
6.3

LIST OF FIGURES

Hierarchical clustering approaches and dendrogram

General framework of the HCC

Direct and indirect relationships in a C++ input/output
libraries?

TAHC Approach

Dendrogram

General HCC approach

Proposed research framework

Improved IAHC

TAHCs with combined similarity measures and linkage
methods

Poposed 4+NDES-HCC approach

Number of clusters and arbitrary decisions created by JC and
JNM

The 4+N dimensions in euclidean space based HCC model
Different steps of the 4+NDES-HCC algorithms. Two
dendrograms (D' and D?) are described using 4+NDES and
then V-Matrices are aggregated into AV-Matrix. Lastly a
recovery tool is used to get the final hierarchy F'H
Experimental results of arbitrary decisions for all binary
measures using JAHCs

Experimental results of arbitrary decisions for all binary
measures using IJAHCs (Continued)

Experimental results of arbitrary decisions for all binary
measures using JAHCs (Continued)

Arbitrary decisions taken during clustering process by all
binary similarity measures using CL and SL methods for
different test software systems.

Experimental results for the number of clusters
Experimental results for the number of clusters (continued)
Experimental results for the number of clusters (continued)

Xiv

13
16
20

53
58

58
64

75
88

95

99

100

101

105

107

108
109

6.4

6.5

6.6
6.7

6.8
6.9
6.10
6.11

6.12

Number of clusters created by all binary similarity measures
during clustering process using CL and SL methods for
different test software systems.

Size of the clusters created using DDA test system and CL
method

Results for number of clusters created by different stratagems
Number of clusters created by different stratagems in each
iteration

Results for c2c created by different stratagems

c2c results for each iteration created by different stratagems
Results for authoritativeness created by different stratagems
Authoritativeness results for each iteration created by
different stratagems

Percentage improvement of NDES with respect to existing
measures (JC, INM, and RR) using CL, SL, and WL methods

XV .

113

118
124

125
127
129
129
131

133

wv AW N

LIST OF ALGORITHMS

Individual Agglomerative Hierarchical Clustering (IAHC)
Algorithm

Complete Linkage (CL) Method

Single Linkage (SL) Method

Weighted Average Linkage (WL) Method

4+N Dimensions in Euclidean Space based HCC

xvi

15
19
19
19
89

Xvii

LIST OF APPENDICES

Propositions 160

Xviii

LIST OF SYMBOLS AND ABBREVIATIONS

AHC - Agglomerative Hierarchical Clustering
ACDC - Algorithm for Comprehension Driven Clustering
c2c - Cluster to Cluster

CLH - Cannot Link Hard

CH - Cluster Cohesion

CC/IG - Graph-based Clustering Approach

CPCC - Co-Phenetic Correlation Co-efficiency

CL - Complete Linkage

COUSM - Cooperative Only Update Similarity Matrix
DDA - Document Designer Application

DSM - Dependency Structure Matrix

dsm - design structure matrix clustering
EdgeSim - Edge Similarity

eb - edge betweeness clusterin

ECA - equal size cluster approach

FCA - Formal Concept Analysis

FES — Fact Extractor System

FACA — Fast Community Algorithm

GA - Genetic Algorithm

HCC — Hierarchical Clusterers Combinations
IAHC - Individual Agglomerative Hierarchical Clustering
IEEE — The Institute of Electrical and Electronics Engineers
IL — Information Loss

J-INM - Jaccard and JaccardNM

JC - Jaccard

JNM — JaccardNM

LIMBO — Scalable Information Bottleneck

LSI - Latent Semantic Indexing

Max - Maximum

MQ/mq - Modularization Quality

MLH — Must Link Hard

MCA — Maximizing Cluster Approach

Xix

MST - Minimum Spanning Tree

MMST - Modified Minimum Spanning Tree
MoJoFM - Move and Join Effectiveness Measure
Molo - Move and Join

MED - Maximum Edge Distance

MeCl - Merge Clusters

MATCH - Min-transitive Combination of Hierarchical Clusterings
NAHC - Nearest hill-climbing

NoC - Number of Clusters

NDES - N Dimensional Euclidean Space
OAM - Optimal Algorithm for MoJo

PEDS - Power Economic Dispatch System
PLC - Printer Language Converter

PLP - Print Language Parser

RR - Russal&Rao

SAVT - Statistical Analysis Visualization Tool
SBSE - Search Based Software Engineering
SBSC - Search Based Software Clustering

SL — Single Linkage

SAHC — Steepest-Ascend Hill-Climbing

SD - Sorenson-Dice

std.dev. — Standard Deviation

sig. - Significance

TEIDF — Term Frequency Inverse Document Frequency
WCA —~ Weighted Combined Algorithm

WL — Weighted Average Linkage

XX

LIST OF PUBLICATIONS

Rashid Naseem, Mustafa Mat Deris, Onaiza Magbool, Jing-peng Li, Sara
Shahzad, and Habib Shah (2016), Improved binary similarity measures for
software modularization, Frontiers of Information Technology & Electronic
Engineering (FITEE), In press (ISI and Scopus Indexed, Springer Journal)

Rashid Naseem, Mustafa Mat Deris and Onaiza Magbool (2014), Software
Modularization Using Combination of Multiple Clustering, [EEE I7th
International Multi-Topic Conference (INMIC), pp. 277 - 281, IEEE Conference

Rashid Naseem and Mustafa Mat Deris (2016), A New Binary Similarity
Measure Based on Integration of the Strengths of Existing Measures:
Application to Software Clustering, International Conference on Soft Computing
and Data Mining (SCDM), pp. 304 - 315, Springer Conference

CHAPTER 1

INTRODUCTION

1.1 Overview

The software development life cycle comprises of many phases, perhaps the most
important phase being maintenance, because it increases the operational life of a
software after it has been deployed. Software maintenance is considered to be a
difficult phase since it dominates other phases in terms of cost and efforts required
(Garcia et al., 2011). Bavota et al. (2013) stated that a typical system’s maintenance
costs up to 90% of the total project expenses. In addition to that, Kumari et al. (2013)
reported that maintenance phase requires 50% of the human and computer resources.
According to Antonellis et al. (2009), United States spends $60 billion per year of
its economy on the maintenance of software systems. Keeping in view the above,
software maintenance may be considered a competitive research area to reduce the
efforts required for maintenance.

In the software maintenance phase, “understanding the architecture” of
software systems is an important and challenging activity to start adding new
requirements or to start reverse engineering (Muhammad et al., 2012). However,
when new requirements are incorporated in software systems, the systems’ size and
complexity increases (Shtern & Tzerpos, 2014), while architecture may deteriorate
and diverge from the original documentation (Shtern & Tzerpos, 2014; Chardigny
et al., 2008) due to the many reasons: 1) software development without an architecture
design phase; 2) original developer may not be available; 3) documentation may not

be uptodated and; 4) copied source code without understanding the code segments.

Therefore, it becomes difficult to understand the systems and introduce
changes to them. Corazza et al. (2011), Cornelissen et al. (2009) and Kuhn et al.
(2007) reported that “understanding” the systems costs up to 60% of the whole
maintenance cost. Hence, researchers have explored the problem and are working
to solve it using automated techniques for the last two decades. These techniques
support the software maintenance team in terms of gathering and presenting the
basic architectural information for better understanding and improvement of the
software systems. Architectural information comprises of a software architecture
(structures of the systems, e.g., module architecture), which plays a vital role to
understand the software systems (Ducasse & Pollet, 2009). Therefore, a number
of approaches have been developed and proposed in the literature to recover the
architecture of software systems mainly from their source code in order to improve the
authoritativeness. Authoritativeness determines how much the automatically obtained
decomposition is similar to manual decomposition prepared by human expert (Wu
et al., 2005). Besides hierarchical clustering (Magbool & Babri, 2007b; Cui & Chae,
2011; Andritsos & Tzerpos, 2005), these approaches include, supervised clustering
(Hall et al., 2012), optimization techniques (Praditwong et al., 2011), role based
recovery (Dugerdil & Jossi, 2009), graph based techniques (Bittencourt & Guerrero,
2009), association based approaches (Vasconcelos & Werner, 2007), spectral method
(Xanthos & Goodwin, 2006), rough set theory (Jahnke, 2004), concept analysis
(Tonella, 2001), and visualization tools (Synytskyy et al., 2005).

Clustering is an emerging research area to acquire different types of knowledge
from the data by forming meaningful clusters (groups). Thus, entities within a
cluster have similar characteristics or features, and are dissimilar from entities in other
clusters. To determine similarity based on features of an entity, a similarity measure is
employed. Finding a good clustering is an NP-complete problem (Tumer & Agogino,
2008). To address the problem, a number of clustering algorithms exist. Moreover
algorithms have been proposed for various domains, e.g., DNA analysis (Avogadri
& Valentini, 2009), software modularization (Wang et al., 2010), bioinformatics

(Janssens et al., 2007), image processing (Gong et al., 2013) and information retrieval

(Campos et al., 2014) and for general data mining (Liao et al., 2012). Each clustering
algorithm produces results according to some criteria and bias of the technique (Faceli
et al., 2007). For example, Complete linkage clustering algorithm creates small
size of clusters because this algorithm considers maximum distance between clusters
while Single linkage algorithm considers minimum distance between the clusters and
therefore makes large size clusters.

Clustering techniques can be mainly divided into two categories: 1) partitional
and 2) hierarchical. Partitional clustering makes flat partitions (or clusters) in the input
data, while hierarchical clustering results in a tree like nested structure of clusters
called “dendrogram”. The two main types of hierarchical clustering are divisive and
agglomerative. The divisive approach starts by considering the whole data as one big
cluster and then iteratively splits the clusters into two nested clusters in a top-down
manner. Agglomerative hierarchical clustering (AHC) starts with singleton clusters

and merges two most similar clusters at every step in a bottom-up manner as shown in

Figure 1.1.
[v W X y z|

4 0
= |vwxyz| =
8 Y
- =
HER Gad| | 5
S o g2
i 4 43
: [rora]

|] '
— 4

0
¥ ®m ® [@

Figure 1.1: Hierarchical clustering approaches and dendrogram

Due to the ill-posed problem of clustering (Kashef & Kamel, 2010; Ghaemi
et al., 2009), different clustering algorithms usually produce different results from the
given data. For example, if a clustering algorithm produces results which are stable

(results are stable if affect of slight modification in input is also slight on output

of algorithm), it may produce less authoritative results and vice versa. To improve
clustering results many of the existing methods have been modified and improved
(Chen et al., 2014; Wang & Su, 2011; Forestier et al., 2010; Kashef & Kamel, 2010).
Some efforts have been made to improve the results by using prior information, e.g.,
user input and number of clusters, but this information is very difficult to obtain in
advance (Ghaemi er al., 2009).

Recently, combining the individual AHC (IAHC) algorithms in an ensemble
fashion has gained the attention of the researchers to boost the clustering accuracy,
known as Hierarchical Clustering Combination (HCC). This ensemble clustering is
achieved by combining the dendrograms created by different IAHCs, to obtain a
consensus result (Rashedi et al., 2015; Zheng et al., 2014). Generally this combination
has four phases as shown in Figure 1.2. In the first phase the IAHCs are applied to
the input data to create dendrograms. Then the dendrograms are translated into an
intermediate format (mostly in a matrix format called Description Matrix), so that they
can be aggregated into a single intermediate format. Lastly a recovery tool is applied

to recover a single consensus integrated dendrogram for the input data.

Using a Descriptor Using an Aggregator IUsIng a Recowery Tool

) IAHC:

Dataset Single Aggregated Hierarchy

Dendrogram1 " Description Matrix1] I
> Dendrogramz) Descritption Matrix2) Aggregationintoa | J Single Final
|' Matrix I'

IAHCn |- Dendrogramnr Descn'tptlon Matrixa

Figure 1.2: General framework of the HCC

For software modularization AHC algorithms have been widely used by
researchers to cluster the software systems in order to improve the authoritativeness
(Muhammad et al., 2012; Shtern & Tzerpos, 2010; Patel et al., 2009; Magbool & Babri,
2007b; Mitchell, 2006). However, the similarity measures used by AHCs perform
better for one assessment criteria and poor for another. To overcome this trade off,
integration of the existing similarity measures are performed. Moreover, HCC which
has never been explored for software modularization is introduced. In addition to that,

the existing HCC approach has the limitation of describing dendrogram using only

a single feature and considering that feature as a distance value to make the clusters
for final dendrogram. Therefore, in this research, a new improved HCC approach is
proposed which is based on Euclidean space theory and is named as 4+NDES-HCC.
This approach translate the dendrogram using four new features as vector dimensions
in Euclidean space. The entity points in dendrograms are represented as vectors. Then,
the corresponding vectors of two dendrograms are added using vector addition property
to get the aggregated vector matrix. Then, Euclidean distance measure is applied to get
the distance matrix. At the end a recovery tool is used such as IAHC to get the final

consensus dendrogram which provides high authoritativeness.

1.2 Problem Statement

HCC has gain the attention of the researcher due to its promising results (Rashedi
et al., 2015; Zheng et al., 2014; Rashedi & Mirzaei, 2013; Ghosh & Acharya,
2011). HCC bases on the results (dendrogram) of IAHCs while IAHC bases on
a linkage method and a similarity measure. However, similarity measures have a
major influence on the clustering results as compared to a linkage method (Shtern
& Tzerpos, 2012). For software modularization comparative studies reported that
Jaccard (JC), Jaccard-New-Measure(JNM), and Russal&Rao (RR) binary similarity
measures produced better clustering results as compared to Euclidean, Simple and
Rogers&Tanimoto measures (Naseem et al., 2013; Shtern & Tzerpos, 2012; Cui &
Chae, 2011). These similarity measures have different characteristics, for example,
JC creates large number of clusters with large number arbitrary decisions while JNM
reduces the arbitrary decisions but at the cost of reducing number of clusters. Similarly
RR has the strengths to reduce the arbitrary decisions where JC creates. Producing
large number of clusters and reducing the arbitrary decisions ensue into better and
qualitative software modularization results (Naseem et al., 2013; Shtern & Tzerpos,
2012; Cui & Chae, 2011). This research is motivated by the idea of “integrating the
strengths of these measures (i.e., large number of clusters while taking less arbitrary

decisions) in a single binary similarity measures to improve the clustering quality”.

REFERENCES

Abebe, S. L., Haiduc, S., Marcus, A., Tonella, P., & Antoniol, G. (2009). Analyzing the
Evolution of the Source Code Vocabulary. In 2009 13th European Conference
on Software Maintenance and Reengineering. IEEE. pp. 189-198.

Abi-Antoun, M., Ammar, N., & Hailat, Z. (2012). Extraction of ownership object
graphs from object-oriented code. In Proceedings of the 8th international
ACM SIGSOFT conference on Quality of Software Architectures - QoSA '12.
New York, New York, USA: ACM Press. p. 133.

Altman, D. G. (1997). Practical Statistics for Medical Research. (Chapman &
Hall/CRC Texts in Statistical Science).

Andreopoulos, B., & Tzerpos, V. (2005). Multiple Layer Clustering of Large Software
Systems. In 12th Working Conference on Reverse Engineering. IEEE. pp. 79-
88.

Andritsos, P., & Tzerpos, V. (2003). Software clustering based on information loss
minimization. In J0th Working Conference on Reverse Engineering. IEEE.
pp- 334-344.

Andritsos, P., & Tzerpos, V. (2005). Information-theoretic software clustering. JEEE
Transactions on Software Engineering, 31(2), 150-165.

Anquetil, N., & Lethbridge, T. C. (2003). Comparative study of clustering algorithms
and abstract representations for software remodularisation. JEE Proceedings-
Software, 150(3), 185—201.

Antonellis, P., Antoniou, D., Kanellopoulos, Y., Makris, C., Theodoridis, E., Tjortjs,
C., & Tsirakis, N. (2009). Clustering for Monitoring Software Systems
Maintainability Evolution. Electronic Notes in Theoretical Computer Science,

233,43-57.

144

Avogadri, R., & Valentini, G. (2009). Fuzzy ensemble clustering based on random
projections for DNA microarray data analysis. Artificial Intelligence in
Medicine, 45(2-3), 173-183.

Barros, M. d. O. (2014). An experimental evaluation of the importance of randomness
in hill climbing searches applied to software engineering problems. Empirical
Software Engineering, 19(5), 1423-1465.

Bauer, M., & Trifu, M. (2004). Architecture-aware adaptive clustering of OO systems.
Eighth European Conference on Software Maintenance and Reengineering,
2004. CSMR 2004. Proceedings., pp. 3-14.

Bavota, G., De Lucia, A., Marcus, A., & Oliveto, R. (2013). Using structural and
semantic measures to improve software modularization. Empirical Software
Engineering, 18(5), 901-932.

Bavota, G., Di Penta, M., & Oliveto, R. (2014). Search Based Software Maintenance:
Methods and Tools. In Evolving Software Systems, vol. 1, chap. 4, pp. 103~
137. Italy: Springer, 1st ed.

Beck, F, & Diehl, S. (2010). Evaluating the Impact of Software Evolution on Software
Clustering. In 2010 17th Working Conference on Reverse Engineering. IEEE.
pp. 99-108.

Beck, F., & Diehl, S. (2013). On the impact of software evolution on software
clustering. Empirical Software Engineering, 18(5), 970-1004.

Belle, T. B. V. (2004). Modularity and the Evolution of Software Evolvability.. Ph.D.
thesis, University of New Mexico.

Bittencourt, R. A., & Guerrero, D. D. S. (2009). Comparison of Graph Clustering
Algorithms for Recovering Software Architecture Module Views. In 2009
13th European Conference on Software Maintenance and Reengineering.
IEEE. pp. 251-254.

Burd, E., & Munro, M. (2000). Supporting program comprehension using dominance
trees. Annals of Software Engineering, 9(1-2), 193-213,

Cai, Z., Yang, X., Wang, X., & Wang, Y. (2009). A systematic approach for

layered component identification. 2009 2nd IEEE International Conference

145

on Computer Science and Information Technology, pp. 98-103.

Campos, R., Dias, G., Jorge, A. M., & Jatowt, A. (2014). Survey of Temporal
Information Retrieval and Related Applications. ACM Computing Surveys,
47(2), 141.

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., & Tourwé, T. (2006).
Applying and combining three different aspect Mining Techniques. Software
Quality Journal, 14(3), 209-231.

Chardigny, S., Seriai, A., Oussalah, M., & Tamzalit, D. (2008). Search-Based
Extraction of Component-Based Architecture from Object-Oriented Systems.
In R. Morrison, D. Balasubramaniam, & K. Falkner (Eds.) Seftware
Architecture SE - 28, vol. 5292 of Lecture Notes in Computer Science, pp.
322-325. Springer Berlin Heidelberg.

Chen, Y., Sanghavi, S., & Xu, H. (2014). Improved Graph Clustering. IEEE
Transactions on Information Theory, 60(10), 6440-6455.

Chen, Y.-F. R., Gansner, E. R., & Koutsofios, E. (1997). A C++ data model supporting
reachability analysis and dead code detection. ACM SIGSOFT Software
Engineering Notes, 22(6), 414-431.

Chikofsky, E., & Cross, J. (1990). Reverse engineering and design recovery: a
taxonomy. /EEE Software, 7(1), 13-17.

Chong, C. Y., & Lee, S. P. (2015). Constrained Agglomerative Hierarchical Software
Clustering with Hard and Soft Constraints. In International Conference on
Evaluation of Novel Approaches to Software Engineering (ENASE). Malaysia:
IEEE. pp. 177 - 188.

Chong, C. Y., Lee, S. P, & Ling, T. C. (2013). Efficient software clustering technique
using an adaptive and preventive dendrogram cutting approach. Information
and Software Technology (IST), 55(11), 1994-2012.

Corazza, A., Di Martino, S., & Scanniello, G. (2010). A Probabilistic Based Approach
towards Software System Clustering. In 2010 14th European Conference on
Software Maintenance and Reengineering. IEEE. pp, 88-96.

Corazza, A., Martino, S. D., Maggio, V., & Scanniello, G. (2011). Investigating the

146

Use of Lexical Information for Software System Clustering. In European
Conference on Software Maintenance and Reengineering (CSMR). 1EEE. pp.
35-44.

Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., & Koschke, R. (2009).
A Systematic Survey of Program Comprehension through Dynamic Analysis.
IEEE Transactions on Software Engineering, 35(5), 684-702.

Cui, J. F,, & Chae, H. S. (2011). Applying agglomerative hierarchical clustering
algorithms to component identification for legacy systems. Information and
Software Technology (IST), 53(6), 601-614.

Davey, J., & Burd, E. (2000). Evaluating the suitability of data clustering for software
remodularisation. In Working Conference on Reverse Engineering. IEEE. pp.
268-276.

Dayani-fard, H., Yu, Y., & Mylopoulos, J. (2005). Improving the Build Architecture of
Legacy C/ C ++ Software Systems. In Fundamental Approaches to Software
Engineering, pp. 96-110.

De Lucia, A., Deufemia, V., G:ravino, C., & Risi, M. (2007). A Two Phase Approach
to Design Pattern Recovery. In /J/th European Conference on Software
Maintenance and Reengineering. IEEE. pp. 297-306.

Ducasse, S., & Pollet, D. (2009). Software Architecture Reconstruction: A Process-
Oriented Taxonomy. IEEE Transactions on Software Engineering, 35(4), 573~
591.

Dugerdil, P., & Jossi, S. (2009). Reverse-Architecting Legacy Software Based on Roles
: An Industrial Experiment. In Software and Data Technologies, pp. 114-127.
Springer.

El-Ramly, M., Iglinski, P, Stroulia, E., Sorenson, P., & Matichuk, B. (2001). Modeling
the system-user dialog using interaction traces. In Reverse Engineering, 2001.
Proceedings. Eighth Working Conference on. pp. 208-217,

Erdemir, U., & Buzluca, F (2014). A learning-based module extraction method for
object-oriented systems. Journal of Systems and Software (JSS), 97(2014),
156-177.

147

Erdemir, U., Tekin, U., & Buzluca, F (2011). Object Oriented Software Clustering
Based on Community Structure. In Asia-Pacific Software Enginecring
Conference (APSEC). IEEE. pp. 315-321.

Faceli, K., de Carvalho, A. C. P. L. F,, & de Souto, M. C. P. (2007). Multi-Objective
Clustering Ensemble with Prior Knowledge. In Advances in Bioinformatics
and Computational Biology, pp. 34-45.

Forestier, G., Gangarski, P., & Wemmert, C. (2010). Collaborative clustering with
background knowledge. Data & Knowledge Engineering, 69(2), 211-228.

Frangois-Joseph Lapointe, P. L. (1995). Comparison tests for dendrograms: A
comparative evaluation. Journal of Classification, 12(2), 265-282.

Gansner, E. R., Koutsofios, E., North, S., & Vo, K.-P. (1993). A technique for drawing
directed graphs. IEEE Transactions on Software Engineering, 19(3), 214-230.

Garcia, J., Ivkovic, 1., & Medvidovic, N. (2013). A comparative analysis of software
architecture recovery techniques. In JEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. pp. 486-496.

Garcia, J., Popescu, D., Mattmann, C., & Medvidovic, N. (2011). Enhancing
architectural recovery using concerns. In 20/] 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011). IEEE. pp. 552-
555.

Garlan, D. (2000). Software architecture. In Proceedings of the conference on The
future of Software engineering. New York, New York, USA: ACM Press. pp.
91-101.

Ghaemi, R., Sulaiman, M. N., Ibrahim, H., & Mustapha, N. (2009). A survey:
clustering ensembles techniques. World Academy of Science, Engineering and
Technology, 2009(1), 636—645.

Ghosh, J., & Acharya, A. (2011). Cluster ensembles. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 1(4), 305-315.

Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological
networks. Proceedings of the National Academy of Sciences of the United

States of America, 99(12), 7821-7826.

148

Glorie, M., Zaidman, A., van Deursen, A., & Hofland, L. (2009). Splitting a
large software repository for easing future software evolution-an industrial
experience report. Journal of Software Maintenance and Evolution: Research
and Practice, 21(2), 113-141.

Gong, M., Liang, Y., Shi, J., Ma, W.,, & Ma, J. (2013). Fuzzy C-Means Clustering
With Local Information and Kernel Metric for Image Segmentation. /EEE
Transactions on Image Processing, 22(2), 573-584.

Gueheneuc, Y.-G., & Antoniol, G. (2008). DeMIMA: A Multilayered Approach for
Design Pattern Identification. IEEE Transactions on Software Engineering,
34(5), 667-684.

Gunqun, Q., Lin, Z., & Li, Z. (2008). Applying Complex Network Method to
Software Clustering. In 2008 International Conference on Computer Science
and Software Engineering. IEEE. pp. 310-316.

Gutierrez, C. 1. (1998). Integration Analysis of Product Architecture to Support
Effective Team Co-location. Ph.D. thesis, Massachusetts Institute of
Technology.

Hall, M., Walkinshaw, N., & McMinn, P. (2012). Supervised software modularisation.
In IEEE International Conference on Software Maintenance (ICSM). IEEE.
pp- 472-481.

Hamdouni, A.-e. E., Seriai, A. D., & Huchard, M. (2010). Component-based
Architecture Recovery from Object Oriented Systems via Relational Concept
Analysis. In 7th International Conference on Concept Lattices and Their
Applications. pp. 259-270.

Han, Z., Wang, L., Yu, L., Chen, X., Zhao, J., & Li, X. (2009). Design pattern directed
clustering for understanding open source code. 2009 IEEE 17th International
Conference on Program Comprehension, pp. 295-296.

Handrakanth, C. P. (2012). Software Module Clustering using Single and Multi-
Objective Approaches. International Journal of Advanced Research in
Computer Engineering & Technology, 1(10), 86-90.

Harman, M., Swift, S., & Mahdavi, K. (2005). An empirical study of the robustness of

149

two module clustering fitness functions. In Proceedings of the 2005 conference
on Genetic and evolutionary computation. New York, New York, USA: ACM
Press. p. 1029.

Hartigan, J. A., & Wong, M. A. (1979). A K-Means Clustering Algorithm. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.

Hoffman, K. (2013). Analysis in Euclidean space. Courier Corporation.

Huselius, J. G. (2007). Reverse Engineering of Real-Time Legacy Systems-An
Automated Approach Based on Execution-Time Recording. Phd, Milardalen
University Press.

Hussain, 1., Khanum, A., Abbasi, A. Q., & Javed, M. Y. (2015). A Novel Approach
for Software Architecture Recovery Using Particle Swarm Optimization. The
International Arab Journal of Information Technology, 12(1), 1-10.

Ibrahim, A., Rayside, D., & Kashef, R. (2014). Cooperative based software clustering
on dependency graphs. In Canadian Conference on Electrical and Computer
Engineering (CCECE). Canada: IEEE. pp. 1-6.

Jahnke, J. (2004). Reverse engineering software architecture using rough clusters. In
IEEE Annual Meeting of the Fuzzy Information. leee. pp. 4-9 Vol.1.
Janssens, F, Glinzel, W., & De Moor, B. (2007). Dynamic hybrid clustering
of bioinformatics by incorporating text mining and citation analysis.
In Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD *07. New York, New York,

USA: ACM Press. p. 360.

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-
254.

Kanellopoulos, Y., Antonellis, P., Tjortjis, C., & Makris, C. (2007). k-Attractors: A
Clustering Algorithm for Software Measurement Data Analysis. In /9th IEEE
International Conference on Tools with Artificial Intelligence(ICTAI 2007).
IEEE. pp. 358-365.

Karypis, G., & Kumar, V. (1999). Chameleon: hierarchical clustering using dynamic
modeling. Computer, 32(8), 68-75.

150

Kashef, R. F., & Kamel, M. S. (2010). Cooperative clustering. Pattern Recognition,
43(6), 2315-2329.

Kienle, H. M., & Miiller, H. A. (2010). RigiAn environment for software reverse
engineering, exploration, visualization, and redocumentation. Science of
Computer Programming, 75(4), 247-263.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science (New York, N.Y.), 220(4598), 671-80.

Kobayashi, K., Kamimura, M., Kato, K., Yano, K., & Matsuo, A. (2012).
Feature-gathering dependency-based software clustering using Dedication and
Modularity. In IEEE International Conference on Software Maintenance
(ICSM). IEEE. pp. 462-471.

Koschke, R., & Eisenbarth, T. (2000). A framework for experimental evaluation of
clustering techniques. In International Workshop on Program Comprehension.
IEEE Comput. Soc. pp. 201-210.

Krishnamurthy, B. (1995). Practical reusable UNIX software. Wiley.

Kuhn, A., Ducasse, S., & Girba, T. (2007). Semantic clustering: Identifying topics in
source code. Information and Software Technology, 49(3), 230-243.
Kumari, A. C., Sriﬁivas, K., & Gupta, M. P. (2013). Software module clustering
using a hyper-heuristic based multi-objective genetic algorithm. In IEEE
International Advance Computing Conference (TACC). India: IEEE. pp. 813-

818.

Lakhotia, A. (1997). A unified framework for expressing software subsystem
classification techniques. Journal of Systems and Software, 36(3), 211-231.

Langfelder, P., Zhang, B., & Horvath, S. (2008). Defining clusters from a hierarchical
cluster tree: the Dynamic Tree Cut package for R. Bioinformatics (Oxford,
England), 24(5), 719-20.

Lesot, M.-J., & Rifqi, M. (2009). Similarity measures for binary and numerical data :
a survey. Int. J. Knowledge Engineering and Soft Data Paradigms, 1(1).

Liao, S.-H., Chu, P-H., & Hsiao, P-Y. (2012). Data mining techniques and

applications A decade review from 2000 to 2011. Expert Systems with

151

Applications, 39(12), 11303-11311.

Lundberg, J., & Lowe, W. (2003). Architecture Recovery by Semi-Automatic
Component Identification. Electronic Notes in Theoretical Computer Science,
82(5), 98-114.

Lung, C.-H., Zaman, M., & Nandi, A. (2004). Applications of clustering techniques
to software partitioning, recovery and restructuring. Journal of Systems and
Software, 73(2), 227-244.

Lutellier, T., Chollak, D., Garcia, J., Tan, L., Rayside, D., Medvidovic, N., &
Kroeger, R. (2015). Comparing Software Architecture Recovery Techniques
Using Accurate Dependencies. In IEEE International Conference on Software
Engineering (ICSE), vol. vol.2. USA, Canada: IEEE, ACM. pp. 69-78.

Mahmoud, A., & Niu, N. (2013). Evaluating software clustering algorithms in the
context of program comprehension. In International Conference on Program
Comprehension (ICPC). USA: IEEE. pp. 162-171.

Mancoridis, S., Mitchell, B. S., Chen, Y., & Gansner, E. R. (1999). Bunch: a clustering
tool for the recovery and maintenance of software system structures. In
International Conference on Software Maintenance. IJEEE. pp. 50-59.

Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y., & Gansner, E. R. (1998). Using
automatic clustering to produce high-level system organizations of source
code. In International Workshop on Program Comprehension. IEEE. pp. 45-
52.

Magbool, O., & Babri, H. (2004). The weighted combined algorithm: a linkage
algorithm for software clustering. In Eighth European Conference on Software
Maintenance and Reengineering. IEEE. pp. 15-24.

Magbool, O., & Babri, H. (2007a). Bayesian Learning for Software Architecture
Recovery. In 2007 International Conference on Electrical Engineering. JEEE.
pp. 1-6.

Magbool, O., & Babri, H. (2007b). Hierarchical Clustering for Software Architecture
Recovery. IEEE Transactions on Software Engineering, 33(11), 759-780.

152

Magbool, O., Babri, H., Karim, A., & Sarwar, S. (2005). Metarule-guided association
rule mining for program understanding. IEE Proceedings, 152(6), 281-296.

Medvidovic, N., & Taylor, R. N. (2010). Software architecture: foundations, theory,
and practice. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, vol. 2. New York, New York, USA: ACM Press. p.
471.

Mirzaei, A., & Rahmati, M. (2010). A Novel Hierarchical-Clustering-Combination
Scheme Based on Fuzzy-Similarity Relations. IEEE Transaction on Fuzzy
Systems, 18(1), 27-39.

Mirzaei, A., Rahmati, M., & Ahmadi, M. (2008). A new method for hierarchical
clustering combination. Intelligent Data Analysis, 12, 549-571.

Mitchell, B. S. (2003). A heuristic approach to solving the software clustering
problem. International Conference on Software Maintenance, 2003. 1CSM
2003. Proceedings., pp. 285-288.

Mitchell, B. S. (2006). Clustering Software Systems to Identify Subsystem Structures.
Tech. rep.

Mitchell, B. S., & Mancoridis, S. (1998). Clustering Module Dependency Graphs of
Software Systems Using the Bunch Tool. Tech. rep.

Mitchell, B. S., & Mancoridis, S. (2001). Comparing the decompositions produced
by software clustering algorithms using similarity measurements. In
International Conference on Software Maintenance. IEEE. pp. 744-753.

Mitchell, B. S., & Mancoridis, S. (2002). Using Heuristic Search Techniques to Extract
Design Abstractions from Source Code. In Proceedings of the Genetic and
Evolutionary Computation Conference, vol. 2. pp. 1375—1382.

Mitchell, B. S., & Mancoridis, S. (2003). Modeling the Search Landscape of
Metaheuristic Software Clustering Algorithms. In E, Canti-Paz, J. Foster,
K. Deb, L. Davis, R. Roy, U-M. O'Reilly, H.-G. Beyer, R. Standish,
G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. Potter,
A. Schultz, K. Dowsland, N. Jonoska, & J. Miller (Eds.) Genetic and
Evolutionary Computation GECCO 2003 SE - 153, vol. 2724 of Lecture Notes

153

in Computer Science, pp. 2499-2510. Springer Berlin Heidelberg.

Mitchell, B. S., & Mancoridis, S. (2006). On the automatic modularization of software
systems using the Bunch tool. IEEE Transactions on Software Engineering,
32(3), 193-208.

Mitchell, B. S., Mancoridis, S., & Traverso, M. (2002). Search based reverse
engineering. In Proceedings of the 14th international conference on Software
engineering and knowledge engineering. New York, New York, USA: ACM
Press. p. 431.

Morokoff, W. J., & Caflisch, R. E. (1994). Quasi-Random Sequences and Their
Discrepancies. SIAM Journal on Scientific Computing, 15(6), 1251-1279.

Muhammad, S., Magbool, O., & Abbasi, A. Q. (2010). Role of relationships during
clustering of object-oriented software systems. In 2010 6th International
Conference on Emerging Technologies (ICET). IEEE. pp. 270-275.

Muhammad, S., Magbool, O., & Abbasi, A. Q. (2012). Evaluating relationship
categories for clustering object-oriented software systems. JET Software, 6(3),
260.

Murphy, G., & Notkin, D. (1997). Reengineering with reflexion models: a case study.
Computer, 30(8), 29-36.

Murphy, G., Notkin, D., & Sullivan, K. (2001). Software reflexion models: bridging
the gap between design and implementation. JEEE Transactions on Software
Engineering, 27(4), 364-380.

Murtagh, F. (1983). A Survey of Recent Advances in Hierarchical Clustering
Algorithms. The Computer Journal, 26(4), 354-359.

Naseem, R., Maqbool, O., & Muhammad, S. (2010). An Improved Similarity Measure
for Binary Features in Software Clustering. In 2010 Second International
Conference on Computational Intelligence, Modelling and Simulation. IEEE.
pp. 111-116.

Naseem, R., Magbool, O., & Muhammad, S. (2011). Improved Similarity Measures

for Software Clustering. In European Conference on Software Maintenance

and Reengineering (CSMR). Pakistan: IEEE. pp, 45-54.

154

Naseem, R., Magbool, O., & Muhammad, S. (2013). Cooperative clustering for
software modularization. Journal of Systems and Software (JSS), 86(8), 2045~
2062.

Ngonga Ngomo, A.-C., & Schumacher, E (2009). BorderFlow: A Local Graph
Clustering Algorithm for Natural Language Processing. In Proceedings of the
10th International Conference on Computational Linguistics and Intelligent
Text Processing, CICLing *09. Berlin, Heidelberg: Springer-Verlag. pp. 547-
558.

Patel, C., Hamou-Lhadj, A., & Rilling, J. (2009). Software Clustering Using Dynamic
Analysis and Static Dependencies. In 2009 13th European Conference on
Software Maintenance and Reengineering. IEEE. pp. 27-36.

Podani, J. (2000). Simulation of Random Dendrograms and Comparison Tests: Some
Comments. Journal of Classification, 17(1), 123-142.

Praditwong, K., Harman, M., & Yao, X. (2011). Software Module Clustering as a
Multi-Objective Search Problem. JEEE Transactions on Software Engineering
(TSE), 37(2), 264-282.

Press, W. H., Teukolsky, S. A., Vetterling, W. T,, & Flannery, B. P. (1992). Numerical
Recipes 2nd Edition: The Art of Scientific Computing. Cambridge University
Press.

Pukelsheim, F. (1994). The Three Sigma Rule. The American Statistician, 48(2),
88-91.

Rashedi, E., & Mirzaei, A. (2013). A hierarchical clusterer ensemble method based on
boosting theory. Knowledge-Based Systems, 45, 83-93.

Rashedi, E., Mirzaei, A., & Rahmati, M. (2015). An information theoretic approach to
hierarchical clustering combination. Neurocomputing, 148, 487-497.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model.
In Proceedings of the 14th annual conference on Computer graphics and
interactive technigues - SIGGRAPH '87. New York, New York, USA: ACM
Press. pp. 25-34.

Saeed, M., Magbool, O., Babri, H., Hassan, S., & Sarwar, S. (2003). Software

155

clustering techniques and the use of combined algorithm. In Seventh European
Conference on Software Maintenance and Reengineering. IEEE Comput. Soc.
pp- 301-306.

Sajnani, H. S., & Lopes, C. V. (2014). Probabilistic component identification. In India
Software Engineering Conference (ISEC). USA: ACM. pp. 1-10.

Sartipi, K., & Kontogiannis, K. (2003a). On modeling software architecture recovery
as graph matching. In International Conference on Software Maintenance.
IEEE Comput. Soc. pp. 224-234.

Sartipi, K., & Kontogiannis, K. (2003b). Pattern-based Software Architecture
Recovery. In In Proc. of the Second ASERC Workshop on Software
Architecture. pp. 1-7.

Sartipi, K., Kontogiannis, K., & Mavaddat, F. (2000). A pattern matching framework
for software architecture recovery and restructuring. In International
Workshop on Program Comprehension. IEEE. pp. 37-47.

Scanniello, G., D’Amico, A., D’Amico, C., & D’Amico, T. (2010a). Architectural
Layer Recovery for Software System Understanding and Evolution. Softw.
Pract. Exper., 40(10), 897-916.

Scanniello, G., & Erra, U. (2013). Software entities as bird flocks and fish schools. In
IEEE Working Conference on Software Visualization (VISSOFT), 1. IEEE. pp.
1-4.

Scanniello, G., & Marcus, A. (2011). Clustering Support for Static Concept Location
in Source Code. In International Conference on Program Comprehension
(ICPC). Ieee. pp. 1-10.

Scanniello, G., Risi, M., & Tortora, G. (2010b). Architecture Recovery Using Latent
Semantic Indexing and K-Means: An Empirical Evaluation. In 2010 8th IEEE
International Conference on Software Engineering and Formal Methods.
IEEE. pp. 103-112.

Seriai, A., Sadou, S., & Sahraoui, H. A. (2014). Enactment of Components Extracted
from an Object-Oriented Application. In The European Conference on

Software Architecture (ECSA). pp. 234-249.

156

Shah, Z., Naseem, R., Orgun, M., Mahmood, A. N., & Shahzad, S. (2013). Software
Clustering Using Automated Feature Subset Selection. In H. Motoda, Z. Wu,
L. Cao, O. Zaiane, M. Yao, & W. Wang (Eds.) International Conference on
Advanced Data Mining and Applications (ADMA), vol. 8347 of Lecture Notes
in Computer Science. Italy; Pakistan; Australia: Springer. pp. 47-58.

Shokoufandeh, A., Mancoridis, S., Denton, T., & Maycock, M. (2005). Spectral and
meta-heuristic algorithms for software clustering. Journal of Systems and
Software, 77(3), 213-223.

Shokoufandeh, A., Mancoridis, S., & Maycock, M. (2002). Applying spectral methods
to software clustering. In Ninth Working Conference on Reverse Engineering.
IEEE Comput. Soc. pp. 3-10.

Shtern, M., & Tzerpos, V. (2010). On the Comparability of Software Clustering
Algorithms. In 2010 IEEE 18th International Conference on Program
Comprehension. IEEE. pp. 64-67.

Shtern, M., & Tzerpos, V. (2011). Evaluating software clustering using multiple
simulated authoritative decompositions. In JEEE International Conference
on Software Maintenance (ICSM). IEEE. pp. 353-361.

Shtern, M., & Tzerpos, V. (2012). Clustering Methodologies for Software Engineering.
Advances in Software Engineering (ASE), 2012, 1-18.

Shtern, M., & Tzerpos, V. (2014). Methods for selecting and improving software
clustering algorithms. Software: Practice and Experience, 44(1), 33-46.

Siddique, F., & Magbool, O. (2012). Enhancing comprehensibility of software
clustering results. IET Software, 6(4), 283.

Siff, M., & Reps, T. (1999). Identifying modules via concept analysis. /EEE
Transactions on Software Engineering, 25(6), 749-768.

Silva, L. L., Valente, M. T., & Maia, M. D. a. (2014). Assessing modularity using co-
change clusters. In International conference on Modularity (MODULARITY).

Brazil: ACM. pp. 49-60.
Sindhgatta, R., & Pooloth, K. (2007). Identifying Software Decompositions

by Applying Transaction Clustering on Source Code. 1In 3Ist Annual

157

International Computer Software and Applications Conference, Compsac.
IEEE. pp. 317-326.

Slonim, N., & Tishby, N. (2000). Agglomerative information bottleneck. Advances in
neural information processing systems, 12(1), 617-23.

Sora, I., Glodean, G., & Gligor, M. (2010). Software architecture reconstruction:
An approach based on combining graph clustering and partitioning. In 20/0
International Joint Conference on Computational Cybernetics and Technical
Informatics. IEEE. pp. 259-264.

Spek, P., & Klusener, S. (2011). Applying a dynamic threshold to improve cluster
detection of LSI. Science of Computer Programming (SCP), 76(12), 1261-
1274.

Synytskyy, N., Holt, R. C., & Davis, I. (2005). Browsing Software Architectures With
LSEdit. In 13th International Workshop on Program Comprehension. IEEE.
pp. 176-178.

Thangaraj, R., Pant, M., Abraham, A., & Badr, Y. (2009). Hybrid Evolutionary
Algorithm for Solving Global Optimization Problems. In E. Corchado, X. W,
E. Oja, A. Herrero, & B. Baruque (Eds.) Hybrid Artificial Intelligence Systems
SE - 37, vol. 5572 of Lecture Notes in Computer Science, pp. 310-318.
Springer Berlin Heidelberg.

Tonella, P. (2001). Concept analysis for module restructuring. JEEE Transactions on
Software Engineering, 27(4), 351-363.

Tucker, A., Swift, S., & Liu, X. (2001). Variable grouping in multivariate time series
via correlation. IEEE transactions on systems, man, and cybernetics. Part
B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics
Society, 31(2), 235-45.

Tumer, K., & Agogino, A. K. (2008). Ensemble clustering with voting active clusters.
Pattern Recognition Letters, 29(14), 1947-1953.

Tzerpos, V. (2003). An optimal algorithm for MoJo distance. In Proceedings of the 11
th IEEE International Workshop on Program Comprehension. IEEE Comput.

Soc. pp. 227-235.

158

Tzerpos, V., & Holt, R. C. (1999). MoJo: a distance metric for software clusterings.
In Working Conference on Reverse Engineering. IEEE. pp. 187-193.
Tzerpos, V., & Holt, R. C. (2000a). ACCD: an algorithm for comprehension-driven
clustering. In Working Conference on Reverse Engineering. IEEE. pp. 258-

267.

Tzerpos, V., & Holt, R. C. (2000b). On the stability of software clustering algorithms.
In International Workshop on Program Comprehension. IEEE. pp. 211-218.

Vasconcelos, A., & Werner, C. (2007). Architecture Recovery and Evaluation Aiming
at. In Software Architectures, Components, and Applications, pp. 72-89.
Springer.

Veal, B. W. G. (2011). Binary Similarity Measures and their Applications in Machine
Learning. Ph.D. thesis, London School of Economics.

von Detten, M., & Becker, S. (2011). Combining clustering and pattern detection for
the reengineering of component-based software systems. In Proceedings of
the joint ACM SIGSOFT conference — QoSA and ACM SIGSOFT symposium —
ISARCS on Quality of software architectures — QoSA and architecting critical
systems — ISARCS - QoSA-ISARCS ’11. New York, New York, USA: ACM
Press. p. 23.

Wang, J., & Su, X. (2011). An improved K-Means clustering algorithm. In 2011 IEEE
3rd International Conference on Communication Software and Networks.
IEEE. pp. 44-46.

Wang, L., Han, Z., He, J., Wang, H., & Li, X. (2012). Recovering design patterns
to support program comprehension. In Proceedings of the 2nd international
workshop on Evidential assessment of software technologies - EAST ’12. New
York, New York, USA: ACM Press. p. 49.

Wang, Y., Liu, P, Guo, H., Li, H,, & Chen, X. (2010). Improved Hierarchical
Clustering Algorithm for Software Architecture Recovery. 2010 International
Conference on Intelligent Computing and Cognitive Informatics, pp. 247-250.

Waters, R. L. (2004). Obtaining Architectural Descriptions from Legacy Systems-The

Architectural Synthesis Process. Ph.D. thesis, Georgia Institute of Technology.

159

Wen, Z., & Tzerpos, V. (2004a). An effectiveness measure for software clustering
algorithms. In Proceedings. 12th IEEE International Workshop on Program
Comprehension, 2004.. IEEE. pp. 194-203.

Wen, Z., & Tzerpos, V. (2004b). Evaluating similarity measures for software
decompositions. In 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings.. IEEE. pp. 368-377.

Wiggerts, T. (1997). Using clustering algorithms in legacy systems remodularization.
In Working Conference on Reverse Engineering. IEEE. pp. 33-43.

Wu, J., Hassan, A., & Holt, R. C. (2005). Comparison of clustering algorithms in
the context of software evolution. In 2ist IEEE International Conference on
Software Maintenance. IEEE. pp. 525-535.

Xanthos, S., & Goodwin, N. (2006). Clustering Object-Oriented Software Systems
using Spectral Graph Partitioning. Urbana, 51(1), 1-5.

Xia, C., & Tzerpos, V. (2005). Software Clustering Based on Dynamic Dependencies.
In Ninth European Conference on Software Maintenance and Reengineering.
IEEE. pp. 124-133.

Zheng, L.1, Li, T. A. O., & Ding, C. (2014). A Framework for Hierarchical Ensemble
Clustering. ACM Transactions on Knowledge Discovery from Data (TKDD),

9(2), 1-23.

	image00002
	image00004
	image00006
	image00008
	image00010
	image00012
	image00014
	image00016
	image00018
	image00020
	image00022
	image00024
	image00026
	image00028
	image00030
	image00032
	image00034
	image00036
	image00038
	image00040
	image00042
	image00044
	image00046
	image00048
	image00050
	image00052
	image00054
	image00056
	image00058
	image00060
	image00062
	image00064
	image00066
	image00068
	image00070
	image00072
	image00074
	image00076
	image00078
	image00080
	image00082
	image00084
	image00086
	image00088
	image00090
	image00092
	image00094
	image00096
	image00098
	image00100
	image00102
	image00104
	image00106
	image00108
	image00110
	image00112
	image00114
	image00116
	image00118
	image00120
	image00122
	image00124
	image00126
	image00128
	image00130
	image00132
	image00134
	image00136
	image00138
	image00140
	image00142
	image00144
	image00146
	image00148
	image00150
	image00152
	image00154
	image00156
	image00158
	image00160
	image00162
	image00164
	image00166
	image00168
	image00170
	image00172
	image00174
	image00176
	image00178
	image00180
	image00182
	image00184
	image00186
	image00188
	image00190
	image00192
	image00194
	image00196
	image00198
	image00200
	image00202
	image00204
	image00206
	image00208
	image00210
	image00212
	image00214
	image00216
	image00218
	image00220
	image00222
	image00224
	image00226
	image00228
	image00230
	image00232
	image00234
	image00236
	image00238
	image00240
	image00242
	image00244
	image00246
	image00248
	image00250
	image00252
	image00254
	image00256
	image00258
	image00260
	image00262
	image00264
	image00266
	image00268
	image00270
	image00272
	image00274
	image00276
	image00278
	image00280
	image00282
	image00284
	image00286
	image00288
	image00290
	image00292
	image00294
	image00296
	image00298
	image00300
	image00302
	image00304
	image00306
	image00308
	image00310
	image00312
	image00314
	image00316
	image00318
	image00320
	image00322
	image00324
	image00326
	image00328
	image00330
	image00332
	image00334
	image00336
	image00338
	image00340
	image00342
	image00344
	image00346
	image00348
	image00350
	image00352
	image00354
	image00356
	image00358
	image00360
	image00362
	image00364
	image00366
	image00368
	image00370
	image00372
	image00374
	image00376
	image00378
	image00380
	image00382

