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ABSTRACT

Data mining techniques are used in various industries, including database marketing,
web analysis, information retrieval and bioinformatics to gain a better knowledge
extraction. However, if data mining techniques are applied on real datasets, a
problem that often comes up is that missing values occur in the datasets. Since the
missing values may confuse the data mining process and causing the knowledge
extracted unreliable, there is a need to handle the missing values. Therefore,
researchers are coming out with imputation methods in the preprocessing stage.
Although there are many imputation methods such as Mean, k-Nearest Neighbor (k-
NN) and Fuzzy C-Means are implemented by other researchers, accuracy for the
replace values is still in infancy. In this study, an imputation based on FCM and
Particle Swarm Optimization (PSO) has been developed to get better imputation
values. FCM has ability to cluster the data into two or more subsets with the different
membership values and gives better coverage to find the correlation between the
dataset. While, PSO is a swarm optimization algorithm that effectively find the
optimum imputation values with less parameters to adjust. Then, FCMPSO was
trained with seven artificial missing ratios from 1% to 30% for Cleveland Heart
Disease dataset and real missing values in Framingham Heart Disease dataset to get
the complete dataset. Then, the complete dataset was trained with Decision Tree
algorithm to observe the performance in terms of accuracy. The FCMPSO results
gives a better RMSE value for 30% missing ratios with 0.0237 compared to Mean, -
NN, and FCM with 0.0250, 0.0402 and 0.0249 respectively. Next, the analysis of
proposed imputation on classification accuracy shows an improvement with 81.67%
for Cleveland Heart Disease and 86.3% for Framingham Heart Disease compared to
other imputation methods. Based on the results, the imputation values are slightly
accurate compared to other imputation methods and therefore, increased the accuracy

of Decision Tree classification.
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ABSTRAK

Teknik perlombongan data digunakan di dalam pelbagai industi bagi mendapatkan
pengetahuan yang lebih baik. Walaubagaimanapun, masalah data hilang selalu terjadi
di dalam data sebenar. Data yang hilang boleh mengelirukan proses perlombongan
data dan menyebabkan pengetahuan yang diekstrak tidak dapat dipercayai. Oleh itu,
terdapat kepentingan untuk mengendalikan data yang hilang. Para penyelidik, telah
mengaplikasikan kaedah imputasi di dalam fasa preproses. Walaupun terdapat
banyak kaedah imputasi seperti kaedah Min, k-Nearest Neighbor (k-NN) dan Fuzzy
C-Means (FCM) yang dilaksanakan oleh penyelidik lain, ketepatan untuk nilai ganti
masih boleh diperbaiki. Dalam kajian ini, satu kaedah imputasi berdasarkan FCM
dan Particle Swarm Optimization (PSO) telah dibangunkan bagi mendapatkan nilai
imputasi yang lebih baik. FCM mempunyai keupayaan untuk mengumpulkan data ke
dalam dua atau lebih kumpulan dengan nilai keahlian yang berlainan serta
memberikan liputan yang lebih baik untuk mencari hubungan di antara dataset.
Sementara itu, PSO adalah algoritma pengoptimumam yang baik bagi mencari nilai
imputasi yang optimum dengan parameter yang sedikit untuk diubah suai.
Kemudian, FCMPSO telah diuji dengan tujuh nisbah data hilang dari 1% hingga
30% untuk dataset Penyakit Jantung Cleveland dan nilai sebenar yang hilang dalam
dataset Penyakit Jantung Framingham untuk mendapatkan dataset lengkap.
Kemudian, dataset lengkap dilatih dengan algoritma Keputusan Pohon untuk melihat
prestasi dari segi ketepatan. Keputusan FCMPSO memberikan nilai RMSE yang
lebih baik untuk 30% nisbah hilang dengan 0.0237 berbanding Mean, k-NN, dan
FCM masing-masing dengan 0.0250, 0.0402 dan 0.0249. Seterusnya, bagi ketepatan
klasifikasi menunjukkan peningkatan sebanyak 81.67% untuk Penyakit Jantung
Cleveland dan 86.3% untuk Penyakit Jantung Framingham berbanding kaedah
imputasi yang lain. Berdasarkan hasilnya, nilai imputasi lebih tepat dibandingkan
dengan kaedah imputasi lain dan oleh itu, meningkatkan ketepatan pengklasifikasian

Pokok Keputusan.
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CHAPTER1

INTRODUCTION

1.1 Introduction

In recent decades, information technology areas have been thriving worldwide. In
addition, fast development of powerful data collection and storage tools contribute to
the growth of available data volume. These data come from various areas and
industries such as business, engineering, telecommunication, medical and health
industry. Business industry generates data sets from sales transaction, stock trading,
performances and customer feedbacks. While, in medical and health industry data
was generated from medical records, patient monitoring and medical imaging. These
databased were collected but raw data do not give any specific and important
knowledge to experts. Therefore, strong and powerful tools are needed to extract and
uncover the valuable knowledge from the data. This condition has demanded to the
needs of data mining.

Data mining is a tool that has ability for turning the huge data into useful
knowledge and information. Therefore, it has gained a lot of attention from various
industries and areas in recent years. Knowledge and information extracted from the
data mining gives benefits to respected industries as it can provide the sufficient
evidence, indication and support for an organization to make any decisions further.
There are variety of data mining tools such as classification, clustering, regression
and association. Moreover, data mining implementation possesses capabilities to
facilitate quality support, improved data management, and enhanced communication
and production field.

Data mining classification has been widely used by researchers in various

areas because it classifies given attribute for certain classes and translates the
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knowledge in the rules form. There are several famous techniques such as Naive
Bayesian Classifier (Muhammed, 2012), Decision Tree (Mahmood & Kuppa, 2010)
(Srinivas ef al., 2010), Support Vector Machine (Soman ef al., 2003), and Neural
Network (Khemphila & Boonjing, 2011) have been used before in their studies.
Classification design consists of two phases: (1) Training and (2) Testing (Yoo ef al.,
2012). However, each technique gives different accuracy respectively.

In general, Decision Tree classifier becomes a popular and competent
classification technique among the researchers (Mohamed ef al., 2012; Tomar &
Agarwal, 2013; Tsang ef al., 2011). Decision Tree has been applied to predict new
data into the respectively class presented in tree structure. Decision Tree algorithms
such as ID3, C4.5, and C5.0 have also been used widely. The algorithms use divide
and conquer technique which starts with the root and moves through the branch until
the node is reached. Basically, Decision Tree is practical, easy to implement and the
rules extraction are easy to understand. However, the Decision Tree tends to grow a
large tree with complex rules of extraction. Thus, pruning method is needed to
overcome this drawback. Other than that, Decision Tree also needs certain data for
classification as uncertain data can affect the accuracy of Decision Tree.

Nevertheless, the real-world data stored in a database, generally may contain
noise, incomplete data, and inconsistent. These conditions may confuse the data
mining process, causing the knowledge extracted unreliable. Thus, the accuracy of
uncovered knowledge can be poor. As an example, in health industry, uncertain data
can appear from the data collection process such as irrelevant input features, no value
or missing values of input and impossible or unlikely values of input. These
problems can cause the accuracy of data mining as it cannot perform well due to the
incomplete features. Although data mining algorithm such as Decision Tree has its
own mechanism to handle missing value as probabilistic approach, but it still does
not give the best treatment to the missing data (Song et al., 2008).

Thus, preprocessing method is a necessary step to address these problems.
Preprocessing stage has been applied as it is an important step to improve the ability
of the data mining tools to perform better and to maximize the extraction knowledge
from the data itself (Tanasa & Trousse, 2004). Utilizing imputation method for
missing data problem is common used among the researchers. Imputation is a

process when the missing value is replaced with new value.



1.2 Problem Statement

Decision Tree has been frequently used in healthcare, manufacturing, and business to
help decision maker in making an effective decision (Tsang er al., 2011). The clear
visualization of tree gives advantages to the user to identify the most important class.
However, Decision Tree works with precise and known data to give better results
(Sutton-Charani et al., 2013). Thus, there are problems in decision making when
there are imprecise data. Imprecise data need to be taken seriously as these data can
affect the quality of decisions. Imprecise data include noise or uncertain data from no
value input features and missing values recorded (Kotsiantis ef al., 2007). It may
exist from the data collection process.

Thus, to overcome this problem, preprocessing stage is considered crucial
before training the data into the classifier. Choosing the right and suitable
preprocessing method can improve the dataset quality. By using poor quality data, it
leads to poor quality information and knowledge. For example, given missing data in
customer relation service system, customers may receive many calls due to wrong
grouping, plus leading to missed sales opportunity and unhappy customers.

Hence, the preprocessing stage can eventually maximize the accuracy and
efficiency of machine learning techniques. The decisions made from the data is
reliable and trustworthy. Therefore, most of researchers introduced imputation
methods to overcome the missing dataset problems in a preprocessing stage.
Imputation shows a good and competent technique in preprocessing stage. In the
meantime, fuzzy concept and fuzzy theory have many advantages in dealing with
data containing uncertainty, therefore fuzzy approaches have been taken into
consideration to find the imputation values.

Imputation is a method that replaces or substitutes the missing value with a
new value. There are existing imputation methods such as Mean, Mode and
imputation based on range idea such as k-Nearest Neighbor (k-NN) and FCM
imputation. Although the imputation method has been used to handle the missing
data, the accuracy for the replaced value can still be improved. Recently, clustering
algorithm, Fuzzy C-Means (FCM) (Bezdek er al., 1984) idea demonstrated a good
response in order to fill the missing data input. Although the ability of FCM to find

the plausible values to impute based on the membership values makes the algorithm
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a reliable way of imputation, but some features may be neglected or not properly
cluster, reduce the imputation accuracy or give false imputation values.

Thus, to optimize the problems, a research has been done to improve the
imputation results by applying an optimization algorithm, Particle Swarm
Optimization (PSO) to optimize the imputation values. PSO is mainly based on
mathematical foundation and application research to prove its convergence and
robustness. It had no overlapping and mutation calculation. PSO also adopts real
number and gives solution directly. It was chosen due to the simple algorithm,
practical to implement and give promising results. The benefits of PSO
implementation is to enhance the candidates for imputation and to choose the best
suits value for replacement. Apart from that, this research proves that after FCMPSO
has been applied in preprocessing stage, it leads to better imputation accuracy and

significantly improve the accuracy of classification algorithm.

1.3  Aim of Study

The aim of this study is to improve on the accuracy of Decision Tree classification
results between incomplete and complete dataset. Therefore, this study focused on
imputation method using FCM in the preprocessing stage by optimally selecting the

impute data using PSO.

1.4  Objectives of the Study

In order to achieve the research aim, three research objectives are set as follows.

(i) To propose an improved imputation technique based on Fuzzy C-Means and
Particle Swarm Optimization (FCMPSO).

(ii)  To apply (i) for missing dataset problem in preprocessing stage to get
complete dataset.

(iii)  To evaluate the performance of (i) with mean imputation, &-NN imputation,

and FCM, respectively, based on RMSE and Decision Tree accuracy.



1.5  Scope of Study

This research focuses on the improvement of the imputation method using FCM and
PSO in preprocessing stage called FCMPSO. The performance of proposed method
will be compared with mean imputation, k&-NN imputation, and FCM on the Root
Mean Square Error (RMSE). In addition, this research also focuses on improvement
of classification results by applying Decision Tree algorithm with the complete
dataset. The experiment has been trained with Decision Tree algorithm in Waikato
Environment Knowledge Analysis (WEKA) version 3.6.11. The performance of
classification is measured in terms of accuracy and precision.

Heart Disease dataset from University California Irvine Machine Learning
Repository (UCIMLR) (Frank & Asuncion, 2010) and Framingham Heart dataset
from National Institutes of Health (NIH) (Framingham Heart Study, 2016) has been

chosen as samples for the training process.

1.6  Significance of Study

In order, to understand the importance of the preprocessing towards machine
learning techniques, this study investigates on the effects of imputation method in
preprocessing stage which focuses on FCMPSO imputation towards Decision Tree.
The findings of this study will demonstrate the vital needs for data mining to have a
complete dataset to get accurate knowledge. Therefore, after the preprocessing stage
is carried out, the dataset will be trained on Decision Tree and the classification rules
will be extracted leads to help expert to make decisions. Thus, it will enable to

produce more accurate and comprehensible decisions for organization to use.

1.7 Thesis Outline

Currently, with the rapid growth of data in business, engineering, and healthcare,
data mining will reveal the pattern and knowledge from the data collected. There are
many classification applications and model that are employed by the experts and
industries. However, there are limitations such as uncertainty, accuracy, and

complexity for some models. Thus, preprocessing stage is essential in order to
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preserve the ability of machine learning techniques. For that reason, a study on the
improvement towards imputation methods is proposed. This study works with
FCMPSO methods to impute better values towards missing problems, which in turn
increases the accuracy of Decision Tree algorithm.

This thesis consists of five chapters, including this Introduction chapter. The
remaining part of this thesis is segmented into following order: Chapter 2: Literature
Review. This chapter includes an overview of data mining classification in the
healthcare industry. In this chapter, concept of missing data and the imputation
methods are reviewed. Furthermore, the optimization algorithm, PSO will also be
reviewed in this chapter. Then, this chapter introduces a new method in improving
the imputation method by proposing an algorithm. Chapter 3: Research
Methodology. This chapter discusses the steps used to systematically put the study
into action. Design, formulation, and implementation of dataset to optimize
imputation are discussed in detail. Chapter 4: Results and Discussion. The
evaluation of optimized imputation method and Decision Tree was developed in
Chapter 3. The performances of the proposed method were tested for comparison.
Chapter 5: Conclusions and Future Works. This chapter concludes the works done

and the recommendations are described for further continuation of work.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Decision Tree is widely known due to its capabilities to classify and produce rules
from the dataset. The rules that have been produced are easy and practical to be used
by human experts. Nevertheless, to produce robust and reliable trees for new records
prediction, Decision Tree needs a complete dataset. Hence, the existence of missing
data in the dataset is somewhat unavoidable. Missing data are unfavorable to
researchers and experts because it may lead errors and confusion in interpreting the
data. Therefore, dealing with missing data is an important issue in data mining. The
literature review regarding type of missing data and type of imputation methods used
to substitute the missing value is discussed. This study focuses on the imputation of
missing data in preprocessing stage by clustering the features selected based on
Fuzzy C-Means clustering method. Despite the ability of FCM to find the imputation
value, there is weakness that can be improved in order to find the most accurate
value for imputation. An overview of Decision Tree is also discussed as it has been
used to validate the performance of imputation.

This chapter is organized in the following order: Section 2.2 provides an
overview of data mining and Section 2.3 presents the concept of missing data.
Section 2.4 discusses the treatments for addressing the missing data and the basic
introduction towards fuzzy theory is elaborated in Section 2.5. Section 2.6 focuses on
clustering and fuzzy idea for imputation. In Section 2.7, the fundamentals of Particle
Swarm Optimization work are presented. The classification algorithm, Decision Tree
will be discussed in Section 2.8. In Section 2.9, the previous proposed solution that

has been done by other researchers in regards to imputation using FCM and PSO
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were highlighted. At the end of this chapter, the summary regarding overall literature

review is made.

2.2 An Overview of Data Mining

Over the years, information technology areas have been thriving worldwide. Data
collection comes from various kinds of databases. These databases were collected
from various industries such as automotive and healthcare industry. The raw data do
not give any specific and important knowledge to experts, thus, data mining helps to

extract the information from the data.

| oovite |

Figure 2.1: Stages involved in the KDD Process by Fayyad et al. (1996)

According to Fayyad ef al. (1996), the Knowledge Discovery in Databases
(KDD) needs data mining as it is an important stage for KDD to perform well. Figure
2.1 shows the five stages involved in KDD which include (1) Selection, (2)
Preprocessing, (3) Transformation, (4) Data Mining, and (5) Evaluation.

There have been notable successes in the use of data mining techniques to
discover scientific knowledge in the field of business, engineering and health. For an
example, healthcare industry has successfully utilized the data mining method to
process and analyze the huge data produced in this industry. This includes various
stages in healthcare industry such as organization, management, and patients’
treatments (Koh & Tan, 2011). The incorporation of computational intelligence in

health diagnosis is not a new tendency. Researchers are exploiting the medical
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