PHYTOREMEDIATION OF SEMBRONG RIVER WATERS USING *NEPTUNIA* OLERACEA AND PISTIA STRATIOTES

MOHAMED.B.E.BOGELIL

A thesis Submitted in fulfilment of the requirement for the award of Degree of Master of Science

Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia

AUGUST 2017

DEDICATION

This thesis is first and foremost dedicated to Almighty Allah for seeing me through. Then to my brother Alhaji Mohasen and my wife for their unwavering support, advice, encouragement and prayers which guided me towards this achievement, I am very proud of them and may Almighty Allah (S.W.T) reward them abundantly. The thesis is also dedicated to my siblings, uncles and aunties for their prayers and support.

ACKNOWLEDGEMENT

Praise be to Allah, for giving me life and strength to carry out this research as it is a great testimony of my life. I am most grateful to my supervisor, Prof. Datin Maryati Mohamed for her patience, guidance, ever listening ear and willingness to render assistance throughout the period of my master's study from the beginning to the final draft of my thesis. Thank you for making this research a reality. I am also grateful to my co-supervisor, Prof. Madya. DR. Zawawi Bin Daud for his guidance and positive observation throughout the period of my study. Sincerely, the merits go to my supervisors for their encouragement in the research processes, thank you for disseminating such a wealth of knowledge.

ABSTRACT

Water quality of Sungai Sembrong is in poor condition but it is an important source of water for people in Parit Raja. Water has to be treated intensively resulting in high cost. This study aims to determine the water quality index (WQI) and the efficiency of phytoremediation as well as the effect on the two plant species (Neptunia oleracea and *Pistia stratiotes*) due to bio mineralization of heavy metals. Water quality parameters measured were conductivity, turbidity, pH, Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), NH₃N, TP, Zn, Fe, and Al. From this study, Sungai Sembrong is classified as Class IV according to DOE-WQI. Elements with high concentration were Al (61mg/L), Fe (33mg/L), and Zn (1.5mg/L) making it one of the most contaminated river in Malaysia. The condition for the water quality of the river was related to various land use along the river banks. N. oleracea performed better because for example on day 10 the COD is 60 mg/L as compared to P. stratiotes with COD at 78 mg/L N. oleracea was also in good condition for longer period of time. Uptake of the three trace elements (Al, Fe and Zn) in plants tissues were shown using AAS. The concentration of elements in plant tissue that were cultivated in river water were up to 254 times higher than the control plants except for Zn. Results of the biological studies suggested that the plants could be used for phytostabilization and phytoextraction of Al and Fe. However, the plants were not hyperaccumulators of Zn. Using photomicrography transverse sections of plant tissues cultivated in river water showed toxic symptoms like distortion, increase in the number of layers of cells and damages. The control plants did not exhibit any symptoms of damage. SEM-EDS analysis showed bio mineralized heavy metals distribution in different plant tissues which was supported by results from morpho-anatomical changes. The study concluded that cheaper ways of water treatment could be possible with the two species; N. oleracea and *P. stratiotes*.

ABSTRAK

Kualiti air Sungai Sembrong berada dalam keadaan yang tercemar, sedangkan ia merupakan sumber air bagi masyarakat Parit Raja yang penting. Air perlu dirawat secara intensif sehingga menyebabkan kos yang tinggi. Kajian dilakukan untuk menentukan piawai kualiti air dan kecekapan proses fitoremediasi dan menentukan bioremediasi oleh dua spesies tumbuhan (Neptunia oleracea dan Pistia stratiotes) akibat biomineralisasi logam berat. Kajian ini bertujuan mencari rawatan alternatif menggunakan tumbuhan akuatik yang ada. Parameter yang diukur ialah kekonduksian, kekeruhan, pH, Oksigen Terlarut (DO), Permintaan Oksigen Biologi (BOD), Permintaan Oksigen Kimia (COD), NH₃N, TP, Zn, Fe, dan Al. Daripada kajian ini, Sungai Sembrong termasuk dalam Kelas IV menurut DOE-WQI. Unsur-unsur logam surih yang berkepekatan tinggi ialah Al (61mg/L), Fe (33mg/L), dan Zn (1.5mg/L); menjadikannya salah satu sungai tercemar di Malaysia. Keadaan sungai yang demikian dikaitkan dengan jenis guna tanah di sepanjang tebing sungai. Pengambilan tiga unsur logam surih Al, Fe dan Zn ke dalam tisu tumbuhan telah diukur menggunakan AAS. Kepekatan unsur dalam tisu tumbuhan yang dibiakkan dalam air sungai meningkat sehingga 254 kali ganda berbanding tumbuhan kawalan kecuali bagi Zn. Hasil kajian biologi mencadangkan bahawa tumbuhan boleh digunakan dalam fitostabilasi dan fitoekstraksi Al dan Fe. Dengan menggunakan fotomikrografi hirisan melintang, tisu tumbuhan yang dipelihara dalam air sungai menunjukkan simptom toksik seperti distorsi, pertambahan lapisan sel dan kerosakan. Tumbuhan kawalan tidak menunjukkan sebarang simpton kerosakan. Kajian ini dapat merumuskan tisu tumbuhan mana yang banyak dirosakkan. Analisis SEM-EDS menunjukkan taburan logam berat yang terbiomineralisasi dalam berbagai tisu tumbuhan dan ini disokong oleh hasil dari perubahan morfo-anatomi tisu tumbuhan. Kajian juga menunjukkan potensi perawatan air dengan menggunakan dua spesies tumbuhan N. oleracea and P. stratiotes.

TABLE OF CONTENTS

	TITL	E	i	
	DECI	ARATION	ii	
	DEDI	CATION	iii	
	ACKNOWLEDGMENT			
	ABST	RACT	V	
	ABST	RAK	vi	
	TABL	JE OF CONTENTS	vii xi	
	LIST	OF TABLE		
	LIST	OF FIGURES	xiii	
CHAPTER 1	INTR	ODUCTION	1	
	1.1	Techniques for the treatment of wastewater	3	
	1.2	Problem statement	4	
	1.3	Scope of the study	4	
	1.4	Objectives	5	
	1.5	Significance of the study	5	
CHAPTER 2	LITE	RATURE REVIEW	7	
	2.1	Freshwater	8	
	2.2	Importance of Water	9	
	2.3	Water pollution in Malaysia	10	
	2.4	River classification in Malaysia	11	
	2.5	The importance of Sungai Sembrong	15	
	2.6	Causes and sources of pollution at Sungai		
		Sembrong	16	
	2.7	Water quality parameters	18	
		2.7.1 pH	18	
		2.7.2 Dissolved Oxygen (DO)	19	

		2.7.3	Biochemical Oxygen Demand (BOD)	20
		2.7.4	Chemical Oxygen Demand (COD)	20
		2.7.5	Total Suspended Solids (TTS)	21
		2.7.6	Nutrients	22
	2.8	Metals		23
		2.8.1	Zinc	24
		2.8.2	Iron	25
		2.8.3	Aluminum	25
	2.9	Techni	ques for the treatment of wastewater	26
		2.9.1	Chemical precipitation	26
		2.9.2	Solvent extraction	27
		2.9.3	Reverse osmosis	27
		2.9.4	Constructed wetlands	27
	2.10	Phytor	emediation	28
		2.10.1	Phytoremediation mechanism	28
		2.10.2	Phytoremediation technologies	29
	2.11	Phytor	emediation for pollutants	32
		2.11.1	Phytoremediation of organic pollutants	32
		2.11.2	Phytoremediation of inorganic pollutants	34
		2.11.3	Phytoremediation of mixed contaminants	36
	2.12	Phytor	emediation of mixed contaminated water	
		using a	quatic plants	38
		2.12.1	Pistia stratiotes (water lettuce)	40
		2.12.2	Neptunia oleracea Lour (water mimosa)	45
CHAPTER 3	METH	ODOL	OGY	50
	3.1	Introdu	uction	50
	3.2	Determ	nination of the quality of Sungai	
		Sembro	ong	52
		3.2.1	Sungai Sembrong	52
		3.2.2	Preliminary investigation	53
		3.2.3	Selecting water quality parameters	53

	3.2.4 Sample collection	54
	3.2.5 Preservation of Samples	54
	3.2.6 Analysis Method	55
3.3	To test the efficiency of the two plants as	
	phytoremediation agents	59
	3.3.1 Pre-treatment of plants	60
	3.3.2 Experimental Procedures	61
	3.3.3 Analysis of water	63
	3.3.4 Storage and preservation	65
	3.3.5 Analysis of plant	66
3.4	The morpho-anatomical changes of plant tissues	70
3.5	Analysis of biominerals	71
CHAPTER 4 RESU	ULTS AND DISCUSSION	73
4.1	To determine the water quality of Sungai	
	Sembrong at Parit Raja	73
	4.1.1 Residential	75
	4.1.2 Agriculture and farming	76
	4.1.3 Parameters for water quality	78
	4.1.4 Parameter of water quality (Subindex)	85
	4.1.5 Heavy metals	87
DER 4.2	Phytoremediation results	88
	4.2.1 pH	88
	4.2.2 Conductivity	89
	4.2.3 Dissolved Oxygen (DO)	91
	4.2.4 Biochemical Oxygen Demand (BOD)	92
	4.2.5 Chemical Oxygen Demand (COD)	94
	4.2.6 Ammonia Nitrogen (NH ₃ -N)	96
	4.2.7 Total Phosphorus	98
	4.2.8 Analysis of metals	100
	4.2.9 Survival rate and mortality rates	106
	4.2.10 The relative growth rate (RGR)	107

		4.2.11	Metal concentration in plant tissues	108
	4.3	Effects	of metals on morphology and anatomy	
		of plan	t tissues	112
		4.3.1	The leaves of Pistia stratiotes	112
		4.3.2	The roots of Pistia stratiotes	113
		4.3.3	The leaves of Neptunia oleracea	118
		4.3.4	The roots of Neptunia oleracea	119
		4.3.5	The stem of Neptunia oleracea	119
CHAPTER 5	CONC	LUSIO	N	125
	5.1	Conclu	ision	125
	5.2	Recom	imendations	126
	REFE	RENCI	ES	127

LIST OF TABLES

2.1	Classification WQI-DOE	12
2.2	The river classification based on the DOE-WQI (DOE,	
	1986)	12
2.3	Interim National River Water Quality Standards River	
	Classification (DOE, 1986)	13
2.4	Subindex parameters to calculate DOE-WQI (DOE, 1986)	13
2.5	Interim National River Water Quality Standards (INWQS)	
	for Malaysia (DOE, 1986)	14
2.6	Some trials selected of phytoremediation for organic	
	contaminants	33
2.7	Phytoremediation of inorganic contaminants	35
2.8	Some of phytoremediation trials for mixed contaminants	37
2.9	List of macrophytes that commonly used in	
	phytoremediation process	39
2.10	List of studies associated with the use of <i>Pistia stratiotes</i> in	
	phytoremediation	42
2.11	List of studies associated with the use of Neptunia	
	oleracea in phytoremediation	48
3.1	Preservations of sample (APHA, 2012)	65
4.1	List of subdistricts in Batu Pahat (MPBP, 2002)	74
4.2	Existing land use activities in Sungai Sembrong at Parit	
	Raja (MPBP, 2002)	74
4.3	Results of water quality parameters	78
4.4	Results of water quality subindex parameters	86
4.5	Results of heavy metal parameters along Sungai Sembrong	87

4.6	Summary of phytoremediation	100
4.7	Growth rate of the plants	106
4.8	Number of plants before and after treatment	106
4.9	Concentrations of total zinc, iron and aluminum in plant	
	roots and shoots before treatment	109
4.10	Concentrations of total zinc, iron and aluminum in plant	
	roots and shoots after treatment	109
4.11	Treatment of water samples average BAF, BTF and BCF	
	values for Zn	111
4.12	Treatment of water samples average BAF, BTF and BCF	
	values for Fe	111
4.13	Treatment of water samples average BAF, BTF and BCF	
	values for Al	112
4.14	Index of metals in Pistia stratiotes parts by EDX	115
4.15	SEM image showing cross section of leaves at 500X	
	(Palisade Parenchyma and Abaxial Epidermis): root	
	(Epidermis, Cortex and Aerenchyma) from Pistia stratiotes	
	after exposure to the river water	116
4.16	Index of metals in Neptunia oleracea parts by EDX	121
4.17	SEM image showing cross sections of root at 500X	
	(Cortex, Stele and Pith): stem (Epidermis, Cortex, Stele	
	and Pith) from Neptunia oleracea after exposure to the	
	river water	122

LIST OF FIGURES

2.1	Schematic representation of phytoremediation	
	processes	29
2.2	Pistia stratiotes L (water lettuce)	40
2.3	Neptunia oleracea Lour (water mimosa)	46
3.1	Flow chart of research methodology	51
3.2	Sungai Sembrong in West Johor, Malaysia	53
3.3	Water quality sampling stations along the river at	
	Parit Raja area	55 P
3.4	Plants transplanted in the laboratory	60
3.5	Phytoremediation plants setup	62
3.6	Phytoremediation experimental design	63
4.1	Major land uses around Sungai Sembrong at Parit	
	Raja	75
4.2	Wooden houses located in Sungai Sembrong	76
4.3	Presence of aquatic plants is a common sight in	
	Sungai Sembrong. The species observed is Nymphea	
	odorata	77
4.4	The river sides are surrounded by slopes of agriculture	
	farms. Visibly noted is the lack of buffer zone	
	between the river and the farms	77
4.5	Cattle farming near Sungai Sembrong	78
4.6	pH profile along Sungai Sembrong	79
4.7	Dissolved Oxygen profile along Sungai Sembrong	80
4.8	Profile of BOD concentration along Sungai Sembrong	82
4.9	COD profile along Sungai Sembrong	83

4.10	Total Suspended Solids profile along Sungai	
	Sembrong	84
4.11	Ammonia Nitrogen profile along Sungai Sembrong	84
4.12	Water Quality Index (WQI) along Sungai Sembrong	
	during sampling	86
4.13	Rubbish floating on Sungai Sembrong	87
4.14	Effect of weights of Pistia stratiotes and Neptunia	
	oleracea on pH value at different time	89
4.15	The level of conductivity during treatment time for	
	Pistia stratiotes	90
4.16	The level of conductivity during treatment time for	
	Neptunia oleracea	90
4.17	The level of DO during treatment time for Pistia	
	stratiotes	91 A A
4.18	The level of DO during treatment time for Neptunia	
	olaração	92
	oleracea)2
4.19	The level of BOD during treatment time for <i>Pistia</i>)2
4.19	The level of BOD during treatment time for <i>Pistia</i> stratiotes	93
4.19 4.20	The level of BOD during treatment time for <i>Pistia</i> stratiotes The level of BOD during treatment time for <i>Neptunia</i>	93
4.19 4.20	The level of BOD during treatment time for <i>Pistia</i> stratiotes The level of BOD during treatment time for <i>Neptunia</i> oleracea	93 94
4.19 4.20 4.21	The level of BOD during treatment time for <i>Pistia</i> stratiotes The level of BOD during treatment time for <i>Neptunia</i> oleracea The level of COD during treatment time for <i>Pistia</i>	93 94
4.19 4.20 4.21	The level of BOD during treatment time for <i>Pistia</i> stratiotes The level of BOD during treatment time for <i>Neptunia</i> oleracea The level of COD during treatment time for <i>Pistia</i> stratiotes	93 94 95
4.194.204.214.22	The level of BOD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of BOD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of COD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of COD during treatment time for <i>Neptunia</i>	93 94 95
4.194.204.214.22	The level of BOD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of BOD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of COD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of COD during treatment time for <i>Neptunia</i> <i>oleracea</i>	93 94 95 96
 4.19 4.20 4.21 4.22 4.23 	The level of BOD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of BOD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of COD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of COD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of NH ₃ -N during treatment time for <i>Pistia</i>	93 94 95 96
 4.19 4.20 4.21 4.22 4.23 	The level of BOD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of BOD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of COD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of COD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of NH ₃ -N during treatment time for <i>Pistia</i> <i>stratiotes</i>	 93 94 95 96 97
 4.19 4.20 4.21 4.22 4.23 4.24 	The level of BOD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of BOD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of COD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of COD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of NH ₃ -N during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of NH ₃ -N during treatment time for <i>Pistia</i>	93 94 95 96 97
 4.19 4.20 4.21 4.22 4.23 4.24 	The level of BOD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of BOD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of COD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of COD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of NH ₃ -N during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of NH ₃ -N during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of NH ₃ -N during treatment time for <i>Pistia</i>	 93 94 95 96 97 98
 4.19 4.20 4.21 4.22 4.23 4.24 4.25 	The level of BOD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of BOD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of COD during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of COD during treatment time for <i>Neptunia</i> <i>oleracea</i> The level of NH ₃ -N during treatment time for <i>Pistia</i> <i>stratiotes</i> The level of NH ₃ -N during treatment time for <i>Neptunia oleracea</i> The level of total phosphorus during treatment time	 93 94 95 96 97 98

4.26	The level of total phosphorus during treatment time	
	for N. oleracea	99
4.27	Effect of Pistia stratiotes weight on Zinc removal	101
4.28	Effect of Neptunia oleracea weight on Zinc removal	102
4.29	Effect of Pistia stratiotes weight on Fe removal	103
4.30	Effect of Neptunia oleracea weight on Fe removal	103
4.31	Effect of Pistia stratiotes weight on Aluminum	
	removal	104
4.32	Effect of Neptunia oleracea weight on Aluminum	
	removal	105
4.33	The survival rate and mortality rate fo <i>Pistia stratiotes</i>	
	and Neptunia oleracea	107
4.34	Relative growth rate of 200g and 100g weights of	
	Pistia stratiotes and Neptunia oleracea exposed to the	
	river water	108
4.35	Micrographs of <i>Pistia stratiotes</i> (transverse section)	
	in leaf (a) before treatment and (b) after treatment	113
4.36	Micrographs of Pistia stratiotes (transverse section)	
	root (a) before treatment and (b) after treatment	114
4.37	Micrographs of Neptunia oleracea (transverse	
	section) leaves (a) before treatment and (b) after	
	treatment	119
4.38	Micrographs of Neptunia oleracea (transverse	
	section) root (a) before treatment and (b) after	
	treatment	120
4.39	Micrographs of Neptunia oleracea (transversal	
	section) stem (a) before treatment and (b) after	
	treatment	120

CHAPTER 1

INTRODUCTION

Presently, water and land pollution remain the major global problem, because it is the leading cause of deaths and diseases, as reported during the United Nations World Water Day released on March 22, 2010. Around 2.2 million people a year die from diarrheal diseases caused by drinking contaminated water and poor hygiene (Hunter *et al.*, 2010). About 97% of the world's water are saline (seawater), whereas freshwater represents only 3% of the total global water resources. However, only one-third of the freshwater is accessible for human activities due to the fact that the 2% occurs as snow and ice in the polar and the alpine region of the world. Moreover, the most part of the freshwater (98%) is locked in the ground as 'groundwater', with only about 2% of it easily available as surface water (rivers and lakes), for human consumption, agriculture and industrial activities. As a result, freshwater is seen as a finite and limited resource, especially in the arid regions (Christensen, 2013; Awang *et al.*, 2015).

Currently, over 80% of the world population faces intricate water security problems. Nearly all countries in the world are affected by the water security threat of consuming water resources that are not safe through either endemic water diseases due to lack of proper water treatment capabilities and/or decreased in annual precipitation due to severe climatic change (Hanjra & Qureshi, 2010). Generally, the global water resources are polluted mainly through human activities (anthropogenic), because the industrial revolution contributed immensely to the global environmental degradation (Sayyed & Sayadi, 2011). Correspondingly, the natural water is also under severe stress as a result for the rising demand of freshwater caused by the increase in world population, urbanization and industrialization (Gleick & Palaniappan, 2010). It was estimated that the world population would increase to 9

billion at the end of this century and more than 80% of this population would live in the cities (DESA, 2009; Godfray et al., 2012). These could lead to a remarkable growth of both urban and industrialized areas and the possibility of providing enough water for the growing population will be very challenging. The rapid growth in population coupled with the massive industrialization and agricultural activities have raised the water demand to a greater extent, even countries with sufficient quantities began considering sustainable water resource management to avoid water insecurity in the near future (Peasey et al., 2000). At the moment, the demand for freshwater and world population growth are at the rate of 64 billion cubic meters and 80 million people per annum, respectively (Godfray et al., 2012). However, the Malaysian water demand and population growth increase annually at the rate of 12% and 1.8, correspondingly (Reed, 2015). Consequently, all these variables have direct or indirect impacts on the water problems as experienced by several developing countries. Therefore, improved awareness of harnessing water resources is a crucial component in addressing current world water security which is the only sustainable goal of living in the 21st century (Nature *et al.*, 2011).

The discharge of domestic and industrial effluents into water bodies without adequate removal of the unwanted constituents results in water pollution. The three major sources of river pollution in Malaysia are domestic sewage, agricultural and industrial effluents (Rafia Afroz *et al.*, 2014). Based on the Department of Environment (DOE) registration conducted in 2006, a total number of 18,956 water pollution point sources were identified in the country. The data reveal that sewage treatment plants (47.79%) and manufacturing industries (45.07%) together accounted for more than 90% of the total number of water pollution sources. Meanwhile, animal farms and agro-based industries accounted for only 4.50% and 2.55%, respectively (Malaysian 1st Mathematics in Industry Study Group, 2011). Similarly, a survey of industrial water pollution source distribution from agro-based and manufacturing industries in each state were conducted by DOE (2006) and the results indicated that Selangor (20.49%) and Johor (19.65%) have more than 40% of the total number identified (9,027) (Malaysian 1st Mathematics in Industry Study Group, 2011).

The Sungai Sembrong located in Batu Pahat district of Johor is among the most significant rivers in the state. Currently, the river serves as the potable water source for more than 500,000 people in the area, particularly to the population of Parit Raja (Latiff, *et al.*, 2009). However, the activities along the river bank include industries, agricultural activities (like oil palm plantations and paddy fields) and residential areas (Mohiyaden, *et al.*, 2014). Consequently, the water from the river has been characterized as highly acidic with high concentrations of metals such as aluminum (Al), iron (Fe) and manganese (Mn). Though the recommended effluent discharge limit from the industrial, agricultural and domestic sewerages were unambiguous in the country's environmental guideline, the activities along the river had direct contributions to the level of pollution observed by the river (Latiff, *et al.*, 2009).

In order for all living things to live in a safer environment, there is a need to address the severe damage done to the environment. This is due to the continuous increase in pollutant agents such as heavy metals and endocrine disruptors in the environment that make the environment unfavorable and causes dangerous health distress to the population (Jodeh *et al.*,2015).

1.1 Techniques for the treatment of wastewater

The major purpose of wastewater treatment is to reduce the physical, chemical and biological constituents to a level recommended for drinking and other daily life activities and subsequently to avoid health related problems associated with contaminated water. The applications of treatment technologies such as itation, coagulation, flocculation, activated sludge, etc. in wastewater remediation have been documented extensively in the literature (Akpor & Muchie, 2010). However, the emergence of thousands of new chemical compounds in our water systems makes the earlier technologies to be impotent in eradicating all the undesirable materials in the wastewater.

Nevertheless, the physicochemical methods used in heavy metals and other pollutant treatment are extremely costly and labor-intensive (Karami & Sahmsuddin, 2010). In addition, these methods use the enormous quantity of chemicals and nutrients and magnify the amount of chemical concentrations in the sludge which

required further treatment (Akpor & Muchie, 2010). However, the physicochemical procedure could be used beneficially if the volume of the wastewater is small, specifically for in-house treatment for smaller industries (Singh *et al.*, 2012). Recently, phytoremediation has been acknowledged as a novel technology for efficient wastewater treatment which is well accepted by the people, for the reason that it is ecofriendly and cost-effective (Ali *et al.*, 2013).

1.2 Problem statement

Higher concentrations of metals in the Sungai Sembrong are causing serious health concern to the population that the river serves as the only source of freshwater. Basically, the water from the river is highly acidic and with high level of metals concentrations such as aluminum (61.0 mg/L), Iron (33.0mg/L), and manganese (1.5mg/L) making it one of the most contaminated rivers in Malaysia (Ab. Aziz *et al.*, 2009). Although the water is treated first before being discharged for human consumption, to remove the metals to meet the recommended level using the current traditional methods is quite challenging (Awang *et al.*, 2015). Phytoremediation has several promising abilities for cost effective and reliable performance in removing organic and inorganic contaminants from surface water and soil (Nwoko, 2010). Therefore, the aim of this study is to treat Sungai Sembrong water using two different plants namely: *Pistia stratiotes* and *Neptunia oleracea*.

1.3 Scope of the study

The aim of this study is to use locally available plants to remove heavy metals concentrations of Sungai Sembrong. The process would help in reducing the organic constituents of the water such as biological oxygen demand (BOD) and chemical oxygen demand (COD). The research intends to use two plants from Malaysia *Neptunia oleracea* (Water mimosa) and *Pistia stratiotes* (Water lettuce). The heavy metal and organic constituents of the water will be determined using water and wastewater standard method (APHA, 2012). The treatment performance of the two plants would be evaluated to ascertain their heavy metal removal efficiency. The best

plant will be recommended to be used for pretreatment option in the water treatment plant located in the area. For the analysis, atomic absorption spectroscopy and other tests were carried out following a standard method. Their efficiency as treatment agents of the river water will be compared. The better species will be promoted to provide possible recommendations to improve the water quality of Sungai Sembrong.

1.4 Objectives

The general aim of this research is to investigate the water quality of Sungai Sembrong at Parit Raja, Batu Pahat, Johor, Malaysia. Then, the research intends to evaluate the efficiency of two native plants which could be used to treat the water especially heavy metals concentration of the water. The specific objectives of the research are;

- To determine the water quality of Sungai Sembrong at Parit Raja based on 6 parameters which are pH, Dissolved Oxygen (DO), Suspended Solids (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Ammonia Nitrate (NH₃- N) in order to classify the river;
- 2. To determine the efficiency of *Neptunia oleracea* and *Pistia stratiotes* as phytoremediation agent for pH, DO, conductivity, BOD, COD, NH₃-N, total phosphorus and the metals (Zn, Fe, and Al);
- 3. To evaluate the effect of heavy metal in the river water to morpho-anatomical changes of *Neptunia oleracea* and *Pistia stratiotes* tissues;
- 4. To analyse biominerals distribution among different tissues and structures of *Neptunia oleracea* and *Pistia stratiotes*.

1.5 Significance of the study

This study found that Sungai Sembrong is polluted due to human activities especially in the residential areas. It is acidic and high in metals such as Al, Fe and Zn. The two aquatic plants available in Malaysia, *Neptunia oleracea* and *Pistia stratiotes* do have potentials to treat the water of this river. This offers an excellent opportunity to bioremediation the river water, as the river is crucial in providing water supply to the population of Parit Raja. However, one factor that would require further study is the management of the plants as they grow easily and may cause other environmental problem such as eutrophication.

CHAPTER 2

LITERATURE REVIEW

Pollution occurs when objectionable substances accumulate in the environment beyond the recommended levels which lead to environmental degradation. The pollutants might be in the form of energy or matter that cause adverse effects on the overall conditions of people (Elaine Baker, 2004). Generally, pollution is everything that makes the environment unclean and unhealthy due to its physical, chemical or biological appearance in the ecosystem (Joseph *et al.*, 2013). The environment is mainly degraded through the exploitation of natural resources in order to improve human being living conditions. Thus, the impact of environmental pollution extends to our living premises, farmland, atmosphere, water bodies and the natural forests.

Water is the weakest resource ruined by the anthropogenic actions of human being on the surface of earth. The speed surface water deteriorate was between the industrial revolution (1820 - 1840). The agricultural and industrial sectors are the major consumers of ground and surface water, with the respective withdrawal volume of 67% and 23% (Hanjra & Qureshi, 2010). Nevertheless, the alarming effect of these two sectors does not depend on the over usage of the limited water resource only, but rather disposing their wastes into the water bodies (rivers and lakes). These water bodies are the only natural reservoirs for freshwater storage. Those heavy pollutants discharged back to water surface have a greater potential of health susceptibility due to their composition which includes viruses and many traces of toxic compounds.

2.1 Freshwater

Surface water bodies remain as the only easy way of accessing freshwater for our daily needs. Instead of preserving the waterways as the most valuable natural resource to mankind, it becomes the dumping ground for liquid wastes. The deposition of any new materials into the water through useful applications of water (residential areas, institutions, agricultural activities and industrials outlets) leads to water pollution (Schwarzenbach et al., 2010). In general, water pollution occurs due to deposition of chemicals and hazardous substances into the water such as domestic sewage, pesticides from agricultural runoff (nitrites, phosphates) and heavy metals (Paper & Faculty, 2015). As a result, the quality of the natural water becomes degraded either by changing the physical, biological and/or chemical properties and make it unsuitable for consumption (Joseph et al., 2013). Generally, materials that usually cause water pollution are divided based on their resulting effects on the water quality such as oxygen demanding wastes, disease-causing agents, organic and inorganic chemicals, sediments, radioactive materials and energy. Although their polluting mechanisms vary, their collective objectives cause the objectionable alteration of the water quality and thus prevent the maximum utilization of the water by living creatures (Black, 1977).

Various causes of environmental degradation might be as a result of rapid urbanization, affluence which increases materials consumption and wastes, poverty, which limits choices on how to sustain the use of environmental resources and noneco-friendly technologies and processes which use energy and national resources. Similarly, human attitude toward economic development through agricultural and industrial activities has given way to the production of huge amounts of chemicals. It is very difficult to destroy hazardous chemicals completely, however, the substances are only changing from one form to another and ultimately enter the environment through various means. The most vulnerable part of the environment is water bodies because all the pollutants deposited either on the land or in the atmosphere are transported into the water through heavy precipitation. For example, both agricultural land and atmosphere have great influences on the river pollution due to nutrients, because the atmosphere contains about 78% dry nitrogen, which can be easily brought to the ground by rain and then collectively run into the rivers with the excess fertilizers in the agricultural area (Castillo, 2010).

2.2 Importance of water

Water is essential for the existence of all living creatures on earth because the human body is made of about 60% water (Herman, 2016). Basically, living things can only survive for a few days without water and this clearly shows how significant freshwater is to human physiological health (White et al., 2010). The polar nature of the water molecules makes it a 'universal solvents' because it dissolves many substances than any other liquid and this is responsible for its easy attraction to many foreign substances. Consequently, it is found to be useful in many capacities in the environment ranging from manufacturing, domestic purpose, farming, building, and recreational activities. The world water demand increases at the rapid rate due to population growth, excessive industrialization and movement of people to urban areas. Currently, the demand of freshwater for sustainable development of the human being is increasing at the rate of 64 billion cubic meters annually due to an increase in human population of 80 million per year (Godfray et al., 2012). This rapid increase in the global water demand was first observed during the period of industrial revolution after 1940 and agricultural mechanization in the early 1900's (Godar et al., 2009).

In Malaysia, the water demand is also increasing at the annual rate of 12% and this is possible since the country's economy was transformed from agricultural to industrial-based. Despite the challenges of getting affordable clean water at this era, the country's main focus is toward providing safe drinking water as enshrined by the World Health Organization (WHO) standard (Sumber & Makanan, 2011). According to United Nation (UN), water security is the ability of protecting the sustainable access to sufficient amounts of suitable quality water for livings, human welfare, and socio-economic growth, for guaranteeing protection against water-borne contamination and water-related tragedies, and for conserving environment in a climate of peace and political stability (Baumgartner & Pahl-Wostl, 2013).

2.3 Water pollution in Malaysia

Malaysia is one the countries in the world in which water are abundantly accessible through surface water, rainfall and groundwater, with an average annual rainfall between 1000 to 3000mm. At the moment, about 98% of the country's total water supply comes from rivers to which about 70% are utilized in the agricultural sector (Huang *et al.*, 2015). Heavy industrial and agricultural activities located near the rivers increasied the pollution indices of these rivers, which require additional treatment cost for safer utilization. Furthermore, the heavy pollutants cause the death of aquatic living organisms, for example, eutrophication of rivers induced by the discharge of nutrients and phosphates from agricultural runoff encourage the growth of phytoplankton plants that depletes water oxygen (whereby fish and other living organisms suffocate to death). Similarly, hazardous chemicals and compounds are being transported to human beings through the food chain, because the substances accumulate in fishes and other water-related human diet. Thus, the accumulation of unwanted materials in the water bodies has negative impacts on the ecological systems in terms of health and recreational activities (Najah & Elshafie, 2009).

The river water quality index conducted in 2012 discovered that 34 rivers were categorized as contaminated (Huang *et al.*, 2015). The quality of the rivers is mostly affected by organic and inorganic constituents, however, the inorganic elements have more effects on the treatment performance and health-related damages. Basically, the discharge of water pollution from point sources such as industrial effluents, domestic sewerages and animal farms are termed as point sources, because their origins could be easily traceable in case of any regulation abuse. Moreover, according to the Environmental Protection Agency (EPA) the term point source means "any discernible, confined and discrete conveyance, including but not limited to any, pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, or vessel or other floating craft, from which pollutants are or may be discharged". This term does not include agricultural storm-water discharges and returns flows from irrigated agriculture" (US EPA, 2014). However, non-point source water pollution is among the principal cause of water quality degradation, because the overflow of water due

REFERENCES

- Abbasi, S. A., Nipaney, P. C., & Panholzer, M. B. (1991). Biogas production from the aquatic weed Pistia (*Pistia stratiotes*). *Bioresource Technology*, 37(3), pp, 211– 214.
- Abhilash, P. C., Pandey, V. C., Srivastava, P., Rakesh, P. S., Chandran, S., Singh, N., & Thomas, A. P. (2009). Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. *Journal of Hazardous Materials*, 170(2–3), pp, 791–797.
- Abou-Shanab, R. A., Angle, J. S., Delorme, T. A., Chaney, R. L., Van Berkum, P., Moawad, H., Ghozlan, H. A. (2003). Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. *New Phytologist*, 158(1), pp, 219–224.
- Abu Bakar, A. F., Yusoff, I., Fatt, N. T., Othman, F., & Ashraf, M. A. (2013). Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (*Cabomba piauhyensis*, *Egeria densa*, and *Hydrilla verticillata*). *BioMed Research International*, 2013.
- Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. *Bioresource Technology*.
- Ahmad, Z., Ujang, Z., Olsson, G., Latiff, a a A., Tun, U., & Onn, H. (2013). Evaluation of hybrid membrane bioreactor (MBR) for palm oil mill effluent (POME) treatment. *International Journal of Integrated Engineering (IJIE)*, 1(2), 1–10.
- Ajayi, T. O., & Ogunbayo, A. O. (2012). Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (*Eichhornia Crassipes*), 5(7), pp. 80–90.
- Akapo, A. A. R., Omidiji, S. O., & Otitoloju, a. a. (2011). Morphological and anatomical effects of crude oil on *Pistia stratiotes*. *The Environmentalist*, 31(3), pp. 288–298.

- Akinbile, C. O., Ogunrinde, T. a., Che bt Man, H., & Aziz, H. A. (2016). Phytoremediation of domestic wastewaters in free water surface constructed wetlands using *Azolla pinnata*. *International Journal of Phytoremediation*, 18(1), pp. 54–61.
- Akpor, O. B., & Muchie, M (2010). Remediation of heavy metals in drinking water and wastewater treatment systems : Processes and applications. *International Journal of the Physical Sciences*, 5(12), pp. 1807–1817.
- Al-Saleh, E. S., & Obuekwe, C. (2005). Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil. *International Biodeterioration and Biodegradation*, 56(1), pp.1–7.
- Alahuhta, J., Joensuu, I., Matero, J., Vuori, K. M., & Saastamoinen, O. (2013). Freshwater ecosystem services in Finland.
- Alkorta, I., & Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. *Bioresource Technology*, 79(3), pp. 273–276.
- Almeida, C. M. R., Mucha, A. P., Delgado, M. F. C., Isabel Caçador, M., Bordalo, A. A., & Vasconcelos, M. T. S. D. (2008). Can PAHs influence Cu accumulation by salt marsh plants? *Marine Environmental Research*, 66(3), pp. 311–318.
- Alongi, D. M., Sasekumar, A., Tirendi, F., & Dixon, P. (1998). The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. *Journal of Experimental Marine Biology and Ecology*, 225(2), pp.197–218.
- Aloy, M., & Vulliermet, B. (1998). Membrane technologies for the treatment of tannery residual floats. *Industrie Du Cuir*, (2).
- Anning, A. K., Korsah, P. E., & Addo-Fordjour, P. (2013). Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands. *International Journal of Phytoremediation*, 15(5), pp. 452– 64.
- APHA. (2012). Washington, DC: American Public Health Association. Cenveo Publisher Services, Richmond.
- Aston, H. I. (1977). Appendix 1: The Water Hyainth (Eichhornia crassipes). Aquatic Plants of Australia. Melbourne University Press, Melbourne.

- Auxtero, E. A., Shamshuddin, J., & Paramananthan, S. (1991). Mineralogy, morphology and classification of acid sulfate soils in Pulau Lumut, Selangor. *Pertanika*, 14(1), pp.43–51.
- Awang, H., Daud, Z., & Hatta, M. Z. M. (2015). Hydrology properties and water quality assessment of the Sembrong Dam, Johor, Malaysia. *Procedia - Social and Behavioral Sciences*, 195, pp. 2868–2873.
- Axtell, N. R., Sternberg, S. P. K., & Claussen, K. (2003). Lead and nickel removal using Microspora and Lemna minor. *Bioresource Technology*, 89(1), pp.41–48.
- Badr, N. B. E., & Fawzy, M. (2008). Bioaccumulation and biosorption of heavy metals and phosphorous by *Potamogeton pectinatus* L. and *Ceratophyllum demersum* L. in two Nile Delta Lakes. *Fresenius Environmental Bulletin*, 17(3), pp.282–292.
- Baker, A. J. M. (1981). Accumulators and excluders strategies in the response of plants to heavy metals. *Journal of Plant Nutrition*, 3(1–4), pp.643–654.
- Banks, W. A., & Kastin, A. J. (1989). Aluminum-Induced neurotoxicity: Alterations in membrane function at the blood-brain barrier. *Neuroscience and Biobehavioral Reviews*, 13(1), pp.47–53.
- Barbosa, J., Re-Poppi, N & Santiago-Silva, M. (2006). Polycyclic aromatic hydrocarbons from wood pyrolyis in charcoal production furnaces. *Environmental Research*, 101(3), pp.304–311.
- Baumgartner, T., & Pahl-Wostl, C. (2013). UN-Water and its role in global water governance. *Ecology and Society*, 18(3), 3–12.
- Bhunia, & Mondal, A. K. (2012). Systematic analysis (Morphology, Anatomy and Palynology) of an aquatic medicinal plant Water Mimosa (*Neptunia oleracea*) in Eastern India. *International Journal Life Sciences Biotechnology and Pharma Research*, 1(2), pp.290–319.
- Bini, C., Wahsha, M., Fontana, S., & Maleci, L. (2012). Effects of heavy metals on morphological characteristics of *Taraxacum officinale* Web growing on mine soils in NE Italy. *Journal of Geochemical Exploration*, 123, pp.101–108.

Black, J. A. (1977). Water pollution technology. Reston.

- Brix, H. (1994). Functions of macrophytes in constructezd Wetlands. *Water Science and Technology*, 29(4), pp.71–78.
- Bunluesin, S., Kruatrachue, M., Pokethitiyook, P., Lanza, G. R., Upatham, E. S., & Soonthornsarathool, V. (2004). Plant screening and comparison of *Ceratophyllum demersum* and *Hydrilla verticillata* for cadmium accumulation. *Bulletin of Environmental Contamination and Toxicology*, 73(3), pp.591–598.
- Cardwell, A. ., Hawker, D. ., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from Southeast Queensland, Australia. *Chemosphere*, 48(7), pp.653– 663.
- Carr, G. M., & Neary, J. P. (2008). Water quality for ecosystem and human health, 2nd. Ontario, Canada: United Nations Environment Programme (UNEP).
- Castillo, M. Ã. (2010). Limnologica land use and topography as predictors of nutrient levels in a tropical catchment. *Limnologica-Ecology and Management of Inland Waters*, 40(4), pp.322–329.
- Cecil, K. M., Brubaker, C. J., Adler, C. M., Dietrich, K. N., Altaye, M., Egelhoff, J. C., & Lanphear, B. P. (2008). Decreased brain volume in adults with childhood lead exposure. *PLOS Medicine*, 5(5), pp.0741–0749.
- Chadha, Y. R. (1998). A dictionary of Indian Raw Material and Industrial Products. *New Delhi: Council of Scientific and Industrial Research*, pp.123-4
- Chandra, R., Bharagava, R. N., Yadav, S., & Mohan, D. (2009). Accumulation and distribution of toxic metals in wheat (*Triticum aestivum* L.) and Indian mustard (*Brassica campestris* L.) irrigated with distillery and tannery effluents. *Journal of Hazardous Materials*, 162(2–3), pp.1514–1521.
- Chaney, R. L. (1993). Zinc phytotoxicity. *Developments in Plant and Soil Sciences*, 55, 135-135.
- Chaudri, A. M., McGrath, S. P., Giller, K. E., Rietz, E., & Sauerbeck, D. R. (1993). Enumeration of indigenous *Rhizobium leguminosarum* biovar trifolii in soils previously treated with metal-contaminated sewage sludge. *Soil Biology and Biochemistry*, 25(3), pp.301–309.

- Chen, Y. X., Lin, Q., He, Y. F., & Tian, G. M. (2004). Behavior of Cu and Zn under combined pollution of 2,4-dichlorophenol in the planted soil. *Plant and Soil*, 261(1–2), pp.127–134.
- Chin, D. A. (2006). Water Quality Engineering in Natural Systems: fate and transport processes in the water environment. John Wiley & Sons.

Christensen, N. L. (2013). The Environment and You. New York, NY: Pearson.

- Cocozza, C., Minnocci, A., Tognetti, R., Iori, V., Zacchini, M., & Scarascia Mugnozza,
 G. (2008). Distribution and concentration of cadmium in root tissue of *Populus* alba determined by scanning electron microscopy and energy-dispersive x-ray microanalysis. *iForest-Biogeosciences and Forestry*, 1(2), pp.96–103.
- Coetzee, J. A., Hill, M. P., Byrne, M. J., & Bownes, A. (2011). A review of the biological control programmes on *Eichhornia crassipes* (C.Mart.) Solms (Pontederiaceae), *Salvinia molesta* D.S. Mitch. (Salviniaceae), *Pistia stratiotes* L. (Araceae), *Myriophyllum aquaticum* (Vell.) Verdc. (Haloragaceae) . *African Entomology*, 19, pp.451–468.
- Cook, C. D. K., Gut, B. J., Rix, E. M., & Schneller, J. (1974). Water plants of the world: a manual for the identification of the genera of freshwater macrophytes. Springer Science & Business Media.
- Cook, C. D. (1974). Water plants of the world a manual for identification of the genera of freshwater macrophyta.
- Cook, F. J., Hicks, W., Gardner, E. A., Carlin, G. D., & Froggatt, D. W. (2000). Export of acidity in drainage water from acid sulphate soils. *Marine Pollution Bulletin*, 41(7–12), pp.319–326.
- Cordo, H. A., & Sosa, A. (2000). The weevils argentinorhynchus breyeri, a. bruchi and a. squamosus (Coleoptera: Curculionidae), candidates for the biological control of waterlettuce (*Pistia stratiotes*). In *Proceedings of the X International Symposium on Biological Control of Weeds*, 335(July 1999), pp.325–335.

Croat, T., Platt, K., & Nicolson, D. (2004). the IAS Newsletter.

Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. *Advances in*

agronomy, 56(1), 55-114

- Das, P., Datta, R., Makris, K. C., & Sarkar, D. (2010). Vetiver grass is capable of removing TNT from soil in the presence of urea. *Environmental Pollution*, 158(5), pp.1980–1983.
- Demirezen, D., & Aksoy, A. (2004). Accumulation of heavy metals in *Typha* angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56(7), pp.685–696.

Department of environment. (1986). Classification of Malaysian river.

- Desa, E., Zingde, M. D., Vethamony, P., Babu, M. T., D'Sousa, S. N., & Verlecar, X. N. (2005). Dissolved oxygen - A target indicator in determining use of the Gulf of Kachchh waters. *Marine Pollution Bulletin*, 50(1), pp.73–79.
- DESA, U. (2009). World population prospects: the 2008 Revision database. working paper No. ESA/P/WP. 210, United Nations Department of Economic and Social Affairs.
- Di Luca, G. A., Hadad, H. R., Mufarrege, M. M., Maine, M. A., & Sánchez, G. C. (2014). Improvement of Cr phytoremediation by *Pistia stratiotes* in presence of nutrients. *International Journal of Phytoremediation*, 16(2), pp.167–178.
- Divya, S., Tiwari, A., & Gupta, R. (2013). Phytoremediation of lead from wastewater using aquatic plants. *International Journal of Biomedical Research*, 53(9), pp.1689–1699.
- Dobler, R., Saner, M., & Bachofen, R. (2000). Population changes of soil microbial communities induced by hydrocarbon and heavy metal contamination. *Bioremediation Journal*, 4(1), pp.41–56.
- Dolara, P. (2014). Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver). *International Journal of Food Sciences and Nutrition*, 65(8), pp.911–24.
- Donald, Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. *Estuaries*, 25(4), pp.704–726.

- Dray, F. A. J., Center, D. T., & Habeck, D. H. (1993). Phytophagous insects associated with *Pistia stratiotes* in Florida. *Environmental Entomology*, 22(5),pp. 1146–1155.
- Dvorak, B. I., & Woldt, W. (2014). Drinking water: iron and manganese. Neb Guide published by University of Nebraska-Lincoln Extension, Institute of Agriculture and Natural Resources.
- Easley, J. F., & Shirley, R. L. (1974). Nutrient elements for livestock in aquatic plants. *Hyacinth Control Journal*, 12, pp.82-85.
- Eddy, M. &, Burton, F. L., Stensel, H. D., & Tchobanoglous, G. (2003). *Wastewater* engineering: treatment and reuse. McGraw Hill.
- Eisler, R. (1988). Contaminant hazard reviews arsenic hazards to fish, wildlife, and invertabrates : a Synoptic Review. *Contaminant hazard reviews*, 85(12), pp.1–65.
- Elaine Baker. (2004). Vital waste graphics. United Nations Environment Program and Grid-Arendal.
- Eller, L. E. Z., Evert, C. O. R., & Ardisson, A. R. H. (2010). Dietary intake of Aluminum in a Spanish population (Canary Islands). *Journal of agricultural and food chemistry*, 58(19), pp.10452–10457.
- Elmer, P. (1996). Atomic Absorption Spectroscopy Analytical Methods. *The Perkin Elmer Corporation*, 132-145.
- Eugene R. W. (2000). Applications of environmental chemistry: a practical guide for environmental professionals. CRC press.
- Evans, R. O., Gilliam, J. W., & Skaggs, R. W. (1996). Controlled drainage management guidelines to improve drainage water quality. NC Cooperative Extension Service.
- Fonkou, T., Agendia, P., Kengne, I., Akoa, A., & Nya, J. (2002). Potentials of water lettuce (*Pistia stratiotes*) in domestic sewage treatment with macrophytic lagoon systems in Cameroon. *Proceedings of International Symposium on Environmental Pollution Control and Waste Management*, "EPCOWM'2002(pp.709–714).
- Forno, I. W., Fichera, J., Prior, S., & Street, M. (2000). Assessing the risk to Neptunia oleracea Lour. by the moth, Neurostrota gunniella (Busck), a biological control agent for Mimosa pigra L. Proceedings of the X International Symposium on

Biological Control of Weeds, pp.4–14.

- França, S., Vinagre, C., Caçador, I., & Cabral, H. N. (2005). Heavy metal concentration in sediment, bentic invertebrates and fishes in three saltmarsh areas subjected to different pollution loads in the Tagus estuary. *Marine Pollution Bulletin* 50, pp. 993–1008.
- French, C. J., Dickinson, N. M., & Putwain, P. D. (2006). Woody biomass phytoremediation of contaminated brownfield land. *Environmental Pollution*, 141(3), pp.387–395.
- Frey, P. A., & Reed, G. H (2012). Toxicological Profile for Zinc. ACS Chem. Biol, 7(9), pp.1477–1481.
- Gao, Y., Ling, W., & Wong, M. H. (2006). Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant. *Chemosphere*, 63(9), pp.1560–1567.
- Gent, Martin PN, Jason C. White, Zakia D. Parrish, Mehmet Isleyen, Brian D. Eitzer, &
 M. I. M. (2007). Uptake and translocation of p, p'dichlorodiphenyldichloroethylene supplied in hydroponics solution to *Cucurbita*. *Environmental Toxicology and Chemistry*, 26(12), pp.2467–2475.
- Gettys, L. A., Haller, W. T., & Bellaud, M. (2014). Biology and control of aquatic plants. *Aquatic Ecosystem Restoration Foundation, Marietta, Georgia.*
- Gleick, P. H., & Palaniappan, M. (2010). Peak water limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences of the United States of America, 107(25), pp.11155–62.
- Godar, J., Suavet, C., Gardner, T. A., Dalin, C., Rodríguez-iturbe, I., Konar, M., Suavet,
 C. (2009). Towards more spatially explicit assessments of virtual water flows:
 linking local water use and scarcity to global demand of Brazilian farming
 commodities. *Environmental Research Letters*, 11(7), pp.75003.
- Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F& Toulmin, C. (2012). The challenge of food security. *Science*, 327, pp. 812.

Gomes, P., Valente, T., Pamplona, J., Sequeira Braga, M. A., Pissarra, J., Grande Gil, J.

A., & de la Torre, M. L. (2014). Metal uptake by native plants and revegetation potential

of mining sulfide-rich waste-dumps. *International Journal of Phytoremediation*, 16 (11), pp.1087–103.

Göthberg, A., Greger, M., & Bengtsson, B. E. (2002). Accumulation of heavy metals in water spinach (*Ipomea aquatica*) cultivated in the Bankok region, Thailand. *Environmental Toxicology and Chemistry*, 21(9), pp.1934–1939.

Gower, A. M. (1980). Water quality in catchment ecosystems. In *The Institution of Environmental Sciences Series*. John Wiley & Sons.

Gumbricht, T. (1993). Nutrient removal processes in freshwater submersed macrophyte systems. *Ecological Engineering*, 2(1), 1–30.

Hambidge, K. M., & Krebs, N. F. (2007). Zinc deficiency: a special challenge. The *Journal of nutrition*, 137(4), 1101-1105.

Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. *Food Policy*, 35(5), pp.365–377.

Hannan-Jones, M., & Csurhes, S. (2008). Pest plant risk assessment Water mimosa, pp. 1–14.

Hasan, S. H., Talat, M., & Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (*Eichchornia crassipes*). *Bioresource Technology*, 98(4), pp.918–928.

Hazrat Ali, Ezzat Khanb, M. A. S. (2013). Phytoremediation of heavy metals--concepts and applications. *Chemosphere*, 91(7), pp.869–81.

Hefni Effendi, Bagus A., & Darmawangsa, G. M. (2015). Phytoremediation of freshwater crayfish (Cherax quadricarinatus) culture wastewater with spinach (*Ipomoea aquatica*) in aquaponic system. *International Journal of the Bioflux Society (AACL Bioflux)*, 8(3), pp.421–430.

Henry, J. R. (2000). *An overview of the phytoremediation of lead and mercury*(pp. p3-9). Washington, DC: US Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office.

Herman, I. P. (2016). Physics of the human body. Springer.

Hernández-Romero, A. H., Tovilla-Hernández, C., Malo, E. A., & Bello-Mendoza, R. (2004). Water quality and presence of pesticides in a tropical coastal wetland in southern

Mexico. Marine Pollution Bulletin, 48(11–12), pp.1130–1141.

Hoffmann, T., Kutter, C., & Santamaría, J. M. (2004). Capacity of *Salvinia minima* baker to tolerate and accumulate As and Pb. *Engineering in Life Sciences*, 4(1), pp. 61–65.

Hoffmann, W. A., & Poorter, H. (2002). Avoiding bias in calculations of relative growth rate. *Annals of Botany*, 90(1), pp.37–42.

Holm, L. G., Plucknett, D. L., & Pancho, J. V. (1977). World's weeds: distribution and biology. In *World's weeds: distribution and biology*. East-West Center.

Huang, Y. K., Ang, S. Y., Lee, K. M., & Lee, T. S. (2015). Quality of water resources in Malaysia. *In Research and Practices in Water Quality*. InTech.

Hunter, P. R., MacDonald, A. M., & Carter, R. C. (2010). Water supply and health. *PLoS Med*, 7(11), e1000361.

Industries, P. (2012). Water mimosa. Department of agriculture and fisheries biosecurity queensland.

Interstate, T., & Regulatory, C. (2009). Phytotechnology technical and regulatory guidance and decision trees, revised. Retrieved from www.itreweb.org.

Isleyen, M., & Sevim, P. (2012). Accumulation of weathered *p,p'*-DDTs in grafted watermelon. *Journal of Agricultural and Food Chemistry*, 14(4), pp.1113–1121. Ismail, Z., Othman, S. Z., Law, K. H., Sulaiman, A. H., & Hashim, R. (2015). Comparative performance of water hyacinth (*Eichhornia crassipes*) and water lettuce (*Pista stratiotes*) in preventing nutrients build-up in municipal wastewater. *Clean - Soil, Air, Water*, 43(4), pp.521–531.

Jadia C., F. M. H. (2009). Phytoremediation of heavy metals: Recent techniques. *African Journal of Biotechnology*, 8(6), pp.921–928.

Jain, A., Roshnibala, S., Kanjilal, P. B., Singh, R. S., & Singh, H. B. (2007). Aquatic/semi-aquatic plants used in herbal remedies in the wetlands of Manipur, Northeastern India. *Indian journal of traditional knowledge*, 6(2), pp.346–351.

Javadi, E., Moattar, F., Karbassi, A. R., & Monavari, S. M. (2010). Removal of lead, cadmium and manganese from liquid solution using water lily (*Nymphaea alba*). *Journal of Food, Agriculture and Environment*, 8(3–4), pp.1220–1225.

Jing, Y., He, Z., & Yang, X. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. *Journal of Zhejiang University. Science. B*, 8(3), pp.192–207.

Jodeh, S., Amarah, J., Radi, S., Hamed, O., Warad, I., Salghi, R., & Alkowni, R. (2015). Removal of Methylene blue from industrial wastewater in Palestine using polysiloxane surface modified with bipyrazolic tripodal receptor. *Moroccan Journal OF Chemistry*, 4(1), pp.140–156.

John, R., Ahmad, P., Gadgil, K., & Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters and uptake in *Lemna polyrrhiza* L. *Plant Soil and Environment*, 54(6), pp.262–270.

Joseph, A., Amen, O., Science, P., & State, E. (2013). The environmental consequences of pollution in Ado-Ekiti , Nigeria. *International Journal of Arts and Commerce*, 2(11), pp.73–82.

Journal, B., Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. *Brazilian Journal of Chemical Engineering*, 31(4), pp.881–886.

Judith S. Weis, Lisamarie Windham, and P. W. (2003). Patterns of metal accumulation in leaves of the tidal marsh plants *Spartina alterniflora* Loisel and *Phragmites australis* Cav. Trin ex Steud. Over the growing season. *Wetlands*, 23(2), pp.459–465.

Karami, A., & Sahmsuddin, Z. H. (2010). Phytoremediation of heavy metals with several efficiency enhancer methods - Review. *African Journal of Biotechnology*, 9(25), pp.3689–3698.

Karmakar, S., Mukherjee, J., & Mukherjee, S. (2016). Removal of fluoride contamination in water by three aquatic plants. *International Journal of Phytoremediation*, 18(3), pp.222–227.

Katimon, A., Kassim, A., Othman, F., Sohaili, J., Yusop, Z., & Hashim, N. (2004). Agriculture drainage affects river water quality. *The Institution of Engineers, Malaysia*, 65(1), pp.1–7.

Kawachi, M., Kobae, Y., Mori, H., Tomioka, R., Lee, Y., & Maeshima, M. (2007). Vacuolar transporters and their essential role in plant metabolism. *Journal of Experimental Botany*, 58(1), pp.83–102.

Kawachi, M., Kobae, Y., Mori, H., Tomioka, R., Lee, Y., & Maeshima, M. (2009). A mutant strain *Arabidopsis thaliana* that lacks vacuolar membrane zinc transporter mtp1 revealed the latent tolerance to excessive zinc. *Plant and Cell Physiology*, 50(6), pp.1156–1170.

Khan, M. A., Marwat, K. B., Gul, B., Wahid, F., Khan, H., & Hashim, S. (2014). *Pistia stratiotes* L. (Araceae): Phytochemistry, use in medicines, phytoremediation, biogas and management options. *Pakistan Journal of Botany*, 46(3), pp.851–860.

Khan, M. U., Ahmed, M., Shaukat, S. S., Nazim, K., & Ali, Q. M. (2013). Effect of industrial waste on early growth and phytoremediation potential of *Avicennia marina* (Forsk.) vierh. *Pakistan Journal of Botany*, 45(1), pp.17–27.

Khumanleima Chanu, H., & Gupta, A. (2014). Necrosis as an adaptive response to copper toxicity in *Ipomoea aquatica* Forsk. and its possible application in phytoremediation. *Acta Physiologiae Plantarum*, 36(12), pp.3275–3281.

Kibena, , Nhapi, and G. (2014). Assessing the relationship between water quality parameters and changes in landuse patterns in the upper Manyame river, Zimbabwe. *Physics and Chemistry of the Earth, Parts A/B/C*, pp.153–163.

Krämer, U. (2005). Phytoremediation: Novel approaches to cleaning up polluted soils. *Current Opinion in Biotechnology*, 16(2), pp.133–141.

Kristensen, E., Holmer, M., & Bussarawit, N. (1991). Benthic metabolism and sulfate reduction in a Southeast Asian mangrove swamp. *Marine Ecology Progress Series*, 73, pp.93–103.

Kuiper, I., Bloemberg, G. V, & Lugtenberg, B. J. (2001). Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. *Molecular Plant-Microbe Interactions*, 14(10), pp.1197–205.

Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. *Environmental Science & Technology*, 29(5), pp.1232–1238.

Kvesitadze, E., Sadunishvili, T., & Kvesitadze, G. (2009). Mechanisms of organic contaminants uptake and degradation in plants. *World Academy of Science, Engineering and Technology*, 3(7), pp.417–427.

Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006).

Biochemical mechanisms of detoxification in higher plants: Basis of phytoremediation. *Springer Science & Business Media.*

Lam-Hoai, T., Guiral, D., & Rougier, C. (2006). Seasonal change of community structure and size spectra of zooplankton in the Kaw River estuary (French Guiana). *Estuarine, Coastal and Shelf Science*, 68(1), pp.47–61.

Latiff, A. A. A., Ahmad Tarmizi Abd. Karim, A. M., & Hashim, and N. H. (2009). Study of metal pollution in Sembrong River, Johor, Malaysia. *International Journal of Environmental Engineering*, 1(4), pp.384–404.

Laxen, D., & Harrison, R. (1981). Cleaning methods for polythene containers prior to the determination of trace metals in freshwater samples. *Analytical Chemistry*, 53(19), pp.345–350.

Ledesma, E. B., Kalish, M. A., Nelson, P. F., Wornat, M. J., & MacKie, J. C. (2000). Formation and fate of PAH during the pyrolysis and fuel-rich combustion of coal primary tar. *Fuel*, 79(14), pp.1801–1814.

Lee, C. K., Low, K. S., & Hew, N. S. (1991). Accumulation of arsenic by aquatic plants. *The Science of The Total Environment*, 103(2–3), 215–227.

Lee, S. H., Lee, W. S., Lee, C. H., & Kim, J. G. (2008). Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. *Journal of Hazardous Materials*, 153(1–2), pp.892–898.

Liao, S., & Chang, W. (2004). Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. *Journal of Aquatic Plant Management*, 42, pp.110–118.

Lin, C., Melville, M. D., Islam, M. M., Wilson, B. P., Yang, X., & Van Oploo, P. (1998). Chemical controls on acid discharges from acid sulfate soils under sugarcane cropping in an eastern Australian estuarine floodplain. *Environmental Pollution*, 103(2–3), pp.269–276.

Lin, J., Xie, L., Pietrafesa, L. J., Shen, J., Mallin, M. A., & Durako, M. J. (2006). Dissolved oxygen stratification in two micro-tidal partially-mixed estuaries. *Estuarine*, *Coastal and Shelf Science*, 70(3), pp.423–437.

Lin, Q., Shen, K. L., Zhao, H. M., & Li, W. H. (2008). Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. *Journal of Hazardous*

Materials, 150(3), pp.515–521.

Lin, Q., Wang, Z., Ma, S., & Chen, Y. (2006). Evaluation of dissipation mechanisms by *Lolium perenne* L, and *Raphanus sativus* for pentachlorophenol (PCP) in copper cocontaminated soil. *Science of the Total Environment*, 368(2–3), pp.814–822.

Lone, M. I., He, Z., Stoffella, P. J., & Yang, X. (2008). Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. *Journal of Zhejiang University Science B*, 9(3), pp.210–20.

Loveson, A, Sivalingam, R., & Syamkumar, R. (2013). Aquatic macrophyte spirodela polyrrhiza as a phytoremediation tool in polluted wetland water from Eloor, Ernakulam District, Kerala. *Environ. Anal. Toxicol*, 3(5), pp.3–9.

Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (*Pistia stratiotes* L.). *Environmental Science and Pollution Research*, 17(1), pp.84–96.

M.T. Jafari and, & Khayamian, T. (2008). Direct determination of ammoniacal nitrogen in water samples using corona discharge ion mobility spectrometry. *Talanta*, 76(5), pp.1189–1193.

Maine, M. A., Duarte, M. V., & Suñé, N. L. (2001). Cadmium uptake by floating macrophytes. *Water Research*, 35(11), 2629–2634.

Maine, M. A., Suñé, N. L., & Lagger, S. C. (2004). Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes. *Water Research*, 38(6), pp.1494–1501.

Malaysian 1st Mathematics in Industry Study Group. (2011). River pollution problem in Iskandar Malaysia Region. *Johor State Government*.

Manios, T., Stentiford, E. I., & Millner, P. (2003). Removal of total suspended solids from wastewater in constructed horizontal flow subsurface wetlands. *Journal of Environmental Science and Health*, Part A, 38(6), pp.1073–1085.

Mansur, M. B., Rocha, S. D. F., Magalhães, F. S., & Benedetto, J. dos S. (2008). Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction. *Journal of Hazardous Materials*, 150(3), pp.669–678.

Marschner, H. (1995). Mineral nutrition of higher plants. 2nd (eds) academic press. New

York.

Maruthi Sridhar, B. B., Han, F. X., Diehl, S. V., Monts, D. L., & Su, Y. (2007). Effects of Zn and Cd accumulation on structural and physiological characteristics of barley plants. *Brazilian Journal of Plant Physiology*, 19(1), pp.15–22.

Marx, W. (2012). Tracking historical papers and their citations. *European Science Editing*, 38(2), pp.35–37.

Maslin, P., & Maier, R. M. (2000). Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils. *Bioremediation Journal*, 4(4), pp.295–308.

Mayo, S. J., Bogner, J., & Boyce, P. C. (1997). The genera of Araceae. *Kew: Royal Botanic Gardens*, Kew 370p, 1.

McCaull, Julian, & J. C. (1974). Water pollution. Harcourt brace jovanovich, *Inc., USA*. McGrath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. *Plant and Soil*, 232(1–2), pp.207–214.

Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. *Current Opinion in Plant Biology*, 3(2), pp.153–162.

Minh, L. Q., Tuong, T. P., van Mensvoort, M. E. F., & Bouma, J. (1997). Contamination of surface water as affected by land use in acid sulfate soils in the Mekong River Delta, Vietnam. *Agriculture, Ecosystems & Environment*, 61(1), pp.19–27.

Miretzky, P., Saralegui, A., & Cirelli, A. F. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). *Chemosphere*, 57(8), pp.997–1005.

Mishra, V. K., & Tripathi, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. *Bioresource Technology*, 99(15), pp.7091–7097.

Mishra, V. K., Upadhyaya, A. R., Pandey, S. K., & Tripathi, B. D. (2008). Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. *Bioresource Technology*, 99(5), pp.930–936.

Mishra, V. K., & Tripathi, B. D. (2009). Accumulation of chromium and zinc from

aqueous solutions using water hyacinth (*Eichhornia crassipes*). Journal of Hazardous Materials, 164(2–3), pp.1059–1063.

Mohiyaden, H. A., Sidek, L. M., Basri, H., & Hayder, G. (2014). Biological carrier performance evaluation for artificial river purification. *In 13th International Conference on* Urban Drainage, Sarawak, Malaysia pp. 7–12.

Moreno, F. N., Anderson, C. W. N., Stewart, R. B., & Robinson, B. H. (2008). Phytofiltration of mercury-contaminated water: Volatilisation and plant-accumulation aspects. *Environmental and Experimental Botany*, 62(1), pp.78–85.

Morillo, J., Usero, J., & Gracia, I. (2002). Partitioning of metals in sediments from the Odiel River (Spain). *Environment International*, 28(4), pp.263–271.

MPBP. (2002). Batu Pahat district draft local plan. Majlis perbandaran Batu Pahat, Johor.

Mueller, B., Payer, F., Goswami, D., Kastury, S., Kornuc, J., Harman, C., & Talkington,D. (2003). Technical and regulatory guidance document for constructed treatmentwetlands. Interstate technology and regulatory council wetlands team washington DC.

Mukherjee, B., Majumdar, M., Gangopadhyay, A., Chakraborty, S., & Chaterjee, D. (2015). Phytoremediation of parboiled rice mill wastewater using water lettuce (*Pistia stratiotes*). *International Journal of Phytoremediation*, 17(7), pp.651–6.

Mukherjee, S., & Kumar, S. (2005). Arsenic uptake potential of water lettuce (*Pistia stratiotes* L.). *International Journal of Environmental Studies*, 62(2), pp. 249–258.

Mukhtar, M. D., Sani, a, & Yakasai, a a. (2008). Cytotoxicity of fractions of *Pistia stratiotes* 1. On larvae of Culex mosquito and *A. salina*. *Animal Research International*, 1(2), pp.95–99.

Mulligan, C. N., Davarpanah, N., Fukue, M., & Inoue, T. (2009). Chemosphere Filtration of contaminated suspended solids for the treatment of surface water. *Chemosphere*, 74(6), pp.779–786.

Muyssen, B. T. A., De Schamphelaere, K. A. C., & Janssen, C. R. (2006). Mechanisms of chronic waterborne Zn toxicity in *Daphnia magna*. *Aquatic Toxicology*, 77(4), pp.393–401.

Najah, A., & Elshafie, A. (2009). Prediction of johor river water quality parameters using artificial neural networks. *European Journal of Scientific Research*, 28(3),

pp.422-435.

Nature, M., Islands, K., Luzon, E., & Stohl, A. (2011). Making sense of the water resources that will be available for future use. *Eos, Transactions American Geophysical Union*, 92(17),pp.144-145.

Naubi, I., Zardari, N. H., Shirazi, S. M., Farahen, N., Ibrahim, B., & Baloo, L. (2016). Effectiveness of water quality index for monitoring Malaysian river water quality. *Polish Journal of Environmental Studies*, 25(1), pp.231–239.

Naylor, S. (1993). Draft environmental guidelines for the assessment and management of coastal land developments in areas of acid sulphate soils. *Environmental Protection Authority*, Grafton, Australia, 78p.

Nazir, A., Malik, R. N., Ajaib, M., Khan, N., & Siddiqui, M. F. (2011). Hyperaccumulators of heavy metals of industrial areas of islamabad and rawalpindi. *Pakistan Journal of Botany*, 43(4), pp.1925–1933.

Neuenschwander, P., Julien, M. H., & Hill, M. P. (2009). *Pistia stratiotes* L. (Araceae). Biological control of tropical weeds using arthropods. *Cambridge University Press, New York, NY*, 332-352.

Nguyen N., Sakakibara, M., Sano, S., Hori, R. S., & Sera, K. (2009). The potential of eleocharis acicularis for phytoremediation: Case study at an abandoned mine site. *Clean - Soil, Air, Water*, 37(3), pp.203–208.

Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. *Nature*, 279(5712), 409-411.

Nur Hanie, M., Hanie, N., Shaharuddin, R. I., Muhamad, W., Asiah, W. N., & Othman, R. (2012). Study on aquatic plant species (*Salvinia natans, Neptunia oleracea* and *Hydrilla verticillata*) as phytoindicator for nutrient excess. In 1st international conference on innovation and technology for sustainable built environment, Perak, Malaysia, pp.188-192.

Nwoko, C. O. (2010). Trends in phytoremediation of toxic elemental and organic pollutants. *African Journal of Biotechnology*, 9(37), pp.6010–6016.

Ochonogor, Richie O., and H. I. A. (2014). Phytoremediation of heavy metal contaminated soil by *Psoralea pinnata*. *International Journal of Environmental Science and Development*, 5(5), pp.449–443.

Odjegba, V. J., & Fasidi, I. O. (2004). Accumulation of trace elements by *Pistia stratiotes*: Implications for phytoremediation. *Ecotoxicology*, 13(7), pp.637–646.

Okunowo, W. O., & Ogunkanmi, L. A. (2010). Phytoremediation potential of some heavy metals by water hyacinth. *International Journal of Biological and Chemical Sciences*, *4*, pp.347–353.

Olguín, E. J., & Sánchez-Galván, G. (2010). Aquatic phytoremediation: Novel insights in tropical and subtropical regions. *Journal of Biotechnology*, 82(1), pp. 27–38.

Olko, A., Abratowska, A., Zyłkowska, J., Wierzbicka, M., & Tukiendorf, A. (2008). *Armeria maritima* from a calamine heap-Initial studies on physiologic-metabolic adaptations to metal-enriched soil. *Ecotoxicology and Environmental Safety*, 69(2), pp.209–218.

Olson, P. E., Castro, A., Joern, M., DuTeau, N. M., Pilon-Smits, E. a H., & Reardon, K. F. (2007). Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. *Journal of Environmental Quality*, 36(5), pp.1461–1469.

Ong, H. C. (2008). Vegetables for health and healing. Utusan Publications.

Oon, Y., Law, P., Ting, S., & Tang, F. (2013). A 3-Stage Treatment System For Domestic Wastewater : Part I . Development. *Journal of Civil Engineering*, 4(1), pp.13–25.

Overesch, M., Rinklebe, J., Broll, G., & Neue, H. U. (2007). Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). *Environmental Pollution*, 145(3), pp.800–812.

Oyibo, C. (2013). *Phytoremediation of Some Tropical Soils Contaminated with Petroleum Crude Oil*. University of Ghana: Ph.D.Thesis.

Parmar, S., & Singh, V. (2015). Phytoremediation approaches for heavy metal pollution : a review. *Journal of Plant Science & Research*, 2(2), pp.1–8.

Parr, L. B., Perkins, R. G., & Mason, C. F. (2002). Reduction in photosynthetic efficiency of *Cladophora glomerata*, induced by overlying canopies of Lemna spp. *Water Research*, 36(7), pp.1735–1742.

Parrish, Z. D., Banks, M. K., & Schwab, A. P. (2004). Effectiveness of

phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. *International Journal of Phytoremediation*, 6(2), pp.119–137. Parsons, W. T., & Cuthbertson, E. G. (2001). *Noxious weeds of Australia*. CSIRO publishing.

Peasey, A., Blumenthal, U., Mara, D., & Ruiz-Palacio, G. (2000). A review of policy and standards for wastewater reuse in agriculture: a latin american perspective, well study No. 68, Part II.

Peck, J. H., & Serviss, B. E. (2011). *Neptunia oleracea* (Fabaceae) new to the continental United States, with new and noteworthy records of several angiosperms in Arkansas. *Journal of the Botanical Research Institute of Texas*, pp. 321-326.

Pereira, D. D., Rocha, S. D. F., & Mansur, M. B. (2007). Recovery of zinc sulphate from industrial effluents by liquid-liquid extraction using D2EHPA (di-2-ethylhexyl phosphoric acid). *Separation and Purification Technology*, 53(1), pp. 89–96.

Pessarakli, M., & Szabolcs, I. (1999). Soil salinity and sodicity as particular plant/crop stress factors. In: Pessarakli M (ed) Handbook of plant and crop stress. Dekker, New York, pp 1–16.

Petersen Jr, R. C., Madsen, B. L., Wilzbach, M. A., Magadza, C. H., Paarlberg, A., Kullberg, A., & Cummins, K. W. (1987). Stream management: emerging global similarities. Ambio 16:166-179.

Plant, I., & Convention, P. (2012). Aquatic plants their uses and risks. A review of the global status of aquatic plants. Rome, Italy: FAO.

Poulose, S. V. (2014). Rhizosphere bacterial diversity and heavy metal accumulation in *Nymphaea pubescens* in aid of phytoremediation potential. *Journal of BioScience & Biotechnology*, 3(1), pp.89–95.

Prajapati, S. K., Meravi, N., & Singh, S. (2012). Phytoremediation of Chromium and Cobalt using Pistia stratiotes: A sustainable approach. *Proceedings of the International Academy of Ecology and Environmental Sciences*, 2(2), pp.136–138.

Prasad, M. N. V. (2011). A state-of-the-art report on bioremediation, its applications to

contaminated sites in India. ministry of environment & forests, government of India.

Praveena, S. M., & Awang, S. (2014). Heavy metals uptake of water mimosa (*Neptunia oleracea*) and its safety for human consumption. *Iranian Journal of Public Health*, 43(3), pp.103–111.

Prusty, B. A. K., Azeez, P. A., & Jagadeesh, E. P. (2007). Alkali and transition metals in macrophytes of a wetland system. *Bulletin of Environmental Contamination and Toxicology*, 78(5), pp.405–410.

Rachmadiarti, F., Soehono, L. A., Utomo, W. H., Yanuwiyadi, B., & Fallowfield, H. (2012). Resistance of yellow velvetleaf (*Limnocharis flava* (L.) Buch.) exposed to lead. *Journal of Applied Environmental and Biological Sciences*, 2(6),pp. 210–215.

Rafia A., Masud, M. M., Akhtar, R., & Duasa, J. B. (2014). Water pollution : challenges and future direction for water resource management policies in Malaysia. *Environment and Urbanization Asia*, 5(1), pp.63–81.

Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic: Phytoremediation using floating macrophytes. *Chemosphere*, 83(5), pp.633–646.

Rai, P. K. (2008). Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. *International Journal of Phytoremediation*, 10(June 2013), pp.131–158.

Ralinda, R., & Miller, P. G. (1996). Phytoremediation. *Ground-Water Remediation Technologies Analysis Center*, 3.

Raskin, I., Smith, R. D., & Salt, D. E. (1999). Phytoremediation of metals: using plants to remove pollutants from the environment. *Current opinion in biotechnology*, 8(2), 221-226.

Raskin, I., Kumar, N. P. B. a., Dushenkov, S., & Salt, D. E. (1994). Bioconcentration of heavy metal by plants. *Current Opinion in Biotechnology*, 5, pp. 285–290.

Rassam, D. W., Cook, F. J., & Gardner, E. A. (2002). 1. Field and laboratory studies of acid sulfate soils. *Journal of Irrigation and Drainage Engineering*,128(2), 100-106. Rawalpindi, M., Nazir, A., Malik, R. N., & Ajaib, M. (2013). Accumulation of Cadmium in soil and plants in vicinity of Koh-E-Noor textile mills Rawalpindi,

Pakistan. Biologia (Pakistan), 59(2), pp.197–203.

Reed, R. (2015). Urban economic trends in Sri Lanka, Malaysia, Chile and South Africa. *Journal of Housing Markets and Analysis*, 9(3), 316-319.

Roos, P. M., Vesterberg, O., Syversen, T., Flaten, T. P., & Nordberg, M. (2013). Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. *Biological Trace Element Research*, 151(2), pp.159–170.

Sainty, G. R., & Jacobs, S. W. L. (1981). *Waterplants of New South Wales*. New South Wales: Water Resources Commission, N.S.W, Sydney.

Salt, D. E., Blaylock, M., Kumar, N. P., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. *Nature biotechnology*, *13*(5), pp.468-474.

Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. *Annual review of plant biology*, 49(1), pp. 643-668.

Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian Mustard. *Plant Physiology*, 109(4), pp.1427–1433. Sánchez-Galván, G., Monroy, O., Gómez, J., & Olguín, E. J. (2008). Assessment of the hyperaccumulating lead capacity of *Salvinia minima* using bioadsorption and intracellular accumulation factors. *Water, Air, and Soil Pollution*, 194(1–4), pp.77–90.

Sandrin, T. R., & Maier, R. M. (2003). Impact of metals on the biodegradation of organic pollutants. *Environmental Health Perspectives*, 111(8), pp.1093–1101.

Sann Vathanaa, Kroesna Kanga, L. C. P. and U. ter M. (2001). Small scale swine raising in Cambodia. Conference on International Agricultural Research for Development,pp. 9–11.

Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007). Water quality management in the lower stretch of the river Ganges, East Coast of India: an approach through environmental education. *Journal of Cleaner Production*, 15(16), pp.1559–1567.

Saupi, N., Zakaria, M. H., Bujang, J. S., & Arshad, A. (2014). Assessment of proximate compositions and mineral contents of Neptunia oleracea Lourerio for vegetable food.

Emirates Journal of Food and Agriculture, 27(3), pp.266–274.

Sayyed, M. R. G., & Sayadi, M. H. (2011). Variations in the heavy metal accumulations within the surface soils from the Chitgar industrial area of Tehran. *Proceedings of the International Academy of Ecology and Environmental Sciences*, 1(1), pp.36–46.

Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. *Annual Review of Environment and Resources*, 35, pp. 109-136.

Setmire, J. G. (1984). Water quality in the new river from Calexico to the Salton Sea, Imperial County, California.

Setmire, J. G. (1984). *Water quality in the new river from Calexico to the Salton Sea, Imperial County, California* (No. 2212). USGPO; For sale by the Branch of distribution, US Geological Survey

Shabir Hussain Wani. (2012). Phytoremediation: Curing soil problems with crops. *African Journal of Agricultural Research*, 7(28), pp.3991–4002.

Shamshuddin, J., Muhrizal, S., Fauziah, I., & Husni, M. H. A. (2004). Effects of adding organic materials to an acid sulfate soil on the growth of cocoa (*Theobroma cacao* L.) seedlings. *Science of the Total Environment*, 323(1–3), pp.33–45.

Shamshuddin, J., Muhrizal, S., Fauziah, I., & Van Ranst, E. (2004). A laboratory study of pyrite oxidation in acid sulfate soils. *Communications in Soil Science and Plant Analysis*, 35(1–2), pp.117–129.

Simpson, H. J., & Pedini, M. (1985). Brackishwater aquaculture in the tropics: the problem of acid sulfate soils.

Singh, D., Gupta, R., & Tiwari, A. (2011). Phytoremediation of lead from wastewater using aquatic plants. *International Journal of Biomedical Research*, 2(7), pp.1–11.

Singh, D., Tiwari, A., & Gupta, R. (2012). Phytoremediation of lead from wastewater using aquatic plants. *Agricultural Technology*, 8(1), pp.1–11.

Singh, S. K., Bansal, A., Jha, M. K., & Dey, A. (2012). An integrated approach to remove Cr(VI) using immobilized *Chlorella minutissima* grown in nutrient rich sewage wastewater. *Bioresource Technology*, 104, pp.257–265.

Smith, D. R., Owens, P. R., Leytem, A. B., & Warnemuende, E. A. (2007). Nutrient

losses from manure and fertilizer applications as impacted by time to first runoff event. *Environmental Pollution*, 147(1), pp.131–137.

Sridhar, M. K. C., & Sharma, B. M. (1980). *Pistia stratiotes* L. in Nigerian waters. *Experientia*, 36(8), pp.953.

Stuckey, R. L., & Les, D. H. (1984). *Pistia stratiotes* (water lettuce) recorded from Florida in Bartram's travels. *Aquaphyte*, 4(2), 6.

Sumber, P., & Makanan, K. (2011). Natural resources management and food security in the context of sustainable development. *Sains Malaysiana*, 40(12), pp. 1331-1340.

Sun, Y., Zhou, Q., Xu, Y., Wang, L., & Liang, X. (2011). Phytoremediation for cocontaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. *Journal of Hazardous Materials*, 186(2–3), pp.2075–2082.

Suppadit, T., Phoochinda, W., & Bunsirichai, P. (2005). Treatment of effluent from shrimp farm by using water mimosa (*Neptunia oleracealour*). *International Society for Southeast Asian Agricultural Sciences*, 11(2), pp.20–29.

Suppadit, T., Phoonchinda, W., & Thummaprasit, W. (2008). Efficacy of water mimosa (*Neptunia oleracea* Lour.) in the treatment of wastewater from distillery slops. *The Philippine Agricultural Scientist*, 91(1), pp.61–68.

Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. *Ecological Engineering*, 18(5), pp.647–658.

Swensson, C. (2003). Analyses of mineral element balances between 1997 and 1999 from dairy farms in the south of Sweden. *European Journal of Agronomy*. 20(1), pp. 63–69.

Syuhaida, A., Wahab, A., Norkhadijah, S., & Ismail, S. (2015). Heavy metals uptake of water mimosa (*Neptunia oleracea*) and its safety for human consumption. *Iranian Journal of Public Health*, 43(3),pp. 103-111.

Taieb, A. (2009). Understanding and interpreting hematological investigations.

USA: Aberdeen University Press Services.

Tan, L. W. (2011). Consulting Member in the preparation of Sembrong Lake. UniversitiTun Hussein Onn Malaysia University of Ghana: Master's. Thesis.

Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin,

M. (2011). A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. *International Journal of Chemical Engineering*, 2011.

Tchobanoglous, G., & Schroeder, E. D. (1985). Water Quality. Ed. Adisson-Wesley Pub. Co. Reading (Mass.)(1.985).

Teresa, A., Teixeira, P., Fernandes, S., Almeida, P., Xavier, J., & Ferreira, E. (2011). Environmental impact of mining activities in the Lousal area (Portugal): chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. *Science of the Total Environment*, 409(20), pp.4312–4325.

Thomas Weisse and Peter Stadler. (2006). Effect of pH on growth, cell volume, and production of freshwater ciliates, and implications for their distribution. *Limnology and Oceanography*, 51(4), pp.1708–1715.

Tin, N. T., & Wilander, A. (1995). Chemical conditions in acidic water in the Plain of Reeds, Viet Nam. *Water Research*, 29(5), pp.1401–1408.

Tomljenovic, L. (2011). Aluminum and Alzheimer's disease: after a century of controversy, is there a plausible link? *Journal of Alzheimer's Disease : JAD*, 23(4), pp.567–98.

Tsang, Daniel Chao Wa, & I. M. C. Lo. (2013). Remediation of heavy metals in the environment. Remediation of heavy metals in the environment.

Tyagi, T. & Agrawal, M. (2015). Pharmaceutical potential of aquatic plant *Pistia stratiotes* (L.) and *Eichhornia crassipes. Journal of Plant Sciences*, 3(1), pp. 10–18.

US EPA. (2014). History of the Clean Water Act. *Water Resources IMPACT*, 3(5), pp.26-30.

Vaajasaari, K., & Joutti, A. (2006). Field-Scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. *Journal of Soils and Sediments*, 6(3), pp.128–136.

Vamerali, T., Bandiera, M., Coletto, L., Zanetti, F., Dickinson, N. M., & Mosca, G. (2009). Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). *Environmental Pollution*, 157(3), pp.887–894.

Vanni, M. J., & Layne, C. D. (1997). Nutrient recycling and herbivory as mechanisms in the "top-down" effect of fish on algae in lakes. *Ecology*, 78(1), pp. 21–40.

Vara Prasad, M. N., & de Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants- Boidiversity prospecting for phytoremediation technology. *Electronic Journal of Biotechnology*, 6(3), pp.285–321.

Varsha G., Sengupta, M., Prakash, J., & Tripathy, B. C. (2017). Basic and applied aspects of biotechnology. In Basic and Applied Aspects of Biotechnology (pp. 333-349). *Springer Singapore*.

Vasavi, A., Usha, R., & Swamy, P. (2010). Phytoremediation- An overview review. *Journal of Industrial Pollution Control*, 26(1), pp.83–88.

Venkatesharaju, K., Ravikumar, P., Somashekar, R. K., & Prakash, K. L. (2010). Physico-chemical and bacteriological investigation on the river Cauvery of Kollegal stretch in Karnataka. *Kathmandu University Journal of Science, Engineering and Technology*, 6(1), pp.50–59.

Verma, P. C. (2015). To study the corrosion behaviour of aluminium metal in alkaline medium in presence of soft bases as inhibitors and determine the rate of corrosion. *International Journal of Engineering Technology Science and Research*, 2(8), pp.59–72. Vernberg, F. J., & Vernberg, W. B. (2001). The coastal zone: past, present, and future. Univ of South Carolina Press.

Veschasit, O., Meksumpun, S., & Meksumpun, C. (2012). Heavy metals contamination in water and aquatic plants in the Tha Chin River, Thailand. *Kasetsart Journal - Natural Science*, 46(6), pp.931–943.

Veselý, Tomáš, Pavel Tlustoš, and J. S. (2012). Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (*Pistia stratiotes* L.) in the rhizofiltration process. *International Journal of Phytoremediation*, 14(4), pp.335–49.

Victor, K. K., Séka, Y., Norbert, K. K., Sanogo, T. A., & Celestin, A. B. (2016). Phytoremediation of wastewater toxicity using water hyacinth (*Eichhornia crassipes*) and water lettuce (*Pistia stratiotes*). *International journal of phytoremediation*, 18(10), 949-955.

Wang, Q., Li, Z., Cheng, S., & Wu, Z. (2010). Influence of humic acids on the accumulation of copper and cadmium in Vallisneria spiralis L. from sediment. *Environmental Earth Sciences*, 61(6), pp.1207–1213.

White, M., Smith, A., Humphryes, K., Pahl, S., Snelling, D., & Depledge, M. (2010). Blue space: The importance of water for preference, affect, and restorativeness ratings of natural and built scenes. *Journal of Environmental Psychology*, 30(4), pp.482–493.

White, P. M., Wolf, D. C., Thoma, G. J., & Reynolds, C. M. (2006). Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. *Water, Air, and Soil Pollution*, 169(1–4), pp.207–220.

Whiting, S. N., De Souza, M. P., & Terry, N. (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by *Thlaspi caerulescens*. *Environmental Science and Technology*, 35(15), pp.3144–3150.

Wood, J. M. (1974). Biological cycles for toxic elements in the environment. *Science* (*Washington, DC*);(*United States*), 183(4129).

World Health Organization. (2003). Aluminium in drinking-water: Background document for development of WHO guidelines for drinking-water quality.

Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. *Environment International*, 31(5), pp.755–762.

Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. *Science of the Total Environment*, 368(2–3), pp.456–464.

Zacchini, M., Pietrini, F., Scarascia Mugnozza, G., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. *Water, Air, and Soil Pollution*, 197(1–4), pp.23–34.

