
COMPARISON OF RLL, STATE DIAGRAM, GRAFCET AL'l'D PETRI NET

FOR THE REALIZATION OF LOGIC CONTROLLER

ZULHAIRl BIN OTHMAN

This thesis is submitted in partial fulfillment of the requirements for the award of the

Degree of Master of Engineering (Electrical)

Fakulti Kejuruteraan

Kolej Universiti Teknologi Tun Hussein Onn

APRIL, 2005

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

ACKNOWLEDGEMENT

The writer is especially indebted to the supervisor of this thesis, Prof.

Madya Dr. Zainal Alam bin Haron for his encouragement and guidance

throughout the preparation of this thesis.

III

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

iv

ABSTRACT

The strengths and weaknesses of popular pIc programming tools may be a

common knowledge to the experienced but that contention alone lacks depth to the many

others. Several studies have presented weighted comparisons but focused on only two

approaches at a time. The first part of this paper presents qualitative comparisons

among the 4 most popular approaches: relay ladder logic (RLL), state diagram, grafcet

and ordinary Petri net. Each approach is weighted by their understandability, efficiency

and flexibility. It is the intent of the second part of this study to formulate a mix and

match LLD realization method based on the compared model strengths and weaknesses.

The proposed model is then compared with the internationally accepted Grafcet

approach in light of the same criteria as the first part. An analysis entails on what has

been gained and lost in the proposed approach. From these comparisons ultimately, it is

hoped that the pIc programmer is aware of the strengths and limitations of whichever

programming approach chosen. PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

v

TABLE OF CONTENT

CHP PAGE

1. Part 1: Introduction

1.1 Evolution ofLLD implementation methods

1.2 Objective 3

1.3 Brief description of the compared methods 4

2. Literature review 8

3. Method 10

3.1 Understandability 11

3.2 Response time 12

3.3 Flexibility 14

4. Results 16

4.1 RLL 16

4.2 State diagram 17

4.3 Grafcet 18

4.4 Petri net 19

5. Discussion 20

5.1 Understandability 20

5.2 Response Time 25

5.3 Flexibility 26

6. Part 2: Proposed Approach 29

6.1 A Method of Minimizing PLC Contacts 30

6.2 RLL Cascade Method 30

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

603

7.

701

80

90

9.1

Proposed Grafcet Model

Part 2: Methodology

Pick and Place Robot

Part 2: Results

Part 2: Discussion

Conclusion

Page

33

36

36

39

42

48

References 50

Appendix A: State Diagram Ladder Diagram 53

Appendix B: Grafcet Ladder Diagram 56

Appendix C: Petri Net Ladder Diagram 57

Appendix D: Proposed Grafcet LLD 58

Appendix E: PnP Ordinary Grafcet LLD 59

Appendix F: PIIP Proposed Grafcet LLD 61

VI

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

NO

1.1

5.1

LIST OF TABLES

Direct logic representation of RLL

Tabulated results of comparisons

PAGE

2

20

vii

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

viii

LIST OF FIGURES

NO PAGE

1.1 Simple grafcet graphical fonn 5

1.2 Grafcet model of branch out sequence 6

1.3 Simple Petri net graphical fonn 6

3.1 Concurrent tank filling process 10

3.2 Activation and deactivation of one state 13

machine

3.3 Enabling a firing in LLD 14

4.1 RLL graphical representation 16

4.2 State diagram graphical representation 17

4.3 Grafcet graphical representation 18

4.4 Petri net graphical representation 19

5.1 Elongated test case grafcet 22

5.2 Elongated test case Petri net 23

6.1 Macrostep and its expansion grafcet 33

6.2 Proposed grafcet for test case 35

7.1 Kuittho's Pick and Place Robot 37

8.1 PnP ordinary grafcet 40

8.2 PnP proposed grafcet 41

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

ix

NO PAGE

9.1 Grafcet distribution OR 44

9.2 Grafcet with choice branches 45

9.3 Grafcet with Junction AND 45

9.4 Junction OR 46

9.5 Distribution AND 46

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER!

PART 1: INTRODUCTION

Today's fast pace teclmology has generated a demand not only for the fastest

and most efficient manufacturing system, but also for one that is highly flexible.

While the general approach in the local scene tends towards upgrading ofthe

system's hardware and software, it is often the chosen process and the method of

process implementation themselves that dictate the long term success of any

upgrades.

In the domain of programmable logic controller (pIc), hardware and software

enhancements are rolled out almost yearly, and in pace with the technological

development of the larger sphere of digital world. But as in the case of the digital

world, any upgraded system is only more efficient and effective ifthe user has the

know-how and realizes the knowledge with methods that maximize the upgrade

potential.

1.1 Evolution of LLD Implementation Methods

Ladder logic diagram (LLD) is the adopted 'software' for pIc programming.

It replaces the traditional pneumonic machine languages with electrical symbols

common in hard-wired electrical circuit such as switches, relays, actuators etc.

The use of LLD as tool dates back in the 1950' s - well before the

introduction of a prototype pic. The obvious reason for this is LLD facilitates the

actual realization of a designed system such as wiring and component arrangement.

But more importantly, LLD possesses one-to-one relation to basic digital logic as in

table 1.1.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

2

Table 1.1: Direct logic representation of RLL

No Logic Instruction RLL

I If A AND B, then C A B C

-1H~

2 If A OR B, then C A C

~yo
With the associations, the rules and methods of designing a discrete event

system could adopt that of the digital counterpart. This important property ofLLD is

also the key to development and improvement of various methods of transforming

discrete events and sequences to LLD models.

As the need for factory automation grew in the 1970's, so did the size and

complexity of industrial automata and process requirements. One of the popular

tools was the graphical state diagram and the tabulated state transition diagram. The

two often works in tandem and will be referred to as simply state diagram method

henceforth. This approach shifts the implementation focus from direct output

implementation to process state and transition modeling.

Almost parallel, a French committee of academicians and industrialists

presented their tool for LLD realization in 1977. This French standard (NFC-03-

190), known as grafcet, was further enhanced in 1983. Grafcet's popularity

eventually made it a basis for an international standard. The modeling standard went

through a series of revisions until it is known as sequential function chart (SFC) in

IEC 1131-3 standard - published in 1993. Since the basic model for LLD execution

is similar in both grafcet and SFC, the approach will be referred to as grafcet. If the

differences between the two models are distinguishable, it would be noted in the

context.

Grafcet evolves from petri net model with several differences in

interpretations and rules. Although grafcet is a subset of petri net model, it is only

within the last decade that petri net itself is proposed as the logic controller

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

implementation tool. Since there is no formal LLD transformation method from a

petri net model that has been agreed, this study assumes similar LLD transformation

as in grafcet and state diagram. The petri net model considered in this study is

ordinary petri net. Several other forms of petri net model have been proposed for

logic controller such as colored petri net, but the additional properties of these

models - distributive and temporal for example - are not explicitly quantified in this

study.

3

Besides the 4 formal methods, there are other approaches but most are either

proprietary or unpopular in the manufacturing circle. The 4 selected methods are

supported by the majority of pic manufacturers. This in tum ensures interoperability

- a strong case for flexibility and adaptability in manufacturing system.

1.2 Objective

The brief historical review has shown the timeline of the dominant tools that

corresponds to their era of industrial system size and complexity. However, the

historical relation does not signify any weighted advantages or disadvantages since

several approaches evolve from another out of a specific necessity.

This study aims to furnish a weighted comparison of the 4 selected tools in

understandability, response time and adaptability. Several other comparison criteria

will be discussed not as quantified arguments, but perceptive analysis.

With the exception ofRLL approach, the other 3 models shares a common

state/transition transformation into a working LLD in this study. There exist a direct

and common proportionality then between the number of states (or places as called in

petri net) and the number of elements in LLD for the 3 models. Consequently, the

comparisons of understandability and flexibility of all approaches emphasize on

graphical representation and not the resulting LLD. It is only when comparing time

response, the number of nodes in LLD becomes a factor.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

1.3 Brief Description of the Compared Methods

Relay Ladder Logic (RLL)

RLL in this paper refers to the method of LLD realization that transforms

event sequence directly into LLD form without any tabulated or graphical modeling.

One such method is akin to a sequential try-and-error type LLD realization.

4

This try-and-error design approach is the product of trying to relate process automata

- in which actual sequence of activation and deactivation are important - with digital

/ binary logic - in which variable order of sequence does not change the output

values. Although this method has undergone many improvements, it still lacks a

systematic set of designed steps that could be applied to all process sequence of

various types and complexity. Despite its heuristic approach, this method is often

used as an introductory point to LLD programming due to its intuitively logical

approach.

State Diagram

In a state diagram method, the discrete event sequence is transformed to a

tabulated form of state tables. In some approaches, the table is then drawn in the

form of graphical sequence.

One classic tabulated modeling is Huffman method. Unlike the sequential

try-and-error approach, the designed steps in Huffman method are well defined and

applicable to a broader range of process types. This approach starts by determining

stable states of the discrete event sequence for all possible input combinations

(sensory inputs for example) and then tabulates them. The stable states arc then

combined according to a set of merging rules. Next, the merged states are assigned

with flip flop outputs in accordance with the sequence. The final output functions

are drawn out of the Karnough map of the flip flop outputs.

Note that the key to Huffman method is its successful way of correlating a

sequential output with the established mathematics of combinational or Boolean

logics. A detailed tutorial of Huffman method is presented in [12).

In the state diagram graphical form or henceforth referred to as state diagram.

each tabulated stable states is drawn as a circle labeled with its outputs' names. The

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

sequential relation of any 2 state circles is represented by directed arcs (arrows)

labeled with the input that triggers the state. LLD is realized from the graphical

model by assigning a flip flop output for each state. The flip flop output is then

activated by a combinational function of its inputs and the link upstream states. In

pIc programming, this LLD implementation from the state diagram is similar to the

method used by grafcet.

Grafcet and Petri net

Grafcet is essentially a subset of Petri net modeling but differs in

interpretation and its LLD implementation rules. Both graphical forms bears close

resemblance to the graphics of state diagram with several differences as discuss

below.

A grafcet step, represented by a square as in figure 1.1, models only the

desired output(s) that is/are active according to the process sequence. In discrete

event system, one sequential step corresponds to unique state of the sequence.

Therefore, a grafcet step is often interpreted similar to a state diagram's state.

t1

Figure 1.1: Simple grafcet graphical form

The difference between the two models' 'state' is best explained with a

concurrent system. 2 events are concurrent if the event is causally independent.

Consider a process sequence that starts out in a single path as in figure 1.1 but then

branches out to 2 concurrent paths as soon as actuator (B) completes extending and

the corresponding sensor (bO) turns on, as in figure 1.2.

The grafcet model and a state diagram model of figure 1.2 prior to the

activation of bO looks structurally similar. But after bO turns on, the grafcet model

takes on only 2 paths with each path indicating only the active outputs belonging to

that particular branch.

5

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

6

Figure 1.2: Grafcet model of branch out sequence

In a state diagram representation however, the structure after bO would show

a web of interlinked states, devoid of any distinctive sequential paths. Each state in

the state diagram shows all the possible and stable combinations of active outputs.

Consequently, outputs from the 2 branched out paths are intermixed in labels on each

state circles. This difference is further highlighted in the discussion part of part I.

In Petri net, the counterpart of a grafcet step is called a place - represented by

a circle as in figure 1.3. Unlike grafcet's singular purpose of logical sequence

implementation, a Petri net model could also be applied to a broader range of system

design and analysis such as in data communication and manufacturing resource

planning. In the narrowed scope ofLLD implementation, a Petri net could be

interpreted similar to grafcet.

tl

Figure 1.3: Simple Petri net graphical form

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

7

One important difference is that one Petri net place corresponds to the status

of only one resource or output. Structurally, a grafcet sequence could have any

outputs repeatedly active at another step(s) as called for by the event sequence. But

in a Petri net representation of the same sequence, only one place bearing the label of

that output will be shown. The place would have more that one directed arc both

going into and coming out of the place. Other differences are discussed in the

discussion section of this study.

The grafcet and SFC method are elaborated in [9] whereas a tutorial paper of

grafcet is presented in [6]. [10] is tutorial paper on ordinary Petri net.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER II

LITERATURE REVIEW

By implementing ladder logic diagram (LLD) based on process automata, the

relay ladder logic (RLL) achieves efficiency in hard wiring and circuit element

usage. RLL was the natural adopted approach ofp1c programming in early 1970's

since it was hard-wired logic that pIc was intended to replace. However, as more

process sequences were automated and became more complex, implementing LLD

via the RLL method became heuristic.

The notion of state in graphical models such state diagram proved to be the

key when dealing with large complex process sequence. The realization focus

shifted from modeling around process automata to the discrete states of a process. It

is the process state's that in tum, activates or deactivates process automata. This

concept permeated to all other LLD realization approaches. In the state diagram

method, the concept of state was influenced by works from C.F. Moore in

"Gedanken - Experiments on Sequential Machines" in "Automated Studies" - a

Princeton University Press (N.J.) publication.

Inasmuch as state diagram approach proved successful in unraveling the

complex sequences of discrete event system, the approach itself could very easily

tum out to be a complex web of states and transitions. The reason for this is its

inclusion of all possible internal states of the system to its graphical representation.

Consequently, concurrent process or sequence could not be shown graphically as

separate but parallel sequential paths.

This weakness, among others, has led to C.A. Petri's proposal of petri net

concept in his 1962 PhD dissertation: "Kommunikation mit Automaten" - submitted

to the University of Damstadt, West Germany. Petri net as a LLD tool was almost

obscure among pic programmers in that first pIc decade. The model later formed the

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

9

basis of French formal pIc tool called grafcet. While typical application of petri net

is total system modeling, grafcet as a model specifically aims to facilitate LLD

implementation. The analytical and testable strength of petri net was originally never

adapted to the grafcet model.

It was only within the last decade that the interest in petri net as logic

controller tool gained momentum. Publications of petri net as logic controller tool

could be found in [1] and [15~.

There exist other tools but not as popular for LLD implementations such as

finite state diagram (FSM) and function block diagram (FBD). Only the 4

approaches would be considered in this study owing to their dominance.

A qualitative study that includes the 4 approaches is useful as a guide for

LLD design. A quantified comparison between RLL and petri net by K. Venkatesh

and M.C. Zhou focuses on design complexity, time response and adaptability [14].

lS. Lee and P.L. Hsu devise an if-then transformation ofRLL and petri net for

quantitative comparisons in [8]. The focus is mainly on the time response of the 2

models.

One comparison that includes all 4 approaches is authored by K. Feldman and

A.W. Colombo in [7]. Since it's not the aim of that paper to compare the four

implementation tools, it does not present a qualitative analysis. It is the intent of this

study to fulfill that need. PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER III

METHOD

The objective of this study is to present weighted analysis of each approach's

understandability, response time and flexibility. The two criteria of

understandability and flexibility pertain to the human interface aspect of the model

whereas response time relates to hardware implementation of the approach. In that

light, only response time is evaluated quantitatively whereas the understandability

and flexibility are evaluated perceptively from the results.

A test case similar to the example presented in [4] and [6] is used as in figure

3.1 below. This process offers simple and concurrent process that is independent and

parallel to each other.

\---.---r_Reserv_oir -,------,---)

PIV VP2
b

-40-

fl ------------------ ------------------ f2

Tank 1 Tank 2

el - e2

Figure 3.1: Concurrent tank filling process

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

II

The concurrent sequences of the test case of figure 3.1 start by pressing push

button 'b'. When the empty sensors, el and e2, detect no water (-7 el' and e2') the

pumps, PI and P2, are activated to fill up tank I and tank 2 in parallel but

independently. The pumps tum off when the full sensors, fl and f2, detect water.

This in tum triggers the activation of the valves, VI and V2, independently to drain

out water from the tanks. The cycle for each tank continues when the respective

empty sensor detects the tank is empty. Note the notation used in this paper: e I'

indicates a 'Not' el.

3.1 Understandability

Although this criterion is merely perceptive, the graphical representation of

the approaches should conform to the accepted norms of graphical models such as

flowchart method. One of the most important properties of these accepted models is

the ability to present sequential flow in hierarchal fashion. Another property that

promotes understanding is the ability to present concurrent and independent

sequence unambiguously.

3.1.1 Hierarchy

The measure of hierarchy for each approach graphical representation is a top

to bottom flow of sequence. The graphical models should show the 'when', 'where',

and 'how' the flow relate to the actual manufacturing rather than merely on 'how' for

example. Where flow diverges, converges or becomes too large to fit, clear

markings should be used to indicate the relation of the detached sequences. These

properties are essential for fast and accurate human interfacing - for example

maintenance, modification or monitoring/testing purposes.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

12

3.1.2 Concurrency

As in the case of the test case, the 2 independent and concurrent sequences

should also be presented graphically as independent and parallel; the graphical flow

should not be ambiguous where the sequence diverges and converges for the test

case.

For the test case of figure 3.1, the measure of concurrency is a graphically

distinctive path for a parallel and independent process and a sharing of common

nodes when the two paths should converge.

3.2 Response Time

A pic execution cycle reads and updates each element in LLD sequentially

from top to bottom. The response time of execution could then be measured by the

number of elements or nodes in the rungs ofLLD program.

In RLL, a combinational function of a process automa could be directly

implemented in LLD by the correlation of table 1.1. Typically, an RLL output has

the following form:

Output = (ton + Outputinterlock) * torr'

These direct forms are not shown for state diagram, grafcet and petri net

because of these approaches to modeling process automata are in the form of process

state and transitions instead of focusing on process output. The bipartite nature of

the 3 models graphical forms may mislead the true meaning of the logic

representation ifit is tabulated in the same table 3.1.

For state diagram, grafcet and petri net, the realization ofLLD from the

graphical states and transitions are considered similar in this study. In these

approaches, the firing of one transition activates the next immediate state(s) and

deactivates the previous. Note that this generalized statement does not accurately

reflect the token game of petri net model but its final LLD outcome is similar.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

Borrowing petri net's mathematical relation for a firing sequence, the

equation is as follow:

m(p) = mprevious(P) + O(t,p) - I(p,t)

where m(p) is the new marking
mprevious(P) is the previous marking
O(t,p) is the postset of transition t
I(t,p) is the preset of transition t

13

During the LLD transformation of this firing sequence, the equation could be

translated as follows. The firing latches on the next immediate state O(t,p) and

unlatches previous state I(t,p). The LLD program is now pointing to a new marking

m(p), which is the sequential upstream marking from the previous marking

mprevious(P).

For a transition that activates (latches) a single state and deactivates

(unlatches) one state - as in the case for one state machine (SM), the LLD

transformation consists of3 elements as in figure 3.2. In this study, a pIc 'Keep' or

RS flip flop is used for the latching and unlatching of the states.

Present State

I

,,' I
. reset

Previous State

•
,,' I

1------1 [------------1, reset

Figure 3.2: Actiyation and deactivation of one state machine

The transition t is only firable when the immediate preceding states arc acti \'c

and when its receptivity is true.

t = mprcvious(P) . receptivity

For the SIl,'l example, the LLD transfom1ation has 3 clements, assuming a
single receptivity for the transition. This is shown in figure 3.3.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

14

Figure 3.3: Enabling a firing in LLD

For the SM example, a single firing is transformed into LLD with 6 elements.

This number is consistent for state diagram, grafcet and petri net approach.

This transformation method is applied for the 3 approaches. The total

element of each LLD is then counted and represents a figure for each of the models.

For the sake of clarity, the LLD initialization rungs are not shown in any of

the results. The basic ladder diagram structure for all initialization sequences is

assumed to produce similar quantity of components used. This is justified because

the objective of initialization is to ensure all state controller contacts initialize and

that all actuators have reverted to their rest positions. In the case of RLL where the

state concept is not used, the initialization sequence ensures that the master controller

contacts are initialized.

3.3 Flexibility

The flexibility of a tool determines its adaptive and responsive capability for

human interfacing. For the test case, an additional test is designed to compare the

flexibility of the models. A process change to the tank filling process requires the

tank fl discharge via VI to stop immediately on the issuance of an external event 'c'

from a larger process. Tank I should then be filled up again even though it is not

empty. Flexibility is then measured from the resulting graphical models of each

approach.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

15

3.3.1 Efficiency of Process Change

The number of changes to each approach's graphical representation is proportional to

the changes required in LLD. A quantitative comparison ofLLD changes presents a

measure of efficiency in carrying out a process change.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

CHAPTER IV

RESULTS

4.1 RLL

4.1.1 Test case graphical model

_e1 _b -t1 P1
Pump 1

P1

P1 f1 e1 V1

:
T I 1 V{~lve 1

V1

_e2 _b _t2 P2
Pump 2

P2

_f2 02 V2

I I T Y.'31ve2

Figure 4.1: RLL graphical representation

4.1.2 Response Time

The LLD of figure 4.1 consists of 20 nodes.

4.1.3 Flexibility: Efficiency

A normally close contact 'c' is 'And' together to 'el ' in the rung for Valve 1

of figure 4.1. The equation for Valve 1 is as follows:

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

REFERENCES

[1] Adamski, M.A. and Monteiro,J.L., "Rule-based Formal Specification and

Impelementation of Logic Controllers Programs," Proceedings ofIEEE

Int.Symp. on Industrial Electronics, vol. 2, pp700-705, July 1993.

[2] Andreu, D. and Pascal, J.C., "Fuzzy Petri Net-based Programmable Logic

Controller," IEEE Transaction on Syst., Man, and Cybernetics-Part B:

Cybernetics, vol. 27, no. 6, Dec 1997.

[3] Azevedo, J.L. and deOliveira, J.P., "The Grafcet's Macro-Action Concept: An

Implementation View," Proceedings of the i h IEEE Int. Conf. on Emerging

Technologies and Factory Automation, vol.2, ppI275-1279, EiFA 1999.

[4] Charbonnier, F., Alla, H. and David, R., "The Supervised Control of Discrete­

Event Dynamic Systems," IEEE Transactions on Cont. Syst. Technology, vol.

7, no. 2, ppI75-187, March 1999.

[5] Chen, S.M., "Weighted Fuzzy Reasoning using Weighted Fuzzy Petri Nets,"

IEEE Transaction on Knowledge and Data Engineering, vol. 14, no. 2, pp386-

397, MarchJApril2002.

[6] David, R., "Grafcet: A Powerful Tool for Specification of Logic Controllers,"

IEEE Transaction on Cont. Syst. Technology, vol. 3, no. 3, pp253-268, Sept

1995.

[7] Feldmann, K., Colombo, A.W., Schnur, C. and Stockel, T., "Specification,

Design, and Implementation of Logic Controllers based on Colored Petri Net

Models and the Standard IEC 1131 Part 1: Specification and Design," IEEE

Transaction on Cont. Syst. Technology, vol. 7, no. 6, pp657-665, Nov 1999.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

SI

[8] Lee, 1.S. and Hsu, P.L., "A New Approach to Evaluate Ladder Logic Diagrams

and Petri Nets via the If-Then Transformation," Proceedings of IEEE Int.

Conf. on Man and Cybernetics, vol. 4, pp2711-2716, Oct 2001.

[9] Lewis, R.W., "Programming Industrial Control Systems using IECI131-3:

Revised Edition," The Institution of Electrical Engineers, 1998.

[10] rvlurata, T., "Petri Nets: Properties, Analysis and Applications," Proceedings of

the IEEE, vol. 77, no. 4, ppS41-S78, April 1989.

[II] Parr, E.A., "Programmable Controllers: An Engineer's Guide," 2nd Edition,

Newness, 1999.

[12] Pessen, David W., "Industrial Automation: Circuit Design and Components,"

John Wiley and Sons, pI68-218, 1989.

[13] Seshu, S., Miller, R.E. and Metze, G., "Transition Matrices of Sequential

Machines," IRE Transaction on Circuit Theory, ppS-12, March 19S9.

[14J Venkatesh, K., Zhou, M.e. and Caudill, RJ., "Comparing Ladder Logic

Diagram and Petri Nets for Sequence Controller Design through a Discrete

Manufacturing System," IEEE Transaction on Industrial Electronics, vol. 41,

no. 6, Dec 1994.

[ISJ Wegrzyn, A. and Wegrzyn, M., "Petri Net-based Specification, Analysis and

Synthesis of Logic Controllers," Proceedings of the 2000 IEEE Int. Symp. on

Industrial Electronics, vol. I, pp20-26, ISIE 2001.

PTTA
PERP

UST
AKA
AN
TUN
KU T

UN
AMI
NAH

	ACKNOWLEDGEMENT
	ABSTRACT
	TABLE OF CONTENT
	Part 1: Introduction
	Literature review
	Method
	Results
	Discussion
	Part 2: Proposed Approach
	Part 2: Methodology
	Part 2: Results
	Part 2: Discussion

