
COMPARISON OF RLL, STATE DIAGRAM, GRAFCET AL'l'D PETRI NET 

FOR THE REALIZATION OF LOGIC CONTROLLER 

ZULHAIRl BIN OTHMAN 

This thesis is submitted in partial fulfillment of the requirements for the award of the 

Degree of Master of Engineering (Electrical) 

Fakulti Kejuruteraan 

Kolej Universiti Teknologi Tun Hussein Onn 

APRIL, 2005 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



ACKNOWLEDGEMENT 

The writer is especially indebted to the supervisor of this thesis, Prof. 

Madya Dr. Zainal Alam bin Haron for his encouragement and guidance 

throughout the preparation of this thesis. 

III 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



iv 

ABSTRACT 

The strengths and weaknesses of popular pIc programming tools may be a 

common knowledge to the experienced but that contention alone lacks depth to the many 

others. Several studies have presented weighted comparisons but focused on only two 

approaches at a time. The first part of this paper presents qualitative comparisons 

among the 4 most popular approaches: relay ladder logic (RLL), state diagram, grafcet 

and ordinary Petri net. Each approach is weighted by their understandability, efficiency 

and flexibility. It is the intent of the second part of this study to formulate a mix and 

match LLD realization method based on the compared model strengths and weaknesses. 

The proposed model is then compared with the internationally accepted Grafcet 

approach in light of the same criteria as the first part. An analysis entails on what has 

been gained and lost in the proposed approach. From these comparisons ultimately, it is 

hoped that the pIc programmer is aware of the strengths and limitations of whichever 

programming approach chosen. PTTA
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CHAPTER! 

PART 1: INTRODUCTION 

Today's fast pace teclmology has generated a demand not only for the fastest 

and most efficient manufacturing system, but also for one that is highly flexible. 

While the general approach in the local scene tends towards upgrading ofthe 

system's hardware and software, it is often the chosen process and the method of 

process implementation themselves that dictate the long term success of any 

upgrades. 

In the domain of programmable logic controller (pIc), hardware and software 

enhancements are rolled out almost yearly, and in pace with the technological 

development of the larger sphere of digital world. But as in the case of the digital 

world, any upgraded system is only more efficient and effective ifthe user has the 

know-how and realizes the knowledge with methods that maximize the upgrade 

potential. 

1.1 Evolution of LLD Implementation Methods 

Ladder logic diagram (LLD) is the adopted 'software' for pIc programming. 

It replaces the traditional pneumonic machine languages with electrical symbols 

common in hard-wired electrical circuit such as switches, relays, actuators etc. 

The use of LLD as tool dates back in the 1950' s - well before the 

introduction of a prototype pic. The obvious reason for this is LLD facilitates the 

actual realization of a designed system such as wiring and component arrangement. 

But more importantly, LLD possesses one-to-one relation to basic digital logic as in 

table 1.1. 
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Table 1.1: Direct logic representation of RLL 

No Logic Instruction RLL 

I If A AND B, then C A B C 

-1H~ 

2 If A OR B, then C A C 

~yo 
With the associations, the rules and methods of designing a discrete event 

system could adopt that of the digital counterpart. This important property ofLLD is 

also the key to development and improvement of various methods of transforming 

discrete events and sequences to LLD models. 

As the need for factory automation grew in the 1970's, so did the size and 

complexity of industrial automata and process requirements. One of the popular 

tools was the graphical state diagram and the tabulated state transition diagram. The 

two often works in tandem and will be referred to as simply state diagram method 

henceforth. This approach shifts the implementation focus from direct output 

implementation to process state and transition modeling. 

Almost parallel, a French committee of academicians and industrialists 

presented their tool for LLD realization in 1977. This French standard (NFC-03-

190), known as grafcet, was further enhanced in 1983. Grafcet's popularity 

eventually made it a basis for an international standard. The modeling standard went 

through a series of revisions until it is known as sequential function chart (SFC) in 

IEC 1131-3 standard - published in 1993. Since the basic model for LLD execution 

is similar in both grafcet and SFC, the approach will be referred to as grafcet. If the 

differences between the two models are distinguishable, it would be noted in the 

context. 

Grafcet evolves from petri net model with several differences in 

interpretations and rules. Although grafcet is a subset of petri net model, it is only 

within the last decade that petri net itself is proposed as the logic controller 
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implementation tool. Since there is no formal LLD transformation method from a 

petri net model that has been agreed, this study assumes similar LLD transformation 

as in grafcet and state diagram. The petri net model considered in this study is 

ordinary petri net. Several other forms of petri net model have been proposed for 

logic controller such as colored petri net, but the additional properties of these 

models - distributive and temporal for example - are not explicitly quantified in this 

study. 

3 

Besides the 4 formal methods, there are other approaches but most are either 

proprietary or unpopular in the manufacturing circle. The 4 selected methods are 

supported by the majority of pic manufacturers. This in tum ensures interoperability 

- a strong case for flexibility and adaptability in manufacturing system. 

1.2 Objective 

The brief historical review has shown the timeline of the dominant tools that 

corresponds to their era of industrial system size and complexity. However, the 

historical relation does not signify any weighted advantages or disadvantages since 

several approaches evolve from another out of a specific necessity. 

This study aims to furnish a weighted comparison of the 4 selected tools in 

understandability, response time and adaptability. Several other comparison criteria 

will be discussed not as quantified arguments, but perceptive analysis. 

With the exception ofRLL approach, the other 3 models shares a common 

state/transition transformation into a working LLD in this study. There exist a direct 

and common proportionality then between the number of states (or places as called in 

petri net) and the number of elements in LLD for the 3 models. Consequently, the 

comparisons of understandability and flexibility of all approaches emphasize on 

graphical representation and not the resulting LLD. It is only when comparing time 

response, the number of nodes in LLD becomes a factor. 
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1.3 Brief Description of the Compared Methods 

Relay Ladder Logic (RLL) 

RLL in this paper refers to the method of LLD realization that transforms 

event sequence directly into LLD form without any tabulated or graphical modeling. 

One such method is akin to a sequential try-and-error type LLD realization. 

4 

This try-and-error design approach is the product of trying to relate process automata 

- in which actual sequence of activation and deactivation are important - with digital 

/ binary logic - in which variable order of sequence does not change the output 

values. Although this method has undergone many improvements, it still lacks a 

systematic set of designed steps that could be applied to all process sequence of 

various types and complexity. Despite its heuristic approach, this method is often 

used as an introductory point to LLD programming due to its intuitively logical 

approach. 

State Diagram 

In a state diagram method, the discrete event sequence is transformed to a 

tabulated form of state tables. In some approaches, the table is then drawn in the 

form of graphical sequence. 

One classic tabulated modeling is Huffman method. Unlike the sequential 

try-and-error approach, the designed steps in Huffman method are well defined and 

applicable to a broader range of process types. This approach starts by determining 

stable states of the discrete event sequence for all possible input combinations 

(sensory inputs for example) and then tabulates them. The stable states arc then 

combined according to a set of merging rules. Next, the merged states are assigned 

with flip flop outputs in accordance with the sequence. The final output functions 

are drawn out of the Karnough map of the flip flop outputs. 

Note that the key to Huffman method is its successful way of correlating a 

sequential output with the established mathematics of combinational or Boolean 

logics. A detailed tutorial of Huffman method is presented in [12). 

In the state diagram graphical form or henceforth referred to as state diagram. 

each tabulated stable states is drawn as a circle labeled with its outputs' names. The 
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sequential relation of any 2 state circles is represented by directed arcs (arrows) 

labeled with the input that triggers the state. LLD is realized from the graphical 

model by assigning a flip flop output for each state. The flip flop output is then 

activated by a combinational function of its inputs and the link upstream states. In 

pIc programming, this LLD implementation from the state diagram is similar to the 

method used by grafcet. 

Grafcet and Petri net 

Grafcet is essentially a subset of Petri net modeling but differs in 

interpretation and its LLD implementation rules. Both graphical forms bears close 

resemblance to the graphics of state diagram with several differences as discuss 

below. 

A grafcet step, represented by a square as in figure 1.1, models only the 

desired output(s) that is/are active according to the process sequence. In discrete 

event system, one sequential step corresponds to unique state of the sequence. 

Therefore, a grafcet step is often interpreted similar to a state diagram's state. 

t1 

Figure 1.1: Simple grafcet graphical form 

The difference between the two models' 'state' is best explained with a 

concurrent system. 2 events are concurrent if the event is causally independent. 

Consider a process sequence that starts out in a single path as in figure 1.1 but then 

branches out to 2 concurrent paths as soon as actuator (B) completes extending and 

the corresponding sensor (bO) turns on, as in figure 1.2. 

The grafcet model and a state diagram model of figure 1.2 prior to the 

activation of bO looks structurally similar. But after bO turns on, the grafcet model 

takes on only 2 paths with each path indicating only the active outputs belonging to 

that particular branch. 

5 
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Figure 1.2: Grafcet model of branch out sequence 

In a state diagram representation however, the structure after bO would show 

a web of interlinked states, devoid of any distinctive sequential paths. Each state in 

the state diagram shows all the possible and stable combinations of active outputs. 

Consequently, outputs from the 2 branched out paths are intermixed in labels on each 

state circles. This difference is further highlighted in the discussion part of part I. 

In Petri net, the counterpart of a grafcet step is called a place - represented by 

a circle as in figure 1.3. Unlike grafcet's singular purpose of logical sequence 

implementation, a Petri net model could also be applied to a broader range of system 

design and analysis such as in data communication and manufacturing resource 

planning. In the narrowed scope ofLLD implementation, a Petri net could be 

interpreted similar to grafcet. 

tl 

Figure 1.3: Simple Petri net graphical form 
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One important difference is that one Petri net place corresponds to the status 

of only one resource or output. Structurally, a grafcet sequence could have any 

outputs repeatedly active at another step(s) as called for by the event sequence. But 

in a Petri net representation of the same sequence, only one place bearing the label of 

that output will be shown. The place would have more that one directed arc both 

going into and coming out of the place. Other differences are discussed in the 

discussion section of this study. 

The grafcet and SFC method are elaborated in [9] whereas a tutorial paper of 

grafcet is presented in [6]. [10] is tutorial paper on ordinary Petri net. 
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CHAPTER II 

LITERATURE REVIEW 

By implementing ladder logic diagram (LLD) based on process automata, the 

relay ladder logic (RLL) achieves efficiency in hard wiring and circuit element 

usage. RLL was the natural adopted approach ofp1c programming in early 1970's 

since it was hard-wired logic that pIc was intended to replace. However, as more 

process sequences were automated and became more complex, implementing LLD 

via the RLL method became heuristic. 

The notion of state in graphical models such state diagram proved to be the 

key when dealing with large complex process sequence. The realization focus 

shifted from modeling around process automata to the discrete states of a process. It 

is the process state's that in tum, activates or deactivates process automata. This 

concept permeated to all other LLD realization approaches. In the state diagram 

method, the concept of state was influenced by works from C.F. Moore in 

"Gedanken - Experiments on Sequential Machines" in "Automated Studies" - a 

Princeton University Press (N.J.) publication. 

Inasmuch as state diagram approach proved successful in unraveling the 

complex sequences of discrete event system, the approach itself could very easily 

tum out to be a complex web of states and transitions. The reason for this is its 

inclusion of all possible internal states of the system to its graphical representation. 

Consequently, concurrent process or sequence could not be shown graphically as 

separate but parallel sequential paths. 

This weakness, among others, has led to C.A. Petri's proposal of petri net 

concept in his 1962 PhD dissertation: "Kommunikation mit Automaten" - submitted 

to the University of Damstadt, West Germany. Petri net as a LLD tool was almost 

obscure among pic programmers in that first pIc decade. The model later formed the 
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basis of French formal pIc tool called grafcet. While typical application of petri net 

is total system modeling, grafcet as a model specifically aims to facilitate LLD 

implementation. The analytical and testable strength of petri net was originally never 

adapted to the grafcet model. 

It was only within the last decade that the interest in petri net as logic 

controller tool gained momentum. Publications of petri net as logic controller tool 

could be found in [1] and [15~. 

There exist other tools but not as popular for LLD implementations such as 

finite state diagram (FSM) and function block diagram (FBD). Only the 4 

approaches would be considered in this study owing to their dominance. 

A qualitative study that includes the 4 approaches is useful as a guide for 

LLD design. A quantified comparison between RLL and petri net by K. Venkatesh 

and M.C. Zhou focuses on design complexity, time response and adaptability [14]. 

lS. Lee and P.L. Hsu devise an if-then transformation ofRLL and petri net for 

quantitative comparisons in [8]. The focus is mainly on the time response of the 2 

models. 

One comparison that includes all 4 approaches is authored by K. Feldman and 

A.W. Colombo in [7]. Since it's not the aim of that paper to compare the four 

implementation tools, it does not present a qualitative analysis. It is the intent of this 

study to fulfill that need. PTTA
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CHAPTER III 

METHOD 

The objective of this study is to present weighted analysis of each approach's 

understandability, response time and flexibility. The two criteria of 

understandability and flexibility pertain to the human interface aspect of the model 

whereas response time relates to hardware implementation of the approach. In that 

light, only response time is evaluated quantitatively whereas the understandability 

and flexibility are evaluated perceptively from the results. 

A test case similar to the example presented in [4] and [6] is used as in figure 

3.1 below. This process offers simple and concurrent process that is independent and 

parallel to each other. 

\---.---r_Reserv_oir -,------,---) 

PIV VP2 
b 

-40-

fl ------------------ ------------------ f2 

Tank 1 Tank 2 

el - e2 

Figure 3.1: Concurrent tank filling process 
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II 

The concurrent sequences of the test case of figure 3.1 start by pressing push 

button 'b'. When the empty sensors, el and e2, detect no water (-7 el' and e2') the 

pumps, PI and P2, are activated to fill up tank I and tank 2 in parallel but 

independently. The pumps tum off when the full sensors, fl and f2, detect water. 

This in tum triggers the activation of the valves, VI and V2, independently to drain 

out water from the tanks. The cycle for each tank continues when the respective 

empty sensor detects the tank is empty. Note the notation used in this paper: e I' 

indicates a 'Not' el. 

3.1 Understandability 

Although this criterion is merely perceptive, the graphical representation of 

the approaches should conform to the accepted norms of graphical models such as 

flowchart method. One of the most important properties of these accepted models is 

the ability to present sequential flow in hierarchal fashion. Another property that 

promotes understanding is the ability to present concurrent and independent 

sequence unambiguously. 

3.1.1 Hierarchy 

The measure of hierarchy for each approach graphical representation is a top 

to bottom flow of sequence. The graphical models should show the 'when', 'where', 

and 'how' the flow relate to the actual manufacturing rather than merely on 'how' for 

example. Where flow diverges, converges or becomes too large to fit, clear 

markings should be used to indicate the relation of the detached sequences. These 

properties are essential for fast and accurate human interfacing - for example 

maintenance, modification or monitoring/testing purposes. 
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3.1.2 Concurrency 

As in the case of the test case, the 2 independent and concurrent sequences 

should also be presented graphically as independent and parallel; the graphical flow 

should not be ambiguous where the sequence diverges and converges for the test 

case. 

For the test case of figure 3.1, the measure of concurrency is a graphically 

distinctive path for a parallel and independent process and a sharing of common 

nodes when the two paths should converge. 

3.2 Response Time 

A pic execution cycle reads and updates each element in LLD sequentially 

from top to bottom. The response time of execution could then be measured by the 

number of elements or nodes in the rungs ofLLD program. 

In RLL, a combinational function of a process automa could be directly 

implemented in LLD by the correlation of table 1.1. Typically, an RLL output has 

the following form: 

Output = ( ton + Outputinterlock ) * torr' 

These direct forms are not shown for state diagram, grafcet and petri net 

because of these approaches to modeling process automata are in the form of process 

state and transitions instead of focusing on process output. The bipartite nature of 

the 3 models graphical forms may mislead the true meaning of the logic 

representation ifit is tabulated in the same table 3.1. 

For state diagram, grafcet and petri net, the realization ofLLD from the 

graphical states and transitions are considered similar in this study. In these 

approaches, the firing of one transition activates the next immediate state(s) and 

deactivates the previous. Note that this generalized statement does not accurately 

reflect the token game of petri net model but its final LLD outcome is similar. 
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Borrowing petri net's mathematical relation for a firing sequence, the 

equation is as follow: 

m(p) = mprevious(P) + O(t,p) - I(p,t) 

where m(p) is the new marking 
mprevious(P) is the previous marking 
O(t,p) is the postset of transition t 
I(t,p) is the preset of transition t 

13 

During the LLD transformation of this firing sequence, the equation could be 

translated as follows. The firing latches on the next immediate state O(t,p) and 

unlatches previous state I(t,p). The LLD program is now pointing to a new marking 

m(p), which is the sequential upstream marking from the previous marking 

mprevious(P ). 

For a transition that activates (latches) a single state and deactivates 

(unlatches) one state - as in the case for one state machine (SM), the LLD 

transformation consists of3 elements as in figure 3.2. In this study, a pIc 'Keep' or 

RS flip flop is used for the latching and unlatching of the states. 

Present State 

I 

,,' I 
. reset 

Previous State 

• 
,,' I 

1------1 [------------1, reset 

Figure 3.2: Actiyation and deactivation of one state machine 

The transition t is only firable when the immediate preceding states arc acti \'c 

and when its receptivity is true. 

t = mprcvious(P) . receptivity 

For the SIl,'l example, the LLD transfom1ation has 3 clements, assuming a 
single receptivity for the transition. This is shown in figure 3.3. 
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Figure 3.3: Enabling a firing in LLD 

For the SM example, a single firing is transformed into LLD with 6 elements. 

This number is consistent for state diagram, grafcet and petri net approach. 

This transformation method is applied for the 3 approaches. The total 

element of each LLD is then counted and represents a figure for each of the models. 

For the sake of clarity, the LLD initialization rungs are not shown in any of 

the results. The basic ladder diagram structure for all initialization sequences is 

assumed to produce similar quantity of components used. This is justified because 

the objective of initialization is to ensure all state controller contacts initialize and 

that all actuators have reverted to their rest positions. In the case of RLL where the 

state concept is not used, the initialization sequence ensures that the master controller 

contacts are initialized. 

3.3 Flexibility 

The flexibility of a tool determines its adaptive and responsive capability for 

human interfacing. For the test case, an additional test is designed to compare the 

flexibility of the models. A process change to the tank filling process requires the 

tank fl discharge via VI to stop immediately on the issuance of an external event 'c' 

from a larger process. Tank I should then be filled up again even though it is not 

empty. Flexibility is then measured from the resulting graphical models of each 

approach. 
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3.3.1 Efficiency of Process Change 

The number of changes to each approach's graphical representation is proportional to 

the changes required in LLD. A quantitative comparison ofLLD changes presents a 

measure of efficiency in carrying out a process change. 
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CHAPTER IV 

RESULTS 

4.1 RLL 

4.1.1 Test case graphical model 

_e1 _b -t1 P1 
Pump 1 

P1 

P1 f1 e1 V1 

: 
T I 1 V{~lve 1 

V1 

_e2 _b _t2 P2 
Pump 2 

P2 

_f2 02 V2 

I I T Y.'31ve2 

Figure 4.1: RLL graphical representation 

4.1.2 Response Time 

The LLD of figure 4.1 consists of 20 nodes. 

4.1.3 Flexibility: Efficiency 

A normally close contact 'c' is 'And' together to 'el ' in the rung for Valve 1 

of figure 4.1. The equation for Valve 1 is as follows: 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



REFERENCES 

[1] Adamski, M.A. and Monteiro,J.L., "Rule-based Formal Specification and 

Impelementation of Logic Controllers Programs," Proceedings ofIEEE 

Int.Symp. on Industrial Electronics, vol. 2, pp700-705, July 1993. 

[2] Andreu, D. and Pascal, J.C., "Fuzzy Petri Net-based Programmable Logic 

Controller," IEEE Transaction on Syst., Man, and Cybernetics-Part B: 

Cybernetics, vol. 27, no. 6, Dec 1997. 

[3] Azevedo, J.L. and deOliveira, J.P., "The Grafcet's Macro-Action Concept: An 

Implementation View," Proceedings of the i h IEEE Int. Conf. on Emerging 

Technologies and Factory Automation, vol.2, ppI275-1279, EiFA 1999. 

[4] Charbonnier, F., Alla, H. and David, R., "The Supervised Control of Discrete­

Event Dynamic Systems," IEEE Transactions on Cont. Syst. Technology, vol. 

7, no. 2, ppI75-187, March 1999. 

[5] Chen, S.M., "Weighted Fuzzy Reasoning using Weighted Fuzzy Petri Nets," 

IEEE Transaction on Knowledge and Data Engineering, vol. 14, no. 2, pp386-

397, MarchJApril2002. 

[6] David, R., "Grafcet: A Powerful Tool for Specification of Logic Controllers," 

IEEE Transaction on Cont. Syst. Technology, vol. 3, no. 3, pp253-268, Sept 

1995. 

[7] Feldmann, K., Colombo, A.W., Schnur, C. and Stockel, T., "Specification, 

Design, and Implementation of Logic Controllers based on Colored Petri Net 

Models and the Standard IEC 1131 Part 1: Specification and Design," IEEE 

Transaction on Cont. Syst. Technology, vol. 7, no. 6, pp657-665, Nov 1999. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH



SI 

[8] Lee, 1.S. and Hsu, P.L., "A New Approach to Evaluate Ladder Logic Diagrams 

and Petri Nets via the If-Then Transformation," Proceedings of IEEE Int. 

Conf. on Man and Cybernetics, vol. 4, pp2711-2716, Oct 2001. 

[9] Lewis, R.W., "Programming Industrial Control Systems using IECI131-3: 

Revised Edition," The Institution of Electrical Engineers, 1998. 

[10] rvlurata, T., "Petri Nets: Properties, Analysis and Applications," Proceedings of 

the IEEE, vol. 77, no. 4, ppS41-S78, April 1989. 

[II] Parr, E.A., "Programmable Controllers: An Engineer's Guide," 2nd Edition, 

Newness, 1999. 

[12] Pessen, David W., "Industrial Automation: Circuit Design and Components," 

John Wiley and Sons, pI68-218, 1989. 

[13] Seshu, S., Miller, R.E. and Metze, G., "Transition Matrices of Sequential 

Machines," IRE Transaction on Circuit Theory, ppS-12, March 19S9. 

[14J Venkatesh, K., Zhou, M.e. and Caudill, RJ., "Comparing Ladder Logic 

Diagram and Petri Nets for Sequence Controller Design through a Discrete 

Manufacturing System," IEEE Transaction on Industrial Electronics, vol. 41, 

no. 6, Dec 1994. 

[ISJ Wegrzyn, A. and Wegrzyn, M., "Petri Net-based Specification, Analysis and 

Synthesis of Logic Controllers," Proceedings of the 2000 IEEE Int. Symp. on 

Industrial Electronics, vol. I, pp20-26, ISIE 2001. 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH


	ACKNOWLEDGEMENT
	ABSTRACT
	TABLE OF CONTENT
	Part 1: Introduction
	Literature review
	Method
	Results
	Discussion
	Part 2: Proposed Approach
	Part 2: Methodology
	Part 2: Results
	Part 2: Discussion



