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ABSTRACT 

 

 

 

In the modern gas turbine, film cooling has been widely used to provide thermal 

protection for the external surface of the gas turbine blades. Numerous number of 

geometrical arrangement film cooling have been presented for the past 50 years. The 

main inspiration of the presented geometrical arrangements film cooling are to 

minimize the effect of lift off phenomena caused by the formation of the Counter 

Rotating Vortex Pair (CRVP) which commonly discovered in the Single Cylindrical 

Hole (SCH) arrangement. In order to reduce the CRVP effects, tremendous efforts 

from the past researchers have been made including the introduction of the Double 

Cylindrical Hole (DCH). The present study has made use this DCH along with the 

employment of several geometrical arrangements including pitch distance (POD), 

length between holes in streamwise direction (LoD), compound angle and upstream 

ramp. The evaluation of these parameters involved three different blowing ratios, M 

and two value of the turbulence intensities, Tu. The diameter of the cooling holes in 

the present study is 4.75mm which taken based on the previous study. The present 

study has been divided into two major studies namely experimental study and 

simulation study. The purpose of the experimental study is to validate the present 

simulation study which making use of an open end wind tunnel. As the validation 

process shows a good agreement results, 14 more models have been built and tested 

using simulation study which the total cases considered are 105. As for the result, all 

the considered cases of DCH shows improvement in comparison with SCH. Each of 

the considered geometries and flow parameters have their own effects on the film 

cooling effectiveness which will be elaborate in details in the further chapter. As 

conclusion, the simulation is having good agreement with the present experimental 

study and the previous study which is essential to confirm the reliability of the study.  

Meanwhile, all DCH shows improvement in term of film cooling effectiveness on each 

of blowing ratio value. 
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ABSTRAK 

 

 

 

Dalam turbin gas moden, filem penyejukan telah digunakan secara meluas untuk 

memberi perlindungan haba untuk permukaan luar bilah turbin gas. Banyak susunan 

filem penyejukan dan geometri telah dikemukakan untuk 50 tahun yang lalu. Inspirasi 

utama dalam  memperkenalkan geometri filem penyejukan adalah untuk 

mengurangkan kesan kenaikan jet yang disebabkan oleh pembentukan Counter 

Rotating Vortex Pair (CRVP) daripada filem penyejukan silinder tunggal (SCH). 

Dalam usaha untuk mengurangkan kesan CRVP, banyak usaha dari pengkaji yang 

terdahulu telah dibuat termasuk pengenalan tentang dua filem penyejukan silinder 

(DCH). Kajian ini telah menggunakan DCH bersama-sama dengan beberapa susunan 

dan geometri termasuk jarak melintang (POD), panjang antara lubang dari arah 

menegak (LoD), sudut kompaun dan tanjak awal sebelum lubang penyejukan. Bagi 

parameter aliran, tiga nisbah tiupan yang berbeza, M dan dua nilai kadar pergolakan, 

Tu telah dipertimbangkan. Diameter lubang penyejukan dalam kajian ini adalah 

4.75mm yang diambil berdasarkan kajian sebelumnya. Kajian ini telah dibahagikan 

kepada dua kajian utama; kajian eksperimen dan kajian simulasi. Setelah proses 

pengesahan menunjukkan hasil yang boleh diterima, 14 model yang berbeza telah 

dibina dan diuji menggunakan kajian simulasi dan jumlah kes yang dipertimbangkan 

adalah 105. Untuk hasil kajian, semua kes DCH yang dipertimbangkan telah 

menunjukkan peningkatan dalam keberkesanan filem penyejukan berbanding dengan 

kes SCH . Setiap geometri dan parameter aliran mempunyai kesan tersendiri pada 

keberkesanan filem penyejukan yang akan diterangkan dengan lebih terperinci dalam 

bab-bab yang selanjutnya. Kesimpulannya, hasil kajian simulasi ini mempunyai hasil 

yang baik setelah dibandingkan dengan hasil kajian eksperimen ini dan ianya penting  

dalam pengesahan kebolehpercayaan kajian. Sementara itu, semua DCH menunjukkan 

peningkatan dari segi filem penyejukan keberkesanan pada setiap meniup nilai nisbah.  
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INTRODUCTION 

 

 

 

CHAPTER 1 

 

 

 

1.1 Introduction 

 

Gas turbine engine are widely used in land based power plant and aircraft making its 

overall efficiency has been a key research topic in the turbo machinery industry. Gas 

turbine generates power by the burning of gasoline, oil, or other fuel which produces 

hot gases that will be expanded while producing work. At the early stage of its 

introduction, gas turbines have been used mainly in the aviation industry to power the 

aircraft. The history starts when Frank Whittle patented the first gas turbine which 

involved a compressor unit with two axial stages, followed by a centrifugal stage, an 

axial cannular combustor with fuel nozzle and two stages axial turbine in 1930 [1].  On 

12 April 1937, Whittle has successfully tested the world’s first kerosene-fueled jet 

engine known as Whittle Unit (W.U).  

Nowadays, gas turbine has been widely used as power generating devices. In 

practice, gas turbines operate in an open cycle and Figure 1.1 shows the major parts of 

the gas turbine consists of compressor, combustor and turbine. During the operation 

of gas turbines, the fresh air will first drawn into the compressor to increase the 

pressure of the air before entering the combustion chamber where the air will be mixed 

with the fuel and burned at constant pressure. The resulting high-temperature gases 

will enter the turbine where it will be expanded to atmospheric pressure while 

generating power through the turbine.  
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Figure 1.1: Gas-turbine engine layout. (Adapted from [2]). 

 

 

 

Figure 1.2: T-s diagram and P-v diagram [3]. 

 

Figure 1.2 shows the temperature versus entropy, T-s and pressure versus volume,     

P-v diagrams for gas turbine. Ideally, gas turbine operates in a Brayton’s cycle 

involving four main process [3]. At stage 1-2, fresh ambient air will be drawn in by 

the compressor and been compressed to a higher temperature and pressure before 

entering the next stage of 2-3. In this stage, these high pressure air then are sent into a 

combustion chamber along with the injected fuel, where it is burned at constant 

pressure, Qin. Meanwhile in stage 3-4, the high temperature gas will flow through the 

turbine resulting it to expand to the ambient pressure while producing power, Wout. 

Finally at stage 4-1, the exhaust gases leave the turbine with constant pressure heat 

rejection, Qout. The overall thermal efficiency of the Brayton’s cycle as in standard 

assumption can be given by [3] is 
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ηth,Brayton = 
𝑤𝑛𝑒𝑡𝑡

𝑞𝑖𝑛
 = 1 −

𝑇4

𝑇3
                       (1.1) 

 

Equation 1.1 shows that the efficiency of the gas turbine is proportional 

towards the turbine inlet temperature (TIT), T3, where higher TIT will produce higher 

cycle efficiency, which has been the approach in development of the modern gas 

turbine. In comparison with the early stage of gas turbine operation, the modern gas 

turbines are now operating at temperature exceeding 1800 ̊C. This high TIT is 

considered as a significant progress in comparison with the initial TIT of the Whittle’s 

gas turbine which operating at 760 ̊C [4]. The improvement has been made possible 

by the progress made in material development and the introduction of thermal cooling 

system.  

In the conventional jet engines, the limiting factor is on the performance of the 

material used for hot section (e.g.: combustor and turbine). The need for better 

materials spurred much research in the field of alloys and manufacturing techniques, 

and resulted in a long list of new materials and methods that make modern gas turbines 

possible. In the 1940s and 1950s, superalloys and vacuum induction melting which is 

the new processing methods have been developed and greatly increased the turbine 

blades temperature capabilities [5]. In modern turbine blade, the material that often 

used is nickel-based superalloys that incorporate chromium, cobalt and rhenium.  

Another major improvement to turbine blade material technology was the development 

of thermal barrier coatings (TBC). As the temperature increases, these TBCs will 

improvise the blade corrosion and oxidation resistance. The first TBCs applied was on 

1970s using aluminide coating and in 1980s the coating has been improved into 

ceramic coating [5]. These coatings improve the turbine blade temperature capabilities 

nearly 90 ̊C and also doubling the life of the blades in some cases.  

In the later year of gas turbine development, thermal cooling system has help 

to further improve the overall efficiencies of gas turbines which is embedded in the 

turbine blades. Thermal cooling systems are divided into two major categories which 

are the internal cooling and the external cooling [6]. Both of these categories are related 

towards each other. A cooler air which extracted from the compressor will first be 

supplied for internal cooling of the blade. This cooled air will went through a flow 

passage inside the blade while picking up heat during the process. This process also 
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known as the convection cooling. As the coolant pick-up the heat along the passages, 

some of the coolant will be released through the film cooling. As for external cooling 

in the gas turbine, several cooling techniques (impingement cooling, pin fin cooling, 

rib turbulated cooling and tip cap cooling) have been applied and the present study is 

focusing on the most common technique, film cooling.  

 

 

Figure 1.3: The cooling air passages inside the blade and the others internal cooling 

hole embedded in turbine blades. (Adapted from [7]) 
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1.2 Background of study 

 

The film cooling technique is achieved by allowing the coolant to be injected 

out from the turbine blade's body through cooling holes. The injected coolant will form 

a thin cool layer that covering the blade surface. Most of the available film cooling is 

using a single hole cylindrical or shaped holes. A lot of researches have been done to 

improve the performance of the film cooling [6]. The film cooling effectiveness 

produced by a cylindrical hole is exposed to the Counter Rotating Vortex Pair (CRVP) 

phenomena [7]. This CRVP will affect the film cooling effectiveness, which will 

further discuss later on in this writing. The present research trend shows a lot of efforts 

have been made on proposing new cooling hole geometry to reduce the formation of 

CRVP effect which includes trenched hole and anti-vortex hole. Although the shaped 

hole known to produce better film cooling effectiveness, single hole is still been used 

extensively due to its manufacturability. Wright et al. [8] have proposed a new 

geometry of film cooling known as double cylindrical hole. This geometry utilizes a 

pair of cylindrical film cooling of approximately the same diameter. Effective 

utilization of cylindrical hole arrangement will be able to reduce the manufacturing 

cost associated with shaped hole. 

 

1.3 Problem statements 

 

Previous study of Wright et al. [8] reported that the effects of double film cooling hole 

arrangement indicates an improvement on the film cooling effectiveness of the cooling 

hole vicinity areas. However, due to the short distance between the two holes 

considered; the film cooling effectiveness rapidly decays at further downstream of the 

cooling hole. By varying the arrangements of double cylindrical holes in terms of 

streamwise angles and spacing between the holes, better film cooling effectiveness 

might be produced at further downstream. The present study intended to evaluate the 

new cooling hole geometrical effects on the performances of the double cylindrical 

hole arrangement.  
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1.4 Importance of research 

 

The importance of the present research is to provide extended information on double 

cylindrical hole film cooling effectiveness at various geometrical and flow parameters. 

The study will also provides information on the flow field of the double cylindrical 

hole which could be crucial for future study.  

 

1.5 Objectives 

 

The objectives of the study are:- 

a) To validate the film cooling effectiveness prediction by the experimental. 

b) To predict the film cooling effectiveness of DCH based on the effects of 

various geometrical and flow parameters 

c) To clarify the performance of upstream ramp in improving the film cooling 

effectiveness 

 

1.6 Scope of studies 

 

This section will describe on the scope of the study involving the geometrical 

parameters and flow parameters. 

As shown in Figure 1.4, the scope for geometrical parameters of the present study 

are; 

a) Three compound angle, α are considered; α = 35°, 40° and 45°. 

b) The pitch distance, PoD = 2D, 3D and 4D. 

c) The distance between holes in streamwise direction, LoD = 1D, 2D and 3D. 

d) Two types of upstream ramps; Triangular ramp and Rectangular ramp. 

 

Meanwhile, the scope for flow parameters of the present study; 

a) Three blowing ratios, M = 0.5, 1.0 and 1.5 

b) Three turbulence intensities, Tu = 1%, 5% and 10% 

c) Density ratio, DR = 1.1 
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Figure 1.4: Illustration of the geometrical parameters of the present 
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