SIMULATION OF PAVEMENT DEFORMATIONS FOR DIFFERENT APPROACH SLABS CONCEPT CONSTRUCTED ON BATU PAHAT SOFT CLAY (BPSC)

MOHD NAZRIN MOHD DAUD

This dissertation is submitted as a fulfilment of the requirements for the award of The Master Degree of Civil Engineering

> Faculty of Civil and Environmental Engineering Universiti Tun Hussein Onn Malaysia

> > MAY 2007

Special dedication to my beloved father and mother, Mr. Mohd Daud Kayat and Mrs. Hamsah Sandir, all family members and friends. Thanks for all your valuable contributions, patience and love.

May Allah S.W.T, The Almighty bless our every living days, Insyallah...

acknowledgement

بسم ألله الرحمن الرحيم

Praise to be Allah, with the bless of His Almighty, this Projek Sarjana has been successfully completed within the given time frame. I would like to take this great opportunity to thank my project supervisor, Assoc. Prof. Dr. Mohd Idrus bin Mohd Masirin, all the supporting lecturers and staff of FKAAS especially Assoc. Prof. Dr. Kemas Ahmad Zamhari, Mr. Felix Ling Ngeeh Leh, Mrs. Nursitihazlin, and also the lab technicians, Mrs. Zamra, Mr. Amir Zaki, and Mr. Azuan. Only with His blessing that brought them to support and guide me favourably in order to finish this master project and my studies in Universiti Tun Hussein Onn Malaysia with success.

I would also like to convey my special thanks to my beloved parents, Mr. Mohd Daud Kayat and Mrs. Hamsah Sandir, and all my family members for their guidance and support throughout my studies. Only with your support and blessings, I have managed to continue my study this far successfully.

Thank You.

ABSTRACT

Depression or bump that occurs between end of bridge approach slab and road pavement interface always arises a great concern among motorists. The occurrence of the bump that motorist feel as they leaves or approaches the bridge is caused by the differential settlement problem. This problem becomes more apparent particularly over soft soil condition such in Batu Pahat district. Currently, there is no guideline and specification provided by the Public Work Department in designing a proper bridge approach model, which has exceptional transition toward road pavement. The current conventional model used in many projects was reported to be less effective since the problem is still noticeable and it requires regular maintenance work when the problem reappears recurrently. Practically, it is clear that the problem is still unresolved and this is due to the complexity of the design problem itself that merge the structural and geotechnical perspectives in design. The studies on simulation modelling for approach slab and road pavement design also have been rare. It is essential since such design analysis, which is based on numerical analysis, could have advantages in providing preliminary expected outcomes for the modelling purpose. In conjunction to this matter, the modelling of several approach slab and road pavement concepts have been successfully conducted to verify the result expectancies using this approach in order to provide better understanding on the recurrent problem.

Keywords: bump, bridge approach slab, differential settlement, soft soil, simulation modelling

ABSTRAK

Ketidakseragaman permukaan atau 'bonggol' yang berlaku di antara muka hujung papak julur bagi jambatan dan jalan raya kerap kali mengundang kebimbangan pengguna jalan raya. Kejadian tersebut yang dirasai oleh pengguna jalan raya apabila menuju atau melewati jambatan adalah diakibatkan oleh masalah prerbezaan pemendapan yang berlaku. Masalah tersebut menjadi lebih jelas apabila melibatkan pembinaan di kawasan tanah lembut seperti di daerah Batu Pahat. Pada ketika ini tiada garis panduan mahupun spesifikasi yang disediakan oleh Jabatan Kerja Raya dalam mereka bentuk papak julur yang mampu menangani permasalahan tersebut. Model konvensional yang digunapakai pada ketika ini dilaporkan kurang efektif kerana permasalahan ini masih berulang serta memerlukan kerja penyelenggaraan yang kerap. Secara praktikalnya adalah jelas bahawa permasalahan ini masih belum dapat diselesaikan dan ini adalah disebabakan oleh kesukaran yang dialami ketika mereka bentuk model di mana ia melibatkan gabungan pemahaman daripada sudut kejuruteraan struktur dan geoteknik. Manakala kajian kaedah simulasi dalam hal ini adalah jarang dilakukan dan tidak meluas. Analisis seperti ini yang melibatkan analisis elemen terhingga adalah berguna dan mempunyai kelebihan dalam menyediakan platfom rekabentuk awal. Berikutan ini, rekabentuk beberapa konsep papak julur bagi jambatan dan seksyen jalan raya telah dijalankan dengan jayanya dalam penyelidikan simulasi ini bagi menjelaskan jangkaan keputusan terhadap kajian, seterusnya memperolehi pemahaman yang lebih terhadap permasalahan yang berulang ini.

Kata kunci: bonggol, papak julur bagi jambatan, perbezaan mendapan, tanah lembut, simulasi

CONTENTS

CHAPTER TITLE

PAGES

DECLARATION	i	
SUPERVISOR'S CONFIRMATION	ii	
CONFESSION	iii	
DEDICATION	iv	
ACKNOWLEDGEMENT	v	
ABSTRACT	vi	
ABSTRAK	vii	
CONTENTS	viii	
LIST OF FIGURES	xv	
LIST OF TABLES	xvii	
LIST OF SYMBOLS	xix	
LIST OF SYMBOLS		

INTRODUCTION

I

1.1	Problem Statement	1
1.2	Objective of Study	2
1.3	History and Study Area	3
1.4	Scope and Limitation of Research	5
1.5	Hypothesis	5
1.6	Research Methodology	7
1.7	Flow Chart of Research Project	9

ROAD PAVEMENT-APPROACH SLAB CONSTRUCTION AND FAILURES

2.1	Introc	luction	10
	2.1.1	Soft Clay in Batu Pahat	11
	2.1.2	Road Pavement	12
	2.1.3	Bridge Approach	13
2.2	Flexit	ble Pavement: Design and Construction	14
	2.2.1	Design Method	14
	2.2.2	Design Factors	14
		2.2.2.1 Traffic Loading	15
		2.2.2.2 Material Characteristics	16
		2.2.2.3 Failure Criteria	17
	2.2.3	Road Pavement Design in Malaysia	17
	2.2.4	Construction under Soft Clay Condition	20
2.3	Bridge	e Approach Slab: Design and Construction	21
	2.3.1	Bridge Abutment and Approach Slab	21
	2.3.2	Design Method	22
	2.3.3	Construction of Approach Slab	23
<u> </u>			
2.4		le Pavement and Approach Slab Performance	24
	2.4.1	Flexible Pavement Failures	24
	2.4.2	Causes of Road Pavement Failures	27
	2.4.3	Problem on Approach Slab Structure	28

CASE STUDIES OF ROAD-BRIDGE INTERFACE PERFORMANCE

III

3.1	Intro	uction		30
3.2	Struc	ural Performance	of Bridge Approach Slabs	31
	under	Given Embankme	ent Settlement	
	3.2.1	Introduction		31
	3.2.2	Objectives of Stu	ıdy	32
	3.2.3	Research Method	dology	33
		3.2.3.1 Finite H	Element Modeling	33
		3.2.3.2 Determ	ination of Boundary Conditions	35
		3.2.3.3 Effects	of Embankment Settlements on	35
		Slab Pe	rformance	
		3.2.3.4 Test Re	sult	36
	3.2.4	Conclusion		37
3.3	Effect	of Orientation of .	Approach Slabs on Pavement	38
	Defor	nation		
	3.3.1	Introduction		38
	3.3.2	Objectives of Stu	dy	39
	3.3.3	Research Method	lology	40
		3.3.3.1 Approach	Slab	40
		3.3.3.2 Measuren	nent of Deformation	41
		3.3.3.3 Test Resu	lt	41
	3.3.4	Conclusion		43
3.4	Perfor	nance of Geocom	posite Membrane in	44
	Pavem	ent Systems		
	3.4.1	Introduction		44
	3.4.2	Objectives of Stu	dy	45
	3.4.3	Research Method	ology	46
	3.4.5	Conclusion		47
3.5	Discus	ions		48

х

FAILURE SIMULATION USING PLAXIS

	4.1	Intro	luction		50
	4.2	PLAX	XIS Finite	e Element Modelling in Geotechnics	51
		4.2.1	Mohr-0	Coulomb Model	52
		4.2.2	Soft-Sc	vil Model	53
		4.2.3	Soft-Sc	vil-Creep Model	54
	4.3	PLAY	KIS Progr	ammes	55
		4.3.1	Determ	ination of Boundary Condition	56
		4.3.2	Input P	arameter	56
			4.3.2.1	Geometrical Input	56
			4.3.2.2	Loads Types	58
			4.3.2.3	Material Input	58
			4.3.2.4	Mesh Generation	60
			4.3.2.5	Inital Condition	60
		4.3.3	Calcula	tion Program	61
			4.3.3.1	Calculation Types	61
			4.3.3.2	Loading Input	61
			4.3.3.3	Calculation Phases	62
			4.3.3.4	Selection of Points	63
		4.3.4	Output I	Data	64
			4.3.4.1	Graphical Output	64
			4.3.4.2	Cross-Section Output	65
			4.3.4.3	Table Output	66
		4.3.5	Curve G	eneration	67
	4.4	Failure	e Simulat	ion Analysis	69
	4.5	Limita	tion of Pl	70	

IV

.

 \mathbf{V}

RESEARCH METHODOLOGY AND TESTING

5.0 In	trodu	uction		71
5.1 G	ather	ing Data	and Information	72
5.	1.1	Literatu	re Review	72
5.	1.2	Interview	W	72
5.2 Fi	eld In	nvestigat	ion and Laboratory Testing	73
5.2	2.1	Geologi	cal Information of Study Area	73
5.2	2.2	Structura	al Condition	74
5.2	2.3	Subgrou	nd Condition	75
5.2	2.4	Soil Tes	ting	75
5.3 Tr	affic	Loading		76
5.3	3.1	Type of	Loading	77
5.3	3.2	Loading	Configuration	78
5.4 Pe	rforn	ning Sim	ulation Program	78
5.4	4.4	Geometr	ical Parameters	79
		5.4.4.1	Subgrade Thickness and Geotextile	79
			Layer	
		5.4.4.2	Control Model (Horizontal Slab)	80
		5.4.4.3	Slab Inclined at 5 to Horizontal	81
		5.4.4.4	Phreatic Level	81
5.4	1.5	Material	Parameters	82
5.4	1.6	Pavemen	t Properties	83
5.4	l.7	Soil Prop	perties	83
5.4	.8	Concrete	Slab Properties	84
5.4	.9	Geosynth	etic Properties	84
5.4	.10	Determin	ation of Boundary Conditions	84

VI

DATA OBSERVATION AND ANALYSIS

6.1	Introd	luction	86
6.2	Conse	blidation Analysis on Transition Section	87
	6.2.1	Horizontal Slab	87
	6.2.2	5° Inclined Slab	90
6.3	Effect	of Subgrade Thickness and Reinforcement	92
	on De	formation Profiles	
	6.3.1	Horizontal Slab without Geosynthetic	93
		Reinforcement	
	6.3.2	Horizontal Slab with Geosynthetic Reinforcement	94
	6.3.3	Inclined Slab at 5° to Horizontal without	96
		Geosynthetic Reinforcement	
	6.3.4	Inclined Slab at 5° to Horizontal with	97
		Geosynthetic Reinforcement	
6.4	Comp	arative Study on Deformation Profile of Different	98
	Appro	ach Slabs Design	
6.5	Defor	nation Analysis on Interface Region	101
6.6	Limita	tion of Research	103

VII CONCLUSION AND RECOMMENDATION

7.1	Introd	luction	106
7.2	Concl	lusion	107
	7.2.1	The Application of PLAXIS Software in	107
		Modelling Approach Slab Concept	
	7.2.2	Interface of Approach Slab and Flexible Road	108
		Pavement	
	7.2.3	Performance of 5° Inclined and Horizontal	109
		Approach Slab Concept	
7.3	3 Recommendations		

REI	FERENCES	: **
API	PENDICES	: :
А	Figures	
В	Tables	10.
C	PLAXIS Output Data	
C		

LIST OF FIGURES

FIGURES NO.

TITLE

PAGES

1.1	Plan View of Study Area	4
1.2	Flow Chart of Research Project	9
2.1	State Roads in Batu Pahat District (Batu Pahat PWD, 2004)	19
2.2	Typical Cross Section of Rural Road Pavement in	20
	Batu Pahat District (Public Work Department, 2001)	
2.3	Typical Pavement Section Constructed on Parit Karjo State	21
	Road (State Public Work Department, 2006)	
2.4	Typical Rut on Flexible Road Pavement	26
2.5	Typical Fatigue Cracking on Road Pavement Surface	26
	(Jestin, 2006)	
3.1	Illustration of Slab Interaction with Soil (Cai, et. al, 2005)	32
3.2 PEK	Sketch of Materials Arrangement (Cai, et, al, 2005)	34
3.3	Deflection of Slab against Differential Settlement	36
	(Cai, et. al, 2005)	
3.4	Rotation of Slab against Differential Settlement	36
	(Cai, et. al, 2005)	
3.5	Test Section of the Control Horizontal Slab (Cai, et. al, 2005)	40
3.6	Test Section of the Slab at 5° to Horizontal	40
	(Wong, et. al 1994)	
3.7	Test Section of the Slab at 10° to Horizontal	41
	(Wong, et. al, 1994)	
3.8	Deformation Profile of the Control Horizontal Slab	42
	(Wong, et. al, 1994)	
3.9	Deformation Profile of the Slab at 5° to Horizontal.	42
	(Wong, et. al, 1994)	

3.10	Deformation Profile of the Slab at 10° to Horizontal	43
	(Wong, et. al, 1994)	
3.11	Pavement Design (Section J and K) (Brandl, H. and Adam, D.	47
	(2000)	
4.1	Geometry Model in Plaxis Input Program	57
	(PLAXIS Tutorial Manual, 2002)	
4.2	Material Set and Configuration for Soil Properties	59
	(PLAXIS Tutorial Manual, 2002)	
4.3	Typical Calculation Window in PALXIS Calculations	63
	Program (PLAXIS Tutorial Manual, 2002)	
4.4	Deformed Mesh Visualised Graphically in PLAXIS Output	65
	Program (PLAXIS Tutorial Manual, 2002).	
4.5	Curve Generation Window in PLAXIS Curves Program	67
	(PLAXIS Tutorial Manual, 2002)	
4.6	Load-Displacement Curve Generated by PLAXIS Curves	68
	Program (PLAXIS Tutorial Manual, 2002)	
5.1	Typical Configuration of a Heavy Vehicle with Standard	77
	18 kips (80 kN) Single Axle Dual Tyres	
5.2 DE	Cross Sectional View of Subsoil Layer and Approach Slab	80
5.3	Configuration Type of Inclined Slab to the Horizontal	81
	Surface	
6.1	Horizontal Slab Deformation Profiles on Unreinforced	88
	Subgrade by Means of Consolidation	
6.2	Horizontal Slab Deformation Profiles on Geotextile-	89
	Reinforced Subgrade by Means of Consolidation	
6.3	Horizontal Slab Deformation Profiles on GCL-Reinforced	89
	Subgrade by Means of Consolidation.	
6.4	5° Inclined Slab Deformation Profiles on Unreinforced	90
	Subgrade by Means of Consolidation	
6.5	5° Inclined Slab Deformation Profiles on Geotextile-	91
	Reinforced Subgrade by Means of Consolidation	
6.6	5° Inclined Slab Deformation Profiles on GCL-Reinforced	92
	Subgrade by Means of Consolidation	

xvi

6.7	Development of Subgrade Deformation on Horizontal Slab	94
	Model with Different Thickness of Unreinforced Subgrade	
	Layer	
6.8	Development of Subgrade Deformation on Horizontal Slab	95
	Model with Different Thickness and Reinforced Subgrade	
	Layer	
6.9	Development of Subgrade Deformation on 5° Inclined Slab	96
	Model with Different Thickness of Unreinforced Subgrade	
	Layer	
6.10	Development of Subgrade Deformation on 5° Inclined Slab	98
	Model with Different Thickness and Reinforced Subgrade	
	Layer	
6.11	Development of Subgrade Deformations on Different	100
	Approach Slab Models	
6.12	Deformation profiles of Horizontal and 5° Inclined Slab	102
	within Interface Region	
6.13	Deformation profiles of Horizontal and 5° Inclined Slab	103
	within Interface Region for Various Subgrade Thickness and	
	Reinforcement	

xvii

xviii

LIST OF TABLES

TABLES NO.

TITLES

PAGES

2.1	Roads Categories in Malaysia (Meor, et. al, 2001)	18
2.2	Pavement Failures According to Several Researchers	25
	(Jestin, 2006)	
3.1	Material Parameters (Cai, et. al, 2005)	34

PERPUSTAKAAN TUNKU TUN AMINA

LIST OF SYMBOLS

AASHTO	American Association of State Highway and
	Transportation Officials
CBR	California Bearing Ratio
CD	Consolidated Drained Test
CU	Consolidated Undrained Test
DVL	Digital Video Logger
FWD	Falling Weight Deflectometer
EPS	Expanded Polystyrene
ESAL	Equivalent Standard Load
GCL	Expanded Polystyrene Equivalent Standard Load Geosynthetic Clay Liner
GPR	Ground Penetrating Radar
HPU	Highway Planning Unit
LaDOTD	Louisiana Department of Transportation Development
NDT	Non-Destructive Test
NYDOT	New York Department of Transportation
PSI	Present Serviceability Index
PWD	Public Work Department
σ	normal stress
σ'	effective normal stress
σ_{3}	confining pressure
E	modulus of elasticity
ϕ	friction angle
$\Delta \sigma$	deviator stress
и	pore pressure
C	cohesion
C _c	coefficient of consolidation
C _a	coefficient of secondary comporession
- α	comporession

f	yield function
\overline{f}	function of the stress state
κ*	modified swelling/ recompression index
λ^*	modified compression index
P_{p}	pre-consolidation stress
t _o	time at which creep is assumed to commence
<i>t</i> ₁	time
<i>e</i> ₀	initial void ratio
<i>e</i> ₁	void ratio
S	shear stress
μ^*	modified creep index
ν	Poission Ratio
Ψ	dilatancy angle
	modified creep index Poission Ratio dilatancy angle

XX

CHAPTER I

INTRODUCTION

1.1 Problem Statement

The concrete bridge found in Parit Karjo, Batu Pahat is constructed on deep foundation pile which is structurally stable and sound. Construction of pavement and bridge under soft soil circumstance is always linked to the differential settlement problems between bridge abutments and roadway ends. Though, bridge approach slab is provided to span across any difference in level due to settlement between the bridge approach and the roadway ends. The long span concrete slab certainly will provide smoother transition at the end of the roadways to the approach bridge. Thus, providing better comfortability and rideability to commuters and road-users.

The occurrence of settlement for road pavements-bridge interface sections will be noticeably when there is a sudden change of joint level between the ends of paved roadway and constructed bridge approach slab. Undoubtedly, this will affect the rideability quality or factor of the roadway in the long run. This complaint involves a 'bump' that motorists feel as they are leaving or approaching the bridge. The only alternative available now is rehabilitation or remedial work that is to increase the serviceability of the pavement before the same deformation problem reappears gradually. According to Azman and Masirin (2000), about 20% to 30% of total rural road in Batu Pahat district experienced varieties types of failure. Noticeably some damage problem such as deformation of pavement creates uncomfortable manner and also rise of worries of safety among the road users. Thus, it will raise the cost of maintenance as additional maintenance work must be carried out after some period of serviceability.

Above all the matters, it is important for engineers to provide better design and concept of approach slab thus will benefit many similar construction projects in the future. Cai et al. (2005) summarized approach slab design directly affects the safety and economy of the transportation infrastructure. Modification in design of approach slab is important in order to identify better solution for this problem. Though, other researchers such as Wong and Small (1994) in their laboratory scale test indicated that greater sloping angle of approach slab then 10° did not show any significant effect on pavement deformation. Alternatively, performance of designed approach slabs can be examined trough simulation modelling using computer software. In this study some of the conceptual design of approach slabs will be proposed to be evaluated. All required data to be used as inputs in modelling process can be obtained from various laboratory tests.

1.2 Objective of Study

This study is mainly to examine the effect of various formations and concept of approach slab on pavement deformation. The study focuses on Parit Raja rural road that is currently having severe deformation problem on its bridge connection between roadway end and bridge approach slab. Thus, the objectives of this study are as follows:

- To simulate the effect of various formation and concept of approach slab on pavement deformation using PLAXIS software.
- To examine the deferential settlement behaviour of road pavement constructed in soft soil condition when interfaced with rigid bodies such as concrete bridge.
- To critically examine the performance of road pavement when interfaced with approach slab under given soft clay condition.

History and Study Area 1.3

AAN TUNKU TUN AMINA Parit Karjo is located at wetland area of soft soil in Batu Pahat district. With the condition of high water table and weak soft soil properties, it is always being linked with engineering structures failures due to soil settlement problem. Currently, major problem of road pavement in this area is the occurrence road surface settlement with appearance of various kinds of distresses along the roadway section. In addition to that emerging problems, we had also noticed that differential settlement occurs between constructed bridge approach slab and road pavement that is apparently more problematic. It is well-known problem but unfortunately not yet to be resolved appropriately as claimed by the statement of Public Work Department authority.

Cai, et. al, (2005), summarized the embankment settlement is contributed by many factor accumulated all together such as subsoil conditions, materials, construction techniques, drainage provisions, and quality control methods during construction. The study on causes of the problem had been conducted commonly for many years. Some of researcher such as Wong and Small (1994) had studied on the effect of orientation of approach slab model. Not merely restricted to the bridge construction alone, very similar structure such as culvert also shares the same interference problem. In this regard, Gue, S. S. et. al (2002) recommended the use of oversize culvert without end bearing piles to provide smooth riding comfort.

According to the initial field observation, deformations of road surface were severe. Rideability of pavement was so poor and rehabilitation action must be done as soon as possible to prevent more consequent damage and any safety threat to the road users. Plane view of study area is shown as follow:

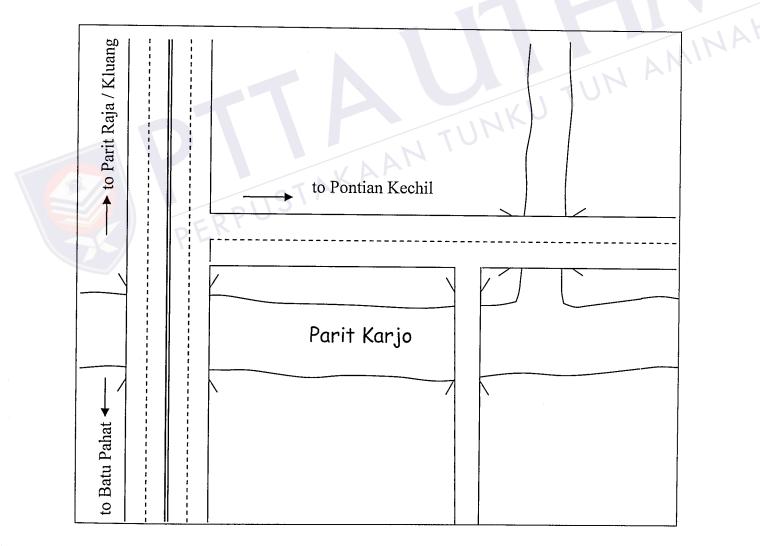


Figure 1.1: Plan View of Study Area

1.4 Scope and Limitation of Research

Research scope will concern on simulation analysis of some concept and modification of approach slabs based on the given condition of soft soil using finite element method. PLAXIS Version 8 will be used in this regard with the ability to perform two dimensional analyses. Soil properties will be obtained from various literatures of previous researchers who doing research in this field. Modelling on the concrete bridge will be based on the actual drawing obtained from the consultant firm who was responsible in this project design. In modelling of soil material itself, established Mohr-Coulomb model will be used for this purpose of study.

Parit Karjo rural road and bridge found near to the T-junction of Kluang – Batu Pahat state road has been used as a research tool. Field observation and laboratory testing has been carried out to identify the required data and properties to be used in this simulation study. However, existing road-bridge in Parit Katjo only used as. Under the limitation of PLAXIS software, deformation analysis was based on static loads at selected point. PLAXIS V8 with capability of 2-dimensional modelling was used to perform the simulation analysis of deformation and stability of geotechnical structures.

1.5 Hypothesis

Several hypotheses have be made based on the expected out comes of the research. Generally, modification in design especially beyond the end of provided approach slab would result in change of load transition behaviour. This was based on the explanation that any change in material stiffness between end of roadway and much stiffer material of approach slab would cause of smoother deformation profile. Thus, hypothesis of the research could be explained as follows:

Conventional horizontal slab could provide better and smoother surface transition toward end of pavement if compared with the one, which was not provided with any transition of approach slab. Though, small depression of deformation beyond the end of constructed approach slab will noticeably exist. In long term effect especially under soft soil circumstance, surface deformation of pavement may become more severe if no rehabilitation work would be carried out.

By providing some modifications on design models, performance at transition region between approach slab and road pavement might be improved and expectedly distinctive for every proposed approach slab model. Consequently, it would be able to demonstrate of how modification on the approach slab and road pavement geometry and material properties would affect on their performance against deformation.

Interface region at connection between bridge approach slab and approaching roadbase were the critical area in which the depression of road pavement surface occurs significantly. The use of new approach slab concept with subgrade reinforcement could improve the transition behaviour at particular area.

Modification of the approach slabs design could be extended with the use of additional reinforcement materials such as geotextile and geosynthetic clay liner that would possibly exhibit better performance particularly under soft soil condition. Such of material is widely use in numerous geotechnical and transportation engineering projects.

6

REFERENCES

- Al-Qadi, I. L., Elseifi, M. A., and Wilkes, J. (2000). "Performance of Geocomposite Membrane in Pavement Systems." Proceeding of the 2nd European Geosynthetics Conference, Vol. 1, October 2002, pp 415-425.
- Brandl, H. and Adam, D. (2000). "Special Applications of Geosynthetics in Geotechnical Engineering." Proceeding of the 2nd European Geosynthetics Conference, Vol. 1, October 2002, pp 27-33.
- Cai, C. S., Shi, X. M., Voyiadjis, G. Z., and Zhang, Z. J. (2005). "Structural Performance of Bridge Approach Slabs under Given Embankment Settlement." Journal of Bridge Engineering, July 2005, Vol. 10, No. 4, pp 48-489.
- Cernica, J. N. (1995). "Geotechnical Engineering: Soil Mechanics." New York: John Willey and Sons.
- Coduto, D. P. (2001). "Foundation Design Principles and Practices." 2nd edition. New Jersey: Prentice Hall.
- Croney, D. and Croney, P. (1991). "Design and Performance of Road Pavement." New York: McGraw-Hill.

Das, B. M. (2002). "Advance Soil Mechanics." New York: McGraw-Hill.

Das, B. M. (2000). "Fundamental of Geotechnical Engineering." California: Brooks/Cole,

- Gue, S. S., Tan, Y. C., and Liew, S. S. (2002). "Cost Effective Geotechnical Solutions for Roads and Factories Over Soft Ground." 20th Conference of the ASEAN Federation of Engineering Organization, 2002.
- Huang, Y. H. (2000). "Pavement Analysis and Design 2nd Edition." New York: John Wiley & Sons.
- Jestin Jelani. (2006). "Forensic Study on Rural Road Pavement Failure along Parit Sumarto." UTHM : Laporan Projek Sarjana.
- Junsheng, Y. (2004). "Case History of EPS Constructed Bridge Approach Embankment." Proceedings of the 2004 International Symposium on Safety Science and Technology, Oct 2004, Shanghai, China.
- Masirin, M. M. I., Adnan, Z., Ahmad, K. A. A. R and Azman, H. (2005). "Defect of Rural Road Constructed On Soft Solis In Batu Pahat District Johor Malaysia."
 2nd International Seminar on Geotechnical Transportation Engineering.
 Diponegoro University, Indonesia.
- Meor, O., Asri, H. dan Mohamed, R. K. (1992). "Reka Bentuk Jalan Raya untuk Jurutera." Kuala Lumpur: Dewan Bahasa dan Pustaka.
- Mohd Faizal. (2005). "Simulasi Terhadap Tanah di Pusat Penyelidikan Tanah Lembut, (RECESS) Malaysia." UTHM: Laporan Projek Sarjana Muda.
- Park, R. and Gamble, W. L. (2000). "Reinforced Concrete Slab. 2nd Edition." New York: John Wiley and Sons.
- PLAXIS, Haag, D. D. (2002). "Material Model Manual PLAXIS Version 8." Delf University of Technology & Plaxis, Netherland: A. A Balkelma Publisher.
- PLAXIS, Haag, D. D. (2002). "Reference Manual Plaxis Version 8." Delf University of Technology & Plaxis, Netherland: A. A Balkelma Publisher.

Smoltczyk, U. (2002). "Geotechnical Engineering Handbook." Berlin: Ernst and Sohn.

Whitlow, R. (2001). "Basic Soil Mechanics." London: Prentice Hall.

Wong, H. K. W., Small, J. C., and Member, ASCE. (1994). "Effect of Orientation of Approach Slab on Pavement Deformation." Journal of Transport Engineering. July 1994, Vol. 120, No. 4, pp 590- 602.

Wright, P. H. (1996). "Highway Engineering 6th Edition." New York: John Wiley & Sons, Inc.