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ABSTRACT 

This work is concerned with the approximation of discrete data using polynomials 

and splines based on the Chebyshev approximation criterion. Five algorithms are 

proposed in this work to implement the Chebyshev approximation criterion. These 

algorithms use either cubic splines or Lagrange polynomials to construct the 

approximation function. The efficiency of each algorithm developed is evaluated on the 

basis of the number of iterations and extreme points required for convergence, and the 

magnitude of the errors generated. One measure of efficiency is the minimum number of 

knots required to capture the full behavior of the data, and the size of the error between 

the actual data and its approximation. These knots are the extreme points that determine 

how well the fitting function approximates the actual data. Since a critical step in the 

approximation is identifying the extreme points, in this work we have proposed a novel 

procedure for finding the set of extreme points for the incoming discrete data efficiently. 

The procedure developed in this work use polynomials and cubic splines to construct the 

approximation function. The output of the algorithm is a set of extreme points that can be 

used to construct a minimal error approximation function. A total of five algorithms 

based on the Lagrange polynomials and cubic splines have been developed in this work 

to identify the extreme points. The efficiency of each algorithm is analysed in terms of 

computation time and the magnitude of the errors generated. In real environment, it is 

hope that this theoretical work can be applied to actual data and solves problems which 

occur in data processing. 
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ABSTRAK 

Projek ini meneliti penghampiran data diskret menggunakan kriteria 

penghampiran Chebyshev. Lima algoritma dicadangkan bagi mengimplementasikan 

kriteria penghampiran Chebyshev. Kesemua algoritma menggunakan sama ada kaedah 

gelugur kubus ataupun polinomial Lagrange bagi membina fungsi penghampiran. 

Kecekapan setiap algoritma yang dibina diuji melalui bilangan lelaran dan titik ekstrem 

yang diperlukan untuk penumpuan, serta magnitud ralat yang dihasilkan. Pengukuran 

kecekapan turut melibatkan bilangan minimum knot yang diperlukan bagi mewakili 

keseluruhan data, dan saiz ralat di antara data sebenar dan data penghampiran. Knot-knot 

ini adalah titik ekstrem yang menentukan sejauh mana fungsi pemasangan menghampiri 

data sebenar. Oleh kerana langkah yang paling kritikal adalah mengenalpasti titik 

ekstrem, projek ini mencadangkan prosedur baru bagi mendapatkan set titik ekstrem dari 

data diskret secara efisien. Prosedur dibina menggunakan polinomial dan gelugur kubus 

untuk membina fungsi penghampiran. Output algoritma ini adalah satu set titik ekstrem 

yang boleh digunakan untuk membina fungsi penghampiran dengan ralat yang minimum. 

Lima algoritma berdasarkan polinomial Lagrangean dan gelugur kubus dibina untuk 

mendapatkan titik ekstrem. Kecekapan setiap algoritma dianalisis berpandukan masa 

pengiraan dan magnitud ralat. Dalam situasi sebenar, hasil kajian secara teori ini 

diharapkan boleh digunakan pada data sebenar dan menyelesaikan permasalahan yang 

berlaku di dalam pemprosesan data. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

The phenomenal advancements that have been achieved in electronics technology in the 

last few decades have brought about new hardware and possibilites. Concomitant with 

these advancements is the explosive growth of computing power available to engineers 

and scientists alike. With the widespread availability of cheap data storage and 

processing hardware, new and more powerful signal processing techniques are being 

explored to take advantage of these developments. Conversely, many of the techniques 

and algorithms that are currently being investigated required for hardware with huge data 

storage and computing capabilities. 

The approximation concept has a close relation with filter application. Like a 

approximation, a filter will remove the unimportant of incoming data and only allow the 

important data to proceed to the next stage of a system. For example, a bandwidth of a 

human voice can rise up to S kHz but in telephone system, the bandwidth of voice data is 

limited to 4 kHz[ l ] . This limitation cause the voice of customers in telephone line sounds 
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different with conversation in a real situation. However, with a lower quality of a system, 

the information from the voice still can be understood by the customers. A Chebyshev 

filter is a well known application that adapts the Chebyshev approximation [2]. An ideal 

filter introduces problems such as requirement of a large size of bandwidth and harmonic 

response in digital signal processing. Two discontinuities of pass band and stop band are 

joined by adapting Chebyshev approximation to provide a similar response of an ideal 

filter. Data approximation can be extended to filter design (see for example, references 

[2], [3], [4]); this work, however, does not cover the the use of either the Chebyshev nor 

the Lagrange approximation to filter design. 

A number of works have been reported in the literature on the use of polynomials 

and splines to implement the Chebyshev approximation for modelling of incoming 

discrete data [5], [6], [7], Data collected by sensors readings or non polynomials discrete 

functions which required curve fitting need to be approximated or interpolated by 

polynomials and splines to be analyzed for further studies. In general, curve fitting 

problems occur in signal processing, graphics, statistical analysis and in geometric 

modeling. 

Figure 1.1 shows a block diagram representation of digital speech processing 

using Chebyshev approximation to remove unimportant data. The signal that passes the 

stage of Chebyshev approximation model block can represent the entire data by using 

less number of data. 
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Figure 1.1: Application of Chebyshev approximation 

Reconstruction of the incoming discrete data can be achieved in either of two 

ways; namely, interpolation, and approximation [3], In the interpolation method, an 

interpolation function is determined which passes through the actual values of the 

discrete function. 

The interpolation function should pass the exact values of the discrete function. 

The interpolation function is applied in an estimation of the values between two discrete 

data where the connectivity between two knots is not known. 

Conversely, an approximation finds a curve that passes near a set of knots, which 

is used to express whole set of incoming dicrete data with a much lesser number of data 

points. 
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An approximation needs certain number of knots as a control points, known as 

extreme points where the set of extreme points of data will perform approximate data 

similar to actual data. However, the approximation creates a new element that 

differentiates the correct data from the approximation data known as error. The 

approximation methods always involve errors and errors is measured for the 

determination of appropriate approximation. Error occurs when there is a difference 

between true values and approximate values [8], The approximation must minimize the 

error with respect to actual data. The various distances are based on norms such as least 

squared norm, Euclidean norm or infinity norm [3], However, in wide area of data, 

Chebyshev error norm usually perform better because the norm shows the maximum 

error which occurs in an interval of data. 

The characteristics of function of polynomials and splines make it suitable to 

interpolate data in certain conditions. Polynomial is easy to manipulate and presents a 

good approximation of data patterns but can wildly oscillate during large intervals 

especially for polynomial orders that are bigger than three [2], The better option is to use 

spline in the approximation. Spline has good computational properties such as compact 

representation and computational stability. Splines have most attractive properties 

because they can be divided into several segments which can prevent the function from 

oscillating too far [9], Another important consideration is the spline representations are 

more numerically stable and computationally efficient. Splines require a lower order than 

polynomial to fit the same performance of polynomial. Nevertheless, using splines as the 

solving methods in Chebyshev approximation will cause a non-linear approximation 

system. The approximation will be more complicated and complex. Therefore, it is 

important to analyze the characteristics of approximations function in order to have the 

best approximation of data. 
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1.2 Problem Statement 

An approximation conveys a simpler function with less number of data or knots to 

express the entire real data. The approximation creates errors that differentiate the actual 

data from the approximate data. The approximation can save on the computation required 

for high level signal processing, which is directly related to the number of the knots [10]. 

Many engineering applications involve signal processing when analyzing the 

incoming discrete data such as in the robotics motion design [5]. The resulting motion or 

moving frames of the robot can be represented by polynomials and splines. The 

unimportant or non critical data movement can be approximated to reduce memory space. 

The model of a frame of speech data also can be achieved using spline [1], The speech 

model involves data that is determined by frequencies. The high peaks of the frequencies 

become the critical data and should be considered in the approximation. The 

approximation of data is related to data compression. 

The critical part of the approximation is to identify the critical knots from a set of 

data [8]. These knots are known as the extreme points that can control the approximation 

function to perform a similar approximate data according to actual data. The 

effectiveness of the approximation function is determined by the minimum number of 

knots which describes the behavior of data and present less error between real data and 

approximation data. 

There are two approaches which are commonly used in an approximation of data. 

The first approach of getting the extreme points is by removing the unimportant knots 

and known as data reduction [11]. The knot is removed eventually until the approximate 

data gives an approximation within an acceptable error bound. Data reduction has better 

performance to approximate in random behavior. The second approach begins with 

essentially no knots and builds up the approximating function by adding knot. The knot is 
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added eventually until the approximation satisfies the performance according to the 

actual data. This second approach is suitable to approximate a well behaved data. 

This project proposed a new approach that does not involves data reduction or 

data increment as described previously in the paragraph. The discrete data are well 

distributed on a given interval and the connectivity between the knots is not known. The 

project initializes several number of knots and algorithms that adapt the Chebyshev 

approximation are proposed to acquire a set of knots. These knots are known as extreme 

points. The algorithms will iterate until a set of the extreme points is converged. The 

approximation will introduce errors. The approximation which uses different number of 

extreme points will be analyzed. 

1.3 Scope and Objectives 

The research fulfills the objectives that includes to model a chebyshev 

approximation in representation of the two dimensional incoming discrete data. The data 

forms in linear. The research also differentiates the polynomial approximation and spline 

approximation in terms of total extreme points, the computation time and the generated 

error. Since polynomials and splines have their own characteristic in interpolation, hence 

of they cannot simply be used to represent data. 

The research proposes a procedure of the Chebyshev approximation by using the 

polynomials and splines as an approximate function. Outcome of the algorithm is a set of 

extreme points that can represent an approximate data which has similar response due to 

the actual data. Several algorithms that use polynomial and spline are developed to 

identify the extreme points and the results are evaluated according to the behavior of 
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polynomial and spline. Results of the algorithms are analyzed in terms of computation 

time and the generated error. 

The algorithms of Chebyshev approximation that use a fixed knot polynomial and 

spline are developed in this project. The fixed knot means that the given knot or data 

location cannot be changed by the approximation process. The approximation only 

involves two dimensional data. Since the incoming data is distributed in discrete domain, 

the analysis during the approximation only considers the data on the grid sampling. Total 

numbers of the extreme points are fixed during the initialization of the extreme points. 

The effectiveness of the approximation function is determined in term of the generated 

error and the error of the algorithm is analyzed in least square sense. 

In general, curve fitting problems occur in signal processing, graphics, statistical 

analysis and in geometric modeling. The high volume of incoming data is overwhelming 

to memory space and needs an efficient approximation algorithm. The approximation 

function will approximate the actual data by using less numbers of data but creates error. 

In approximation data, the most important part is the identification of the correct extreme 

points, otherwise the approximation function does not generate the best approximation of 

data. Thus, the algorithms are developed to identify a set of the extreme points and 

generate the best approximation of the incoming data. 

Chapter II is a literature review on reseach related to the author 's work. Also 

included is a summary of some the works that has been carried out elsewhere on filter 

design and multidimensional and experimental data analysis. 

Chapter III discusses the related theoretical background for Chebyshev 

approximation on a continuous domain. Most of the theories hold for discrete domain 

approximation. Also, the general description of the Remez Exchange Algorithm is 
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provided in this chapter. The chapter also discusses the numerical background of 

polynomials and splines. At the end of the chapter, the relation between the continuous 

and discrete data is discussed. 

Chapter IV proposes several algorithms that are developed in the project and the 

algorithms are important to generate a good procedure of approximation data. The 

chapter also discusses about the software development. The MATLAB code is 

programmed to realize the outcome of the algorithms. 

Chapter V discusses the results of the comparison between of the algorithms 

proposed in Chapter TV. The analyses involve the number of total iteration where the 

extreme points are converged and the absolute error. Then the relation of the results is 

discussed with the performance of the equipment which are processing time and memory 

space. 

Chapter VI concludes the discussion with a summary of the results obtained. Also 

discussed are the possible applications of the results. Finally, several recommendations 

are suggested for further research on this theme. 
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CHAPTER II 

LITERATURE REVIEW 

2.0 Introduction 

This chapter reviews the works that has been published in the literature which are 

related to this project 's scope. The literature review includes both the theoretical and 

experimental works. These works include that on filter design, manipulation of 

multidimensional data, and experimental data analysis. 

2.1 General Background 

Many well known applications deal with discrete data that need curve fitting to 

closely express the whole behaviour of data [12], [13], [14] with less data. For example, 

fitting smooth curve is one of the important themes on pattern recognition and data 

analysis. 
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One measure of the effectiveness of the fitting function is the minimum number 

of knots required to capture the full behavior of the data, and the size of the absolute error 

between the actual data and its approximation. These knots, or extreme points, determine 

how well the fitting function approximates the actual data. Since a critical step of the 

approximation procedure is to identify the extreme points, many researchers have 

developed their own algorithms to suit the different incoming data types. These include, 

among others, data reduction methods that progressively reduce the number of knots 

required, until the limiting error tolerance between the approximating function and actual 

data is reached. Other methods start with no knots and progressively build up the 

approximating function by adding more knots until the error tolerance is reached. 

Many data fitting algorithms have been developed, based on different 

goodness-of-fit measures. One popular goodness-of fit criterion is based on the 

minimisation of the mean-square error. Another equally popular goodness-of-fit measure 

is the Chebyshev approximation criterion which based on the minimisation of the 

maximum value of the difference between the original curve and its approximation 

function. The Chebyshev approximation criterion has been routinely used since the 1960s 

in modern digital filter design techniques. Filters designed based the Chebyshev criterion 

produce responses approximating closely those of ideal filters and hence circumvent the 

appearance of spurious harmonic responses in digital signal processing. Crousel and 

Neirynck [2] developed an approximation of the ideal filter characteristic as a ratio of 

polynomials from the Chebyshev criterion. Parks and McClellan [4] applied the 

Chebyshev approximation criterion to design finite-length impulse response filters. Data 

fitting using the least square approximation criterion has been done Haruki and Horiuchi 

[7] using splines. 

The curve-fitting procedure involves evaluating distance between data points and 

a prospective fitting function. Mizuta [12] has developed an algorithm that is based on 

Nevvton-Raphson to evaluate the exact distance between the data points and a prospective 

curve. Kitson [11] introduced three steps of data reduction strategy which are significant 
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Parks and McClellan design algorithm 
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A P P E N D I X B 

Mat lab Code 

B.l Algor i thm-1 

n= 0:1:100; 
£n= sin(2*pi* (n-50)/100) ; 
iteration=0; 
ce=cell(l,20); 
tabser=cell(1,20) ; 

% initial extremal points 

en=[ 0 10 20 30 40 100] ; 
while iteration<=20 
fen= sin (2*pi* (en-50) /100) ; 
p=polyfit(en,fen,5); 
f = polyval(p,n); 

figure(iteration+1); 
plot(en,fen,'o 1,n,f) ; grid on;hold on; 
plot(n,fn,'m') 

error=l; 
%while iteration>=0 & error>=0.01 

errorterap=f-fn; 
abserror=max (abs(errortemp)); 
tabser{iteration+1}=abserror; 
num=length(en); 
numb=l; 

% correct the values of the extreme points by adapting Chebyshev 
approximation 

while numb<=num % adding interpolating 
values with error 

fen(numb)=fen(numb)+abserror; 
if((numb)==length(en)) 

break 
else 
fen(numb+1)=fen(numb+1)-abserror; 
numb=numb+2; 

end 
end 

% find the error function between approximate data and actual data 

ji=lagrange(n,en,fen) ; % finding new extremal 
points 

dip=ji-fn; 
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beza=diff(dip); 
nume=l; 
extrem=zeros(1,length(en)); 
bilang=2; 
extrem(l)=en(1) ; 

extrem(length(en))=en(length(en)); 

% obtain the extreme points by differentiating the e 
while n u m e < = l e n g t h ( b e z a ) - 1 

check=beza(nume+1) .*beza (nume); 
if check<=0 

extrem(bilang)=nume; 
b i l a n g = b i l a n g + l ; 

end 
nume=nume+l; 

end 

%update and save a n e w set of the extreme points 

en=extrem; ce{iteration+1}=extrem; 

% the extreme converge or not 

% if extremal p o i n t s c o n v e r g e d , iteration stopped 

% otherwise, continue the procedure to find the extreme points 

if (iteration>2 & ce{iteration}==ce{iteration-1}) 

break 

% stopping criteria 

% check w h e t h e r the extreme points keep iterating at the same values 
% if the extreme p o i n t s keep iterating at the same sets, iteration 

stopped 

% otherwise,continue the procedure to find the extreme points 

elseif (iteration>4 & ce{iteration}==ce{iteration-2}) 

break 

elseif (iteration>S &ce{iteration}==ce{iteration-3}) 
break 

elseif (iteration>8 &ce{iteration}==ce{iteration-4}) 
break 

% else, iteration continue 
else 

i t e r a t i o n = i t e r a t i o n + l ; 

end 

end 
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B.3 Algori thm-3 

n= 0 : 1 : 1 0 0 ; 
fn= sin(2*pi*(n-50)/100) ; 
iteration=0; 
ce=cell(1,10) ; 

% initial extremal points 
en=[ 0 10 20 30 40 100]; 

while iteration<=10 
fen= sin (2*pi* (en-50)/100) ; 
f=spline(en,fen,n) ; 
figure(iteration+1); 
plot(en,fen,'o',n,f); grid on;hold on; 
plot(n,fn,'m') 

error=l; 

errortemp=f-fn; 

abserror=max (abs(errortemp)); 
tabser{iteration+1}=abserror; 
num=length(en); 
numb=l; 

% correct the values of the extreme points by adapting Chebyshev 
approximation 

while numb<=num % adding interpolating 
values with error 

fen(numb)=fen(numb)+abserror; 
if((numb)==length(en)) 

break 
else 
fen(nurnb+1)=fen(numb+1)-abserror; 
numb=numb+2; 

end 
end 

% find the error function between approximate data and actual data 

ji=lagrange(n,en,fen) ; % finding new extremal 
points 

dip=ji-fn; 
beza=diff(dip); 
nume=l; 

extrem=zeros(1,length(en)); 
bilang=2; 
extrem(l)=en(1) ; 

extrem(length(en))=en(length(en)); 

% obtain the extreme points by differentiating the error function 

while nume<=length(beza)-1 
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check=beza(nume+l).*beza(nume); 
if check<=0 

extrem(bilang)=nume; 
bilang=bilang+l; 

end 
nume=nume+l; 

end 
%update and save a new set of the extreme points 

en=extrem; 

ce{iteration+l}=extrem; 

% the extreme converge or not 

% if extremal points converged, iteration stopped 

% otherwise, continue the procedure to find the extreme points 

if (iteration>2 & ce{iteration}==ce{iteration-l}) 

break 

% stopping criteria 
% check whether the extreme points keep iterating at the same values 
% if the extreme points keep iterating at the same sets, iteration 

stopped 
% otherwise,continue the procedure to find the extreme points 

elseif (iteration>4 & ce{iteration}==ce{iteration-2}) 
break 

elseif (iteration>6 &ce{iteration}==ce{iteration-3}) 

break 

elseif (iteration>8 &ce{iteration}==ce{iteration-4}) 

break 

% else, iteration continue 
else 

iteration=iteration+l; 
end 
end 
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B.3 Algor i thm-3 

%define the actual data 

n= 0:1:100; 

fn= sin(2*pi*(n-50)/100) ; 
iteration=0; 
ce=cell (1,12) ; 
tabser=cell(1,12) ; 

% initial extremal points 
en= [ 0 10 20 30 40 100] ; 
while iteration<=12 
fen= sin(2*pi*(en-50)/100); 
f=lagrange(n,en,fen); 
figure(iteration+1); 
plot(en, fen,'o',n,f); grid on;hold on; 
plot(n,fn,'m') 

error=l; 
%while iteration>=0 & error>=0.01 

errortemp=f-fn; 
abserror=max (abs(errortemp)); 
tabser{iteration+1}=abserror ; 
num=length(en); 
numb=l; 

% correct the values of the extreme points by adapting Chebyshev 
approximation 

while numb<=num % adding interpolating 
values with error 

fen(numb)=fen(numb)+abserror; 
if((numb)==length(en)) 

break 

else 
fen(numb+1)=fen(numb+1)-abserror; 
numb=numb+2; 

end 
end 

% find the error function between approximate data and actual data 

ji=lagrange(n,en,fen) ; % finding new extremal 
points 

dip=ji-fn; 
beza=diff(dip); 
nume=l; 

extrem=zeros(1,length(en)) ; 
bilang=2; 
extrem(1)=en(l); 
extrem(length(en))=en(length (en)); 
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% obtain the extreme points by differentiating the error function 

while nume<=length(beza)-1 
check=beza(nume+1).*beza(nume); 

if check<=0 
extrem(bilang)=nume; 
bilang=bilang+l; 

end 
nume=nume+l; 

end 
en=extrem; 

ce{iteration+1}=extrem; 

% the extreme converge or not 

% if extremal points converged, iteration stopped 
% otherwise, continue the procedure to find the extreme points 

if (iteration>2 & ce{iteration}==ce{iteration-l}) 
break 

% stopping criteria 
% check whether the extreme points keep iterating at the same values 
% if the extreme points keep iterating at the same sets, iteration 

stopped 
% otherwise,continue the procedure to find the extreme points 

elseif (iteration>4 & ce{iteration}==ce{iteration-2}) 
break 

elseif (iteration>6 &ce{iteration}==ce{iteration-3}) 
break 

elseif (iteration>8 tee{iteration}==ce{iteration-4}) 
break 

% else, iteration continue 
else 

iteration=iteration+l; 
end 
end 
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B.4 Algor i thm-4 

n= 0:1:100; 

fn= sin (2*pi*(n-50)/100) ; 

iteration=0; 
ce=cell(1,30); tabser=cell (1,30) ; 

% initial extremal points 
en=[ 0 10 20 30 40 100] ; 

i approximate the points using cubic spline 
% display the approximate function 

while iteration<=20 

fen= sin(2*pi*(en-5 0)/10 0) ; 
f=lagrange(n,en,fen); 
figure(iteration+1); 
plot(en,fen, 'o 1,n,f); grid on;hold on; 
plot (n,fn, 'm') 

error=l; 

% estimate the absolute error 

errortemp=f-fn; 

abserror=max (abs(errortemp)); 
tabser{iteration+1}=abserror; 
num=length(en); 
numb=l; 

% correct the values of the extreme points by adapting Chebyshev 
approximation 

while numb<=num % adding interpolating 
values with error 

fen(numb)=fen(numb)+abserror; 
if((numb)==length(en)) 

break 
else 
fen(numb+1)=fen(numb+1)-abserror; 
numb=numb+2; 

end 
end 

% find the error function between approximate data and actual data 

ji=spline(en,fen,n); % finding new extremal 
points 

dip=ji-f n ; 

beza=diff(dip); 
nume=l; 

extrem=zeros(1,length(en)); 
bilang=2; 
extrem(1)=en (1) ; 
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extrem(length(en))=en(length(en)); 

% obtain the extreme points by differentiating the error functi 

while nume<=length(beza)-1 
check=beza(nume+1).*beza(nume); 

if check<=0 
extrem(bilang)=nume; 
bilang=bilang+l; 

end 
nume=nume+l; 

end 

%update and save a new set of the extreme points 

en=extrem; 

ce{iteration+1}=extrem; 

% the extreme converge or not 
% if extremal points converged, iteration stopped 
% otherwise, continue the procedure to find the extreme points 

if (iteration>2 & ce{iteration}==ce{iteration-1}) 

break 

% stopping criteria 
% check whether the extreme points keep iterating at the same values 
% if the extreme points keep iterating at the same sets, iteration 

stopped 
% otherwise,continue the procedure to find the extreme points 

elseif (iteration>4 & ce{iteration}==ce{iteration-2}) 
break 

elseif ( i t e r a t i o n s &ce{iteration}==ce{iteration-3}) 
break 

elseif (iteration>8 &ce{iteration}==ce{iteration-4}) 
break 

% else, iteration continue 
else 

iteration=iteration+1; 
end 
end 
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B.4 Algor i thm-4 

n= 0 : 1 : 1 0 0 ; 
fn= sin(2*pi*(n-50)/l00) ; 
iteration=l; 
ce=cell(1,20); 
tabser=cell(1,20); 

% initial extreme points 
en=[ 0 10 20 30 40 100]; 

while iteration<=30 

% approximate the points using cubic spline 
% display the approximate function 

fen= sin(2*pi*(en-50)/100); 
f=spline(en,fen,n); 
figure(iteration); 
plot(en, fen, 'o 1,n,f); grid on;hold on; 
plot(n,fn,'m') 

error=l; 

% estimate the absolute error 

errortemp=f-fn; 

abserror=max (abs(errortemp)); 
tabser{iteration}=abserror; 
num=length(en); 
numb=l; 

% correct the values of the extreme points by adapting Chebyshev 
approximation 

while numb<=num % adding interpolating 
values with error 

fen(numb)=fen(numb)+abserror; 
if ( (numb) —length (en) ) 

break 
else 
fen(numb+1)=fen(numb+1)-abserror; 
numb=numb+2; 

end 
end 

% find the error function between approximate data and actual data 

j i=spline(en,fen,n); 
points 

% finding new extremal 
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dip=j i-fn; 
beza=diff(dip); 
nume=l; 
extrem=zeros(1,length(en)); 
bilang=2; 
extrem(1)=en(1); 
extrem(length(en))=en(length(en)); 

% obtain the extreme points by differentiating the error function 

while nume<=length(beza)-1 
check=beza(nume+1).*beza(nume) 

if check<=0 
extrem(bilang)=nume; 
bilang=bilang+l; 

end 
nume=nume+l; 

end 

%update and save a new set of the extreme points 

en=extrem; 
ce{iteration}=extrem; 

% the extreme converge or not 
% if extremal points converged, iteration stopped 
% otherwise, continue the procedure to find the extreme points 

if (iteration>2 & ce{iteration}==ce{iteration-l}) 
break 

% stopping criteria 
% check whether the extreme points keep iterating at the same values 
% if the extreme points keep iterating at the same sets, iteration 

stopped 
% otherwise,continue the procedure to find the extreme points 

elseif (iteration>4 & ce{iteration}==ce{iteration-2}) 
break 

elseif (iteration>6 &ce{iteration}==ce{iteration-3}) 
break 

elseif (iteration>8 &ce{iteration}==ce{iteration-4}) 
break 

% else, iteration continue 
else 

iteration=iteration+l; 
end 
end 
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A P P E N D I X B 

Mat lab Code 

B . l Algorithm-1 

n= 0:1:100; 
fn= sin(2*pi*(n-50)/100); 
iteration=0 ,-
ce=cell(1,20) ,-
tabser=cell(1,20); 

% initial extremal points 

en=[ 0 10 20 30 40 100]; 
while iteration<=20 
fen= sin(2*pi*(en-50)/100); 
p=polyfit(en,fen,5); 
f = polyval(p,n); 

figure(iteration+1); 
plot(en,fen,'o',n,f); grid on,-hold on; 
plot(n,fn,'m 1) 

error=l; 
%while iteration>=0 & error>=0.01 

errortemp=f-fn; 
abserror=max (abs(errortemp)); 
tabser{iteration+1}=abserror; 
num=length(en); 
numb=l; 

% correct the values of the extreme points by adapting Chebyshev 
approximation 

while numb<=num % adding interpolating 
values with error 

fen(numb)=fen(numb)+abserror; 
if ( (numb) —length (en) ) 

break 

else 
fen(numb+1)=fen(numb+1)-abserror; 
numb=numb+2; 

end 
end 

% find the error function between approximate data and actual data 

ji=lagrange(n,en,fen); % finding new extremal 
points 

dip=ji-fn; 

PTTA
PERP

UST
AKA
AN 
TUN
KU T

UN 
AMI
NAH


	TABLE OF CONTENTS
	BORANG PENGESAHAN STATUS TESIS
	ACKNOWLEDGEMENT
	ABSTRAK
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	LIST OF APPENDICES
	CHAPTER IINTRODUCTION
	CHAPTER IILITERATURE REVIEW
	CHAPTER IIIREVIEW OF CHEBYSHEV APPROXIMATION
	CHAPTERIVRESEARCH METHODOLOGY
	CHAPTER VRESULTS AND DISCUSSION
	CHAPTER VICONCLUSIONS AND RECOMMENDATIONS
	APPENDIX


