InxGa1−xAs nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology

Ameruddin, Amira Saryati and Fonseka, H Aruni and Caroff, Philippe and Wong-Leung, Jennifer and het Veld, Roy LM Op and Boland, Jessica L and Johnston, Michael B and Hark, Hoe Tan and Jagadish, Chennupati (2015) InxGa1−xAs nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology. Nanotechnology, 26 . pp. 1-10. ISSN 0957-4484

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1088/0957-4484/26/20/205604

Abstract

Obtaining compositional homogeneity without compromising morphological or structural quality is one of the biggest challenges in growing ternary alloy compound semiconductor nanowires. Here we report growth of Au-seeded InxGa1−xAs nanowires via metal-organic vapour phase epitaxy with uniform composition, morphology and pure wurtzite (WZ) crystal phase by carefully optimizing growth temperature and V/III ratio. We find that high growth temperatures allow the InxGa1−xAs composition to be more uniform by suppressing the formation of typically observed spontaneous In-rich shells. A low V/III ratio results in the growth of pure WZ phase InxGa1−xAs nanowires with uniform composition and morphology while a high V/III ratio allows pure zinc-blende (ZB) phase to form. Ga incorporation is found to be dependent on the crystal phase favouring higher Ga concentration in ZB phase compared to the WZ phase. Tapering is also found to be more prominent in defective nanowires hence it is critical to maintain the highest crystal structure purity in order to minimize tapering and inhomogeneity. The InP capped pure WZ In0.65Ga0.35As core–shell nanowire heterostructures show 1.54 μm photoluminescence, close to the technologically important optical fibre telecommunication wavelength, which is promising for application in photodetectors and nanoscale lasers.

Item Type:Article
Subjects:T Technology > T Technology (General)
Divisions:Faculty of Science, Technology and Human Development > Department of Science
ID Code:8167
Deposited By:Normajihan Abd. Rahman
Deposited On:25 Apr 2017 15:53
Last Modified:25 Apr 2017 15:53

Repository Staff Only: item control page